
An overview on diagnosability and prognosability for system
monitoring

Amaury Vignolles1,2, Elodie Chanthery 1,2 and Pauline Ribot 1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
amaury.vignolles@laas.fr elodie.chanthery@laas.fr pauline.ribot@laas.fr

2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

ABSTRACT

The complexification of systems has brought the emergence
of a new field of study: system health monitoring. This
field is deemed necessary because it improves system avail-
ability and it avoids unnecessary maintenance costs. System
health monitoring is performed through diagnosis and prog-
nosis methods. Diagnosis consists in detecting and identi-
fying faults that may lead to system failures. Prognosis is
related to the prediction of the system Remaining Useful Life
(RUL) that corresponds to the remaining time until the system
failure. This paper aims at giving an overview on the prop-
erties related to diagnosis and prognosis on different types
of systems. We will focus on the diagnosability and prog-
nosability properties. This paper will first briefly present the
different types of systems of interest for the system health
monitoring community. We will consider Discrete Event Sys-
tems (DES), Continuous Systems (CS), Hybrid Systems (HS)
or Heterogeneous Systems (HtS). The rest of this paper will
present the definitions given in the literature for the concepts
of diagnosability and prognosability. The similarities and dif-
ferences in these definitions for the different types of systems
will be highlighted. Some metrics associated with the prog-
nosability property will also be discussed.

1. INTRODUCTION

Nowadays, systems are more and more complex and a more
complex system is subject to more faults and failures reasons.
To detect and identify these faults, a diagnosis reasoning is
required. Diagnosis algorithms (Isermann, 1997) were devel-
oped to monitor systems and know if a fault occurred (de-
tection) and which fault (or faults) occurred (isolation). Re-
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cently, industrials want not only to be able to know if a fault,
and which one, occurred, but also to be able to predict the
remaining time during which the system will be able to fulfill
its purpose, or in other words, the time until the system en-
counters a failure, also known as the Remaining Useful Life
(RUL) of a system. Prognosis is often related to this temporal
prediction of the RUL. To understand well the difference be-
tween faults and failures, the definitions of faults (Isermann,
1997) and failures (Villemeur, 1988) must be reminded.

Definition 1 (Failure)
A failure state is a state in which the system is not able to
fulfill its purpose anymore.

Definition 2 (Faults)
Faults represent a non-acceptable deviation from a charac-
teristic property or a parameter of the system.

Faults might lead to failures, but not necessarily, as in some
cases, the system might still be able to fulfill its purpose.
In this paper, we will survey the notion of diagnosability and
prognosability in different types of systems. Diagnosability
is a notion that has been well studied for a long time, while
prognosability is a more recent notion. Intuitively, we can
define diagnosability and prognosability as follows, based on
the etymology of the words themselves.

Definition 3 (Diagnosability-intuition)
Diagnosability represents the ability for a system to be di-
agnosed. In other terms, diagnosability is the ability for a
system and its monitoring capacities to exhibit different symp-
toms for each fault situation.

Definition 4 (Prognosability-intuition)
Prognosability represents the ability for a system to be prog-
nosed. In other terms, it represents the ability to predict a
failure.

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

In this paper, proper definitions given in the literature are to
be found for different kinds of systems.
Four different kinds of systems will be considered: discrete-
event systems (DES), continuous systems (CS), hybrid sys-
tems (HS) and finally heterogeneous systems (HtS).
A DES is defined as a system that will only encounter, and
produce, discrete data. If a DES encounters continuous data,
it will be abstracted to generate discrete events. Among the
most widespread formalisms for DES are automata, state ma-
chines or Petri nets, interested readers can find more details
in (Cassandras & Lafortune, 2009).
A CS will have continuous dynamics. In general, a CS is
described by a dynamic equation C of the form:

C =

{
xk+1 = f(xk, uk) + v(xk, uk)
yk = h(xk, uk) + w(xk, uk)

