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Design of a dynamical controller as a quasi-predictive control law

for linear time-delay systems

Mathieu Bajodek1 and Frédéric Gouaisbaut2 and Alexandre Seuret3

Abstract— A usual way to control time-delay systems is to

design a predictive control law. Nevertheless, this theoretically

appealing method is difficult to implement numerically in the

sense that the implemented closed-loop system can be unstable.

This paper paves the way of a new methodology to design

a numerically safe approximated control law. It is based on

the first quasi-Legendre polynomial coefficients of the control.

Described and argued along the paper, several steps lead us

to a dynamical controller which is easy to manipulate. After

carrying on the design of this so-called quasi-predictive control

law, we focused on its stability and robustness properties using

fine criteria based on Bessel-Legendre inequality. At the end,

by processing simulations and evaluating the performances of

the controlled closed-loop on two examples, pros and cons of

this new dynamical controller are pointed out.

I. INTRODUCTION

Time-delays often occur during modeling of systems
which process numerical or bio-physical information. Con-
trolling such systems without taking into consideration the
delay may induce degradation of performances and instabil-
ity of the closed-loop. To bypass the problem, the so-called
Smith predictor or dead time compensator was originally
introduced in 1959. It consists in predicting the future of
the state (see [1]) to design after a lag time a control law as
if there is no delay. Rewritten as a backstepping method on
the transport equation in [2], this nominal predictive control
law is considered to be an appropriate solution (see [3]) to
stabilize the system for any given delay under the condition
of controllability of the system without delay.

Nevertheless, as presented in [4], when the infinite-
dimensional part of this control law, modeled as an integral
term, is realized by a dynamical system, the implementation
can be unsafe. Indeed, as explained in [5], if the state matrix
of the plant is not Hurwitz, it leads to an unstable pole-
zero compensation in an internal loop. For these reasons,
modifications are often added to the original Smith predictor
to extend the stability properties to a larger range of systems
(see [6,7]) or to reinforce the robustness with respect to
uncertainties (see [8]). Then, as no guarantee of stability of
the closed-loop system are proposed, the design of an im-
plementable predictive control law is still an open problem.

Regarding the literature, many researchers have circum-
vented the problem by developing numerical approximations
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like rectangular or trapeze methods. Nevertheless, the closed-
loop reveals itself to be a neutral time-delay system which
contains an infinite number of characteristic roots in a
vertical line (see [9,10]). Focusing on the case in which
the line has a positive real part, the paper [11] pointed out
a sufficient condition of instability of the system looped
with the approximated control law. It means that, for a
given stabilizing feedback gain, there exists a maximal
allowable delay from which the implementation becomes
unstable. These results have raised the question of the design
of implementable controllers from the choice of the state
feedback gain (e.g. feedback synthesis [12]) to the use of
additional states (e.g. low-pass filter [13]).

In this paper, we proposed a new dynamical controller
based on the first coefficients on Legendre polynomials of the
integral term contained in the predictive control law. Then,
the controller as a finite-dimensional model can be computed
numerically and the closed-loop system seen as a time-delay
system. Analyzing it, stability properties and robustness
with respect to model uncertainties can be estimated with
techniques developed before (mainly [14,15,16] dealing with
Bessel-Legendre inequality). Two examples are tested at the
end to illustrate that this new dynamical controller can be
stable for a larger range of delays and more robust than other
implementation methods.

Notations : Throughout the paper, N denotes the set of
integers, R the set of real numbers, Rn the n dimensional
Euclidian space and Rn⇥m the set of n ⇥m real matrices.
For any square matrix A 2 Rn⇥n, AT represents its
transpose, tril(A) its lower triangular part and H(A) =
A+AT . Moreover, diag(d0, . . . , dN ) is the diagonal matrix
defined by its diagonal coefficients (d0, . . . , dN ) and the
symbol ⌦ traduces a Kronecker product. Lastly, the set
of square-integrable functions from (�h, 0) to Rn is noted
L2(�h, 0;Rn) and the notation ut(✓) stands for u(t + ✓),
for all t � 0 and all ✓ 2 (�h, 0).