, (1)

where xk ∈ Rnx is the continuous state vector of n state
variables at time k, uk ∈ Rnu is the vector of nu continuous
input variables at time k, f is the noise-free continuous evolu-
tion function, v is a noise function, yk ∈ Rny is the vector of
ny continuous output variables at time k, h is the noise-free
output function and w is the noise function associated with
observation.
A HS will always be subject to continuous and discrete data.
The most known formalisms for hybrid systems are hybrid
automata (Cassandras & Lafortune, 2009), hybrid Petri nets
(Alla & David, 1998) or hybrid bond graphs (Mosterman &
Biswas, 1998).
Finally, we consider that a HtS is a system that could be de-
scribed as different sub-systems, which are either DES, CS or
HS. It means that a HtS will sometimes be affected by discrete
data only, sometimes by continuous data only, and sometimes
both.
For each of these type of systems, Σf will denote the set of
faults that may occur on the system.
For each one of these formalisms, one specific definition of
diagnosability or prognosability can be proposed. The goal
here is to see where these definitions converge or diverge and
if it is possible to merge some interesting concepts for the
specific HtS.

This paper is organized as follows. Section 2 will survey the
diagnosability notion as defined by the literature for each of
the previously presented category of systems. Based on Sec-
tion 2 layout, Section 3 will survey the prognosability notion
and introduce prognosability’s metrics. Finally, Section 4 will
conclude, criticize and highlight some interesting points on
which advancements could be made.

2. DIAGNOSABILITY

This section exposes how diagnosability is defined in the lit-
erature. Table 1 shows the reviewed articles and the studied

types of systems. The following subsections give more details
about the definitions given by the articles.

2.1. Diagnosability in DES

Diagnosability in DES is quite well defined in the literature.
One of the first definition was given in (Sampath et al., 1995)
for systems modeled by automata.

Definition 5 (Diagnosability by Sampath et al., 1995)
Diagnosability is the ability for a DES to provide a particular
set of observations after the occurrence of a fault f ∈ Σf

belonging to a fault’s partition.

A fault’s partition is a set Ωf ⊆ Σf containing one or several
faults, represented by unobservable discrete events. For ex-
ample, the fault’s partition Ω1 = {f1; f2} contains the faults
f1 and f2, whereas Ω2 = {f3} contains only the fault f3. So,
in this case, the two faults f1 and f2 are not distinguished as
they are represented in the same fault partition. The set of ob-
servations must allow the monitor (also called the diagnoser)
to detect the occurrence of a particular fault’s partition. How-
ever, this definition of diagnosability does not imply that the
fault which occurred will be precisely known. Moreover, the
previous definition is quite strict and might not be applicable
to some real systems. For example, if you consider the case of
a door, it is impossible to know if the door is broken and stuck
closed (event fsc) without trying to open the door. Based on
this idea, a relaxed definition has been proposed by the same
authors in (Sampath et al., 1995), named the I-diagnosability.

Definition 6 (I-diagnosability)
I-diagnosability is the ability for a DES to provide a partic-

ular set of observations, allowing the monitor to detect the
occurrence of a fault f ∈ Σf and to identify the fault’s par-
tition not after the occurrence of the said fault, but after the
occurrence of an indicator event related to the fault.

Considering the previous example of the door, the event
opendoor is considered as an indicator event related to the
fault fsc.
Definition 5 is used as a base to define most of the notions
related to diagnosability and is sometimes used as it is like in
(Yoo & Lafortune, 2002), along with Definition 6. It was also
applied to Petri Nets in (Basile et al., 2012) and (Madalinski
et al., 2010). A new definition, k-diagnosability, is given in
(Basile et al., 2012).

Definition 7 (k-diagnosability)
k-diagnosability is the ability to be k-diagnosable. To be k-
diagnosable, a fault event f ∈ Σf must be diagnosable af-
ter the firing of at most k transitions after its occurrence.
If all the faults f ∈ Σf are k-diagnosable, the system is k-
diagnosable.

In (Zanella, 2017), ||//l-diagnosability is presented to take
into account temporal uncertainty into the diagnosability def-
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System Type Articles
DES (Sampath, Sengupta, & Lafortune, 1995) and (Ye, Dague, & He, 2019) [Automata]

(Zanella, 2017) [Twin plant : finite automata]
(Basile, Chiacchio, & De Tommasi, 2012) [Labelled Petri Nets]

(Yoo & Lafortune, 2002) [Finite-state automaton]
(Madalinski, Nouioua, & Dague, 2010) [Labelled Petri Nets]

CS (Staroswiecki & Comtet-Varga, 2001) [algebraic dynamic systems]
(Zuniga, Sotomayor-Moriano, Chanthery, Travé-Massuyès, & Soto, 2019)