II. DESIGN OF THE DYNAMICAL CONTROLLER

In this section, the methodology to design the finite-
dimensional dynamical controller is developed. The con-
struction is based on the nominal predictive control law
given by for instance Krstic in [2] which is in a second step
approximated using a polynomial based approach. It consists
of the truncation of the Fourier-Legendre serie of the input
and the computation of the required first quasi-Legendre
coefficients through a finite dynamical system. Then, our new
dynamical controller can be seen as a quasi-predictive control
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Fig. 1: Block diagram of the closed-loop system with the
nominal controller.

law and its state representation which is easy to compute is
obtained.

A. Nominal predictive control law

Let us consider the following linear system (1) subject to
an input delay,

ẋ(t) = Ax(t) +Bu(t� h), (1)

where x(t) 2 Rn, u(t) 2 Rm, dynamical state matrix A 2
Rn⇥n and input matrix B 2 Rn⇥m. The delay h > 0 is
assumed to be constant but possibly uncertain.

The nominal control law (2) is a Volterra integral equation
of the second kind.

u(t) = K

0

BBB@
ehAx(t) +

Z 0

�h
e�✓ABut(✓)d✓

| {z }
◆(t)

1

CCCA
. (2)

As presented in [2], it ensures asymptotic stability of
the origin x = 0 under the assumption A + BK Hurwitz
with K 2 Rm⇥n the control gain. However, as an infinite-
dimensional law, the integral part ◆(t) cannot be implemented
directly.

In order to understand the induced problem, have a look
at the closed-loop system in Laplace domain in Fig. 1. One
inspects the transfer function G(s) in between U(s) and I(s)
(respectively Laplace transforms of u(t) and ◆(t)) to obtain

G(s) =

Z 0

�h
e✓(sIn�A)Bd✓. (3)

Considering its realization, one can use the most
used Smith predictor form, G(s) = (sI � A)�1(In �
e�h(sIn�A))B, which turns out to be tricky to compute for
unstable A because it introduces a pole-zero cancellation on
each eigenvalue of A.

Focusing on numerical approximations [9,10], taking
G(s) = 1

N

PN�1
k=0 e�

k
N h(sIn�A)B, other implementation

issues appear. The controller needs a large amount of data
and becomes unstable from a low maximal delay. But, in
the following, A might be unstable and these limitations are
exceeded.

Inspired by what has been proposed in the literature and
motivated by the promising results of Legendre polynomials

to give sufficient stability properties for time-delay systems
as [14] suggests, one decided to approximate the term ◆(t) by
considering a truncated Fourier-Legendre decomposition of
the signal ut (i.e. working on its first Legendre polynomial
coefficients).

B. Approximated control law on Legendre polynomials

Define the following approximated finite-dimensional con-
trol law

u(t) = K
�
ehAx(t) + ◆N (t)

�
, (4)

where the approximated integral term ◆N (t), defined by
Equation (5), approximates ◆(t) on Legendre polynomials
as ruled on Theorem 1,

◆N (t) = CNUN (t). (5)

From one side, the vector UN (t) =
⇥
uT
0 (t) . . . uT

N (t)
⇤T

collocates each Legendre coefficients from 0 to N . For each
k 2 N, these coefficients uk(t) 2 Rm, projection of the
transported signal ut 2 L2(�h, 0;Rm) on the k-th Legendre
polynomial Lk are recalled below

uk(t) =

Z 0

�h
Lk(✓)ut(✓)d✓,

where,

Lk :

8
><

>:

[�h, 0] ! R

✓ ! (�1)k
kX

l=0

(�1)l( kl )(
k+l
l )(

✓ + h

h
)l
,

taking the notation ( kl ) for the binomial coefficient.
From the other side, matrix CN gathers each associated
weighting coefficients and is defined by

8
>>>><

>>>>:

�k =

Z 0

�h
e�✓ALk(✓)d✓, 8k 2 N,

IN = diag(1, . . . , 2N + 1),

CN =
⇥
�0 . . . �N

⇤
(
1

h
IN ⌦B).

Remark 1: For computational issues, in the case A is non-
singular, the matrices sequence (�k)k2N can be calculated
recursively using Legendre polynomials properties of [17].