(Cordier, Travé-Massuyes, Pucel, et al., 2006)
HS (Zaatiti, Ye, Dague, & Gallois, 2017) [Partially observed hybrid automata]

(Bayoudh & Travé-Massuyès, 2014)
(Fourlas, Kyriakopoulos, & Krikelis, 2002) [Hybrid I/O Automata]

HtS (Hsieh & Chen, 2008) [distributed]
(Hua, Li, Ren, & Liu, 2016)

Table 1. Reviewed articles on diagnosability classified by system types

inition for systems modeled by automata. This temporal un-
certainty is up to a certain level, denoted l. For example, let
us consider four events a, b, c, d, such that events a and d are
temporally unrelated as illustrated by Figure 1. In this case,
when a and d both occur, it is not possible to know if the se-
quence is a.d or d.a. To represent this temporal uncertainty,
the authors propose to write a//d. Thus, an example of ob-
servations for the system represented in Figure 1 is b.a//d.c.
In this example, as there are two temporally unrelated events,
we consider l = 2.

Figure 1. Temporaly unrelated events, from (Zanella, 2017)

Definition 8 (||//l-diagnosability)
||//l-diagnosability represents the ability for a system to be
||//l-diagnosable. For a faulty behavior f ∈ Σf to be ||//l-
diagnosable, it should produce a set of observations that can-
not be mistaken, even with temporal uncertainty on the events
up to a level l, with a set of observations produced by a nom-
inal behavior or a different fault. If all the faults f ∈ Σf are
||//l-diagnosable, the system is ||//l-diagnosable.

In (Ye et al., 2019), a weaker definition is introduced, and
called manifestability. This notion is based upon the idea that
diagnosability might be expensive in terms of sensors require-
ment and is defined for systems modeled by automata.

Definition 9 (Manifestability)
The notion of manifestability represents the possibility for a
fault occurrence to be manifestable, i.e. to be recognized
through observations. A manifestable fault f ∈ Σf will have

effects on the observation given by the system. If all the faults
f ∈ Σf are manifestable, the system is said manifestable.

Based on this notion, if a fault is not manifestable, then, what-
ever the event following its occurrence, it is not possible to
know for sure whether it occurred or not. A non-manifestable
fault is therefore not diagnosable.

2.2. Diagnosability in CS

Diagnosability in CS is usually composed of detectability and
isolability and is based upon what is called Analytical Re-
dundancy Relations (ARRs) (Staroswiecki & Comtet-Varga,
2001), (Pérez, Chanthery, Travé-Massuyès, & Sotomayor,
2017), which are analytical relations based upon the set obs
of measured variables.

Definition 10 (ARRs)
A dynamic constraint Cobs(ūk, ȳk, ε̄k) = 0 is an ARR for
Equation 1 if for all (uk,yk) consistent with Equation 1, the
dynamic constraint is statistically satisfied, with uk being the
vector of input variables, yk the vector of output variables
and εk the vector of noise variables, and ūk (resp. ȳk; ε̄k )
stands for the vector uk (resp. yk; εk) and its derivatives up
to some unspecified order.

Each ARR gives rise to a consistency indicator, called a resid-
ual.

Definition 11 (Residual)
The residual r is time-dependent and is given by a boolean
value by the following application:

r(t) =

{
0 if Cobs is satisfied by (u(s), y(s)), s ≤ t
1 otherwise

(2)

When the residual is equal to 0 it means that the observations
are consistent with the model, so no fault has occurred. If the
residual is 1, it means that a fault is detected.
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We can split the residuals in two parts: a deterministic (de-
pending on ū(t) and ȳ(t)) and a stochastic part (depending
on ε̄(t)).
The two following concepts related to diagnosability are de-
fined in (Staroswiecki & Comtet-Varga, 2001).

Definition 12 (Detectability)
Detectability is the ability for a fault to be detectable. A fault
f ∈ Σf is said to be detectable if its residual evaluation dif-
fers from zero. If all the faults f ∈ Σf are detectable, the
system is detectable.

Definition 13 (D-detectability)
D-detectability is the ability to be D-detectable. A fault f ∈
Σf is said to be D-detectable if the deterministic part of its
residual evaluation form differs from zero. If all the faults
f ∈ Σf are D-detectable, the system is D-detectable.

D-detectability is a weaker concept than detectability as a
non-D-detectable fault might influence the stochastic part of
their residuals and, thus, could be detected.
After detecting a fault, it has to be isolated, for this purpose,
a fault signature has to be defined.

Definition 14 (Fault signature)
A fault signature is a function Sig associating a set of observ-
ables (residuals) to each fault.

The following definition of isolability is given in (Zuniga et
al., 2019).

Definition 15 (Isolability)
Isolability is the ability to be isolable. Two faults fi and fj ∈
Σf are isolable iff their fault signatures differ. If all pairs of
faults are isolable, the system is said isolable.

The following definition of diagnosability for CS is given in
(Cordier et al., 2006).

Definition 16 (Diagnosability by Cordier et al., 2006)
Diagnosability is the ability to be diagnosable. Two faults fi
and fj ∈ Σf are diagnosable iff the junction of their signa-
tures is empty. Formally, it can be written as:
Sig(fi) ∩ Sig(fj) = ∅.
If all pairs of faults are diagnosable, the system is said diag-
nosable.

2.3. Diagnosability in HS

In (Fourlas et al., 2002), a first definition of a diagnosable
fault is given for HS, on Hybrid I/O Automata. Here, a fault
is modeled as an event whose occurrence impacts either the
continuous variables, the discrete state or both.

Definition 17 (Diagnosability by Fourlas et al., 2002)
Diagnosability is the ability to be diagnosable. A fault f ∈
Σf is said diagnosable in HS if its occurrence can be detected
after t ∈ N changes of trajectories (changes of continuous
variables values) and actions (events) occurred on the system.

If all the faults f ∈ Σf of the system are diagnosable, so is
the system.

The following notions around the concept of diagnosability,
for multimode systems, are defined in (Bayoudh & Travé-
Massuyès, 2014). The first one is mode diagnosability and the
second one is fault diagnosability, the former being stronger
than the latter. From the ARRs of the systems, we can com-
pute mode signatures, from which fault signatures are deter-
mined as the set of the systems modes in which the fault is
present.

Definition 18 (Mode)
A mode qi corresponds to a working state of the system and is
associated with a set of continuous dynamics Ci (see Equa-
tion 1) representing the evolution of the continuous variables.

Definition 19 (Mode signature)
The signature of a mode qi is the vector obtained by the con-
catenation of the vectors of boolean residuals associated to
all the different modes qj of the system considered with the
observations consistent with the considered mode qi. It char-
acterizes the behaviour of this particular mode with regard to
all the other modes.

Definition 20 (Mode diagnosability in HS)
Two modes qi and qj are said diagnosable if their signatures
are different (Sig(qi) 6= Sig(qj)). If all pairs of modes are
diagnosable, the system is said to be mode diagnosable.

Definition 21 (Fault signature by Bayoudh et al., 2014)
The signature of a fault f ∈ Σf is given by the set of signa-
tures of the system modes in which the fault is present. As-
suming that the model does not account for actions that re-
pair the faults, the signature of a fault fi is equal to the set of
signatures of the modes that are reachable from a transition
labeled with the fault event fi.

Definition 22 (Fault diagnosability)
A fault f ∈ Σf is considered diagnosable if its occurrence
can be detected after a given time window thanks to the ob-
servation of the discrete events and the measurements of the
continuous variables available on the system. Two faults fi
and fj ∈ Σf are diagnosable from the continuous observa-
tions if Sig(fi) ∩ Sig(fj) = ∅.

As the notion of mode diagnosability is stronger than the no-
tion of fault diagnosability, a mode diagnosable system is
fault diagnosable.
The following property is introduced and proved in (Bayoudh
& Travé-Massuyès, 2014).

Property 1 (System diagnosability)
For a hybrid system to be diagnosable, either its underlying
DES or multimode system must be diagnosable.
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The diagnosability in Partially Observable Hybrid Automaton
(POHA), in which some variables are not observed, is defined
in (Zaatiti et al., 2017) as follows.

Definition 23 (∆-diagnosability)
∆-diagnosability represents the ability to be ∆-diagnosable.
A fault event f ∈ Σf is said ∆-diagnosable in a POHA iff it
is possible to detect its occurrence at least ∆ time units after
it occurred. If all faults f ∈ Σf are ∆-diagnosable, then the
system is ∆-diagnosable.

Here, ∆ represents the minimum required time (real time)
before detecting and identifying the fault.

2.4. Diagnosability in HtS

Only a few articles study HtS, and even fewer the specific
point of diagnosability in HtS. The first of the two following
articles we found in the literature, (Hsieh & Chen, 2008), is
based on a multiprocessors system. It is comprised of mul-
tiple communicating processors called nodes. These nodes
can be of different natures: DES, CS or HS and can be faulty.
The authors have defined what they called t-diagnosability
and strong t-diagnosability.

Definition 24 (t-diagnosability)
t-diagnosability consists in the fact that, as long as the num-
ber of faulty components does not exceed t, they can be de-
tected without a replacement (a faulty node is replaced by a
non-faulty one).

Definition 25 (Strong t-diagnosability)
Strong t-diagnosability means that the system is t-diagnosable
and can achieve (t+ 1)-diagnosability.

A data driven method for quantitative fault diagnosability eval-
uation is proposed in (Hua et al., 2016). As this method is
data-based, we consider that it can be applied on complex
systems such as HtS. The definition of distinguability is in-
troduced.

Definition 26 (Distinguability)
Distinguability represents the difference between two modes
(both faulty or one faulty and one normal) and is calculated
with fuzzy numbers. It is represented by a number between 0
and 1.

The closer distinguability is from 0, the harder it is to distin-
guish the two modes. The faults leading to the said modes are
not isolable (therefore, not diagnosable).

2.5. Synthesis on diagnosability

Diagnosability is a quite-well defined notion for the different
types of systems (DES, CS, HS). Following the needs and the
specifications of systems, advanced notions of diagnosability
have emerged, to consider uncertainty or to give more precise
outputs.

Table 2 classifies the studied articles regarding the type of
information provided by the diagnosability analysis. While
some of the outputs are just boolean (diagnosable or not),
some tend to be more precise and parameter dependent, giv-
ing for example a number of transitions representing the max-
imum delay until the detection of the fault, or a time window
representing the minimum time from which the fault’s occur-
rence can be detected. Another precision on the result of the
diagnosability analysis is to represent the uncertainty on the
diagnosability analysis. This uncertainty could be up to how
much uncertainty on the time occurrence of the observations
the diagnosability of the fault is sure. Another one could be
up to represent the upper limit on the number of faulty com-
ponents in our distributed system for it to be diagnosable. Fi-
nally, another type of result is a real number, between 0 and 1,
representing how ’difficult’ it is to distinguish the fault from
another.
Different ways to consider uncertainty of the system are rep-
resented in Table 3.

• The temporal uncertainty, representing the idea that when
events are temporally unrelated, it is not possible to know
which event occurred first,

• The noise appearing on the sensors, potentially not giv-
ing the exact output. This has to be somehow taken into
account to have a precise analysis,

• The reliability of the testing nodes in distributed systems,
represented with uncertainty on the output. If a testing
node is faulty, its output is totally unreliable.

Table 4 shows how the time is represented and taken into ac-
count in the diagnosability evaluation. As a matter of fact,
some represent the time through a number of transitions or
events (usually the case for DES), while some others repre-
sent it with continuous time. Some others represent the time
with a number of actions or changes occurring on the system.
Finally, the time could also not be taken into account and the
process could be done online.

3. PROGNOSABILITY

In contrast to diagnosability, prognosability is not so well de-
fined in the literature, as we will notice in this section. Prog-
nosability is a property relative to the prediction of the fu-
ture state of the system, related to the prognosis idea. For the
PHM community, prognosis aims at predicting the system fu-
ture states and its RUL or End of Life (EoL) from diagnosis
and future inputs available from a mission scenario for exam-
ple.

3.1. Prognosability in DES

In DES, prognosability has been studied for a very long time,
even before the idea of diagnosability appeared. In discrete
event models, the idea of time does noes appear as only se-
quence of events are considered. Prognosability in DES was
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Results of the diagnosability analysis Articles
Diagnosable or not (Sampath et al., 1995)

(Ye et al., 2019)
(Bayoudh & Travé-Massuyès, 2014)

(Staroswiecki & Comtet-Varga, 2001)
(Yoo & Lafortune, 2002)
(Madalinski et al., 2010)

(Fourlas et al., 2002)
Parameter Dependent (Zanella, 2017) [Dependent on temporal uncertainty window]

(Basile et al., 2012) [Dependent on the number of transition]
(Zaatiti et al., 2017) [Dependent on a given time]

(Hsieh & Chen, 2008) [Dependent on number of detectable faulty components]
Real number (Hua et al., 2016)

Table 2. Reviewed articles on diagnosability classified by the type of result given by the diagnosability analysis

Uncertainty Articles
Temporal uncertainty (Zanella, 2017)

Noise (Bayoudh & Travé-Massuyès, 2014)
(Staroswiecki & Comtet-Varga, 2001)

Node reliability (Hsieh & Chen, 2008)

Table 3. Reviewed articles on diagnosability classified by the type of appearing uncertainty

indeed studied under different names such as predictability or
trajectory prediction.
The very first work on predictability is (Cao, 1989), who
works on automata, and introduces one of the first definition
of predictability, allowing the monitor to predict the occur-
rence of a system event or set of events. It is based on the
projection operation, defined as follows.

Definition 27 (Projection)
The projection PL of an event e on a language L is defined as
PL(ε) = ε, with ε being the empty word and

PL(e) =

{
e if e ∈ L
ε if e /∈ L

(3)

Definition 28 (Predictability by Cao, 1989)
Predictability is the ability to be predictable. Considering
two automatons H and G, it is said that a finite sequence
of events t, defined as a string, belonging to the language of
H denoted L(H) is predictable from a string s in L(G) if it
matches the projection of s on H . This definition is extended
to a language, which is said predictable if all the strings con-
tained in the said language are predictable.

A string is defined as a finite sequence of events, but an event
by itself could be considered as a string of length 1.
The following additional definition for systems modeled by
automata is introduced in (Genc & Lafortune, 2009).

Definition 29 (Predictability by Genc & Lafortune, 2009)

Predictability is the ability to be predictable. Let us consider
any string s ending with the event e to be predicted. Such an

event is said to be predictable if we can find, for all existing
s, a prefix t of s, not containing e at first but which will con-
tain the desired event after a sufficiently long continuation.
If all events of a system are predictable, the system is said
predictable.

In this work, predictability is also proved to be a stronger
property than diagnosability (see Definition 5), as both re-
quire to identify and isolate the desired event, but predictabil-
ity must do it preemptively.
An algorithm to evaluate the predictability property appli-
cable on distributed systems is proposed in (Ye, Dague, &
Nouioua, 2015), based on automata as well.

Definition 29 is extended to define k-predictability on timed
automata in (Cassez & Grastien, 2013) as follows.

Definition 30 (k-predictability)
k-predictability represents the ability to be k-predictable. Let
f ∈ Σf be a fault. f is considered as k-predictable if it is
predictable k event occurrences before its occurrence.
A system is k-predictable if all the faults f ∈ Σf are k-
predictable.

In the case k = 0, the definition of 0-predictability matches
Definition 29 .

Stochastic DES are DES in which each event e has a probabil-
ity p(e) to occur. The following definition is given in (Chen
& Kumar, 2014):

Definition 31 (Sm-prognosability)
Sm-Prognosability means that for any threshold value ρ >
0 ∈ R and error bound τ > 0 ∈ R, there exists a reaction
bound k ≥ m, such that if a fault f ∈ Σf cannot be pre-
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Way to express time Articles
Number of transitions (Sampath et al., 1995)

(Basile et al., 2012)
(Yoo & Lafortune, 2002)
(Madalinski et al., 2010)

Number of trajectories modifications and actions (Fourlas et al., 2002)
Number of events (Zanella, 2017)

(Ye et al., 2019)
(Bayoudh & Travé-Massuyès, 2014) [For the HS underlying DES]

Time (Zaatiti et al., 2017)
(Bayoudh & Travé-Massuyès, 2014)

(Staroswiecki & Comtet-Varga, 2001)
Can be done online (Hua et al., 2016)

Table 4. Reviewed articles on diagnosability classified by the way to express time during the diagnosability analysis

dicted k steps (i.e. k events) in advance with confidence level
ρ (we cannot be ρ% sure that the fault is going to happen),
the probability of its occurrence is smaller than τ .

Definition 29 is also used in (Nouioua, Dague, & Ye, 2016)
and applied on probabilistic DES. Based upon the probabil-
ities associated to the occurrence of each event, they refine
the definition and propose a probabilistic predictability for
the system. As a matter of fact, they compute, for each fault
f ∈ Σf , a probability pko(f) to be in a trace in which the fault
could not be predicted but occurred, a probability pok(f) to
be in a trace where the fault could be predicted and occurred
and a probability pnf (f) to be in a trace in which the fault
will not occur.

Definition 29 is extended to labelled Petri Nets in (Yin, 2017).

The notion of predictability given in Definition 29 is extended
to decentralized systems in (Kumar & Takai, 2009) and (Wu,
Yin, & Li, 2018), specifically Petri Nets for the latter. The no-
tion of coprognosability is also introduced. The decentralized
systems are monitored by local prognosers, each equipped
with its own event observation sensors, observing a behav-
ior (sequence of events) executed by a system and issuing
their local prognostic decisions. These local prognostic deci-
sions are gathered at a central decision unit and used to issue
a global prognostic decision.

Definition 32 (Coprognosability)
Coprognosability is the ability to be coprognosable. If a fault
f ∈ Σf is prognosable by a local prognoser, it is said coprog-
nosable. If all faults f ∈ Σf are coprognosable, the system
is coprognosable.

This article is one of the first to use the word "prognosability"
on DES to refer to the predictability property.

3.2. Prognosability in CS

The community working on CS is quite active and conse-
quent. However, prognosability in CS is not that studied and
only a few works give a formal definition of this notion.

(M. J. Daigle & Sankararaman, 2013) work on prognostic on
CS. They define the system with the set of equations:{

xk+1 = f(k, xk, θk, uk, vk)

yk = h(k, xk, θk, uk, nk)
(4)

where k is the discrete time variable, xk ∈ Rnx is the state
vector at time k, θk ∈ Rnθ is the unknown parameter vector
at time k, uk ∈ Rnu is the input vector at time k, vk ∈ Rnv

is the process noise vector at time k, nk ∈ Rnn is the mea-
surement noise vector at time k and h is the output equation.
θk is used to capture the model parameters whose values are
unknown and time-varying stochastically.
In this work, their purpose is not to compute the date of oc-
currence of a fault but to compute the RUL of the system.
They use an estimation process, computing the joint state-
parameter estimate based on the observations up to the con-
sidered time and a prediction process, which computes a prob-
ability distribution of the EoL for each time. This probability
distribution is computed with the joint state-parameter distri-
bution and the system model, along with the distributions of
possible parameters, inputs and process noise trajectories.
No formal definition of prognosability is given in the article,
but some metrics, defined later in this paper, are used to check
the performances of the result.
Many works on CS are actually based on these two estimation
and prediction processes, among them are (Sankararaman,
Daigle, Saxena, & Goebel, 2013) or (Acuña, Orchard, Reyes,
& Zhang, 2019), which differs through the use of Lebesgue
sampling, compared to the more resource consuming Riem-
man sampling, and thus use probability distribution for the
occurrence of faults or particular events.

3.3. Prognosability in HS

On HS, the work of (M. Daigle, Roychoudhury, & Bregon,
2015) can be considered. Although a definition of prognos-
ability is not given, we can deduce one from the article, as
follows. A HS is considered as a set of components, each
described by a set of discrete modes, with a set of constraints

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

describing the continuous dynamics of the component in each
mode.

Definition 33 (Prognosability based on Daigle et al., 2015)

Prognosability is the ability to be prognosable. An event e
is said prognosable on a hybrid system if, given the system
model, the initial state s0, a time horizon k, the future pa-
rameters trajectory, the future input trajectory and the future
process noise trajectory, it is possible to find one particular
trace of events and variables evolution leading to the event e.
If all the events e of the system are prognosable, the system is
prognosable.

3.4. Prognosability in HtS

We have only found a few articles on HtS, as this type of sys-
tem is not really studied. No definition of prognosability is
given in (Bartram & Mahadevan, 2010) but the article is in-
teresting as it apply a prognostic algorithm. The occurrence
of a fault is represented with Bayes Networks and probabil-
ities, and is updated through the occurrence of events on the
system’s components.
Even if most works do not directly consider prognosability,
a set of metrics have to be defined to evaluate the prognostic
results.

3.5. Metrics for Prognosability

When evaluating prognostic performance, commons metrics
are used:

• The precision, representing the spread of the results,
• The accuracy, representing the bias,
• The Mean Squarred Error (MSE),
• The Mean Absolute Percentage Error (MAPE).

Some more advanced metrics are defined in (Saxena, Celaya,
Saha, Saha, & Goebel, 2010). These metrics are computed
one after the other as illustrated in Figure 2.
The prognostic horizon represents the ability for the pronos-

tic algorithm Φ to predict within a specified error margin (rep-
resented by a parameter α ∈ R) the EoL and how much time
before it happens.
Then, the second metric, based on the accuracy, is the Cumu-
lative Relative Accuracy (CRA), representing the ability for
Φ to improve its estimation of the EoL as more information
become available.
Finally, the third metric introduced is convergence, showing
how fast Φ converges.
The α− λ-performance property, representing the ability for
Φ to predict within a specified error margin (α) the EoL at
any time λ.

Three metrics to choose a feature interesting to monitor to
prognose a fault f ∈ Σf are introduced in (Coble & Hines,

Figure 2. Sequence of Saxena’s four metrics

2009): the monotonicity, the prognosability and the trendabil-
ity. Each of these metrics ranges from 0 to 1, and are based on
data obtained through Run-to-Failures (RtF) of the system. A
feature is a variable of the system, and is sampled during the
RtF.
The first metric, monotonicity, characterizes the trend of the
feature. It is given by the average absolute difference of the
fraction of the derivatives of the data. When monotonicity is
close to 1 it represents a constant trend of the feature all along
the life of the system (it only decreases or increases).
Prognosability gives a measure of the variance in the critical
failure value of a feature of the system. The prognosability
metric is obtained by computing the deviation of the feature
at the time where the fault occurs. The closer the prognosabil-
ity metric is to 1, the better the chosen feature is to prognose
the studied fault.
Finally, the last metric, trendability, shows if chosen features
have the same underlying shape and can be described by the
same functional form (i.e. the evolution of these different pa-
rameters are similar through the life of the system).

3.6. Synthesis on prognosability

As we have seen, prognosability is a notion which is not as
well defined as diagnosability in the literature. The defini-
tions of prognosability differ, be it on the object of prediction
(what is prognosed) or the type of results given by the analy-
sis.
For diagnosability property, the occurrence of a particular
event (usually a fault) is what is looked for. For the prog-
nosability property, works look to predict the occurrence of
an event or of a set of events. The prognosis result is some-
times the prediction of the occurrence of a fault event or the
temporal prediction of the RUL. These different types of pre-
diction are gathered in Table 5. The results of the analysis
also differs in most of the definitions, as can be seen in Table

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

6. Some definitions of the prognosability property give a pre-
diction on how long, in terms of number of events, of steps, or
time units before the occurrence of the fault we can know it is
going to occurs. For some definitions, the idea of time is not
present, as the results of the prognosability analysis just give
the knowledge that the fault is prognosable or not. Finally,
some works give a timed probability information: at time k, a
fault f ∈ Σf has p(f) probability to occur. Some other works
give a non-timed probability information: there is probability
p1(f) for a fault f ∈ Σf to occur and be predicted, p2(f)
for the fault to occur without being predicted or p3(f) not to
occur.

4. CONCLUSION

Through this review, it was shown that diagnosability is a no-
tion quite well defined. This is not the case for prognosability,
for which the definition and the ways to use it are quite dif-
ferent depending on the studied system. It can be explained
by the fact that the PHM community is quite recent and first
works were guided by applications. For discrete event sys-
tems, that will only produce and encounter discrete data, both
definition of diagnosability and prognosability are well de-
fined.
For continuous systems, described by a set of continuous dy-
namic equations, diagnosability is well defined, whereas prog-
nosability is not.
For hybrid systems, who will always encounter both continu-
ous and discrete data, diagnosability is well defined whereas
prognosability is not, although the emergence of works on
this type of system is really recent.
Finally, for heterogeneous systems, that we consider as a sys-
tem that will sometimes be affected by discrete data only,
sometimes by continuous data only and sometimes by both,
neither diagnosability nor prognosability are well defined, and
only a few works consider this type of system.
For our future works, we would like to consider an hetero-
geneous system under uncertainty and have some ideas about
which definitions of diagnosability and prognosability will be
used as a base for this kind of system. In the case where
data are available for this kind of system, the prognosability
metrics proposed by (Coble & Hines, 2009) are interesting to
choose which of the feature are best to prognose a fault f . The
others metrics could be useful to evaluate the performance of
an health monitoring algorithm implemented on this system.
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