8
<

:

�0 = �A�1(In � ehA),
�1 = A�1(In + ehA)� 2

h�0,

�k+1 = �k�1 � 2(2k+1)
h A�1�k.

Indeed, a recursion relation on Legendre polynomials gives
for all k � 2, L0

k+1(✓)� L0
k�1(✓) =

2(2k+1)
h Lk(✓).

Remark 2: One can also note that if A is nilpotent at order
N⇤, then for each k > N⇤, �k = 0n and the approximation
◆N at order N = N⇤ gives the exact value of ◆(t). It means
that N⇤+1 Legendre coefficients are enough to compute the
integral term.

The following theorem ensures that the simple conver-
gence from ◆N (t) to ◆(t) holds.

Theorem 1: The approximated integral ◆N (t) converges to
the expected integral ◆(t).



Proof: From the definition of CN , the error ◆̃N (t)
between ◆(t) and ◆N (t) is equal to

◆̃N (t) =

Z 0

�h
e�✓AB

 
ut(✓)�

NX

k=0

2k + 1

h
Lk(✓)uk(t)d✓

!
.

Hence, using Cauchy-Schwartz inequality, we have

|◆̃N (t)|2 = |
Z 0

�h
e�✓ABeN (t, ✓)d✓|2,

 h

Z 0

�h
eTN (t, ✓)BTe�✓(AT+A)BeN (t, ✓)d✓,

where eN (t, .) is the Fourier-Legendre error of the signal ut

on the orthogonal basis (Lk)k2N of L2(�h, 0;Rm) defined
as

eN (t, ✓) = ut(✓)�
NX

k=0

2k + 1

h
Lk(✓)uk(t).

Furthermore, there exists ↵ > 0 such that BTe�✓(AT+A)B 
↵Im, for all ✓ 2 (�h, 0). Then,

|◆̃N (t)|2  h↵

Z 0

�h
eTN (t, ✓)eN (t, ✓)d✓.

Assuming ut 2 L2(�h, 0;Rm), the L2-norm convergence of
Fourier-Legendre error eN (t, .) concludes the proof.

This theorem justifies that ◆N (t) is a well-chosen term to
approximate ◆(t). Therefore, u(t) defined by Equation (4)
remains close to the nominal one described by Equation (2).
Otherwise, this result just carries the problem of implemen-
tation over to realize UN . Indeed, besides having an accurate
approximant of the integral term, the own dynamics of Leg-
endre coefficients UN (t) described by Equation (6) cannot
be implemented safely. Indeed, by derivation, it represents
N integrators in cascade and makes appear u(t� h).

(
U̇N (t) = h�1ANUN (t) + BNu(t)� B⇤

NeN (t,�h),

eN (t,�h) = u(t� h)� h�1C⇤
NUN (t),

(6)
with
8
>>>><

>>>>:

1N =
⇥
1 . . . 1

⇤T
, 1⇤

N =
⇥
(�1)0 . . . (�1)N

⇤T
,

LN = tril(1N1T
N � 1⇤

N1⇤T
N ),

AN = � �(LN + 1⇤
N1⇤T

N )IN
�⌦ Im,

BN = 1N⌦Im, B⇤
N = 1⇤

N⌦Im, C⇤
N = (1⇤T

N IN )⌦Im.

The proof of this dynamical equation can be found in [16]
and relies on integration by parts and Legendre properties at
the boundaries.

Then, a last modification is needed to construct a safe
implementable dynamical controller.

C. Quasi-predictive control law and its state representation

This last step is made up of the construction of a stable
model close to system (6). In previous work [16], putting
aside the error eN (t,�h) done at order N on u(t� h), it is
proven that the finite-dimensional model in between u(t) and

u(t�h) obtained is a Pade approximant of the single delay h
(i.e. the function e�hs in Laplace domain). Moreover, having
a look to numerical approximation of time-delay systems on
Legendre polynomials we found that such techniques are also
used to compute characteristic roots as accurate as desired
(see [18]). Following this idea, removing this model error,
the dynamical controller of state Xc 2 Rm(N+1) described
by Equation (7) is finally proposed.

(
Ẋc(t) = h�1ANXc(t) + BNu(t),

u(t) = K
�
ehAx(t) + CNXc(t)

�
,

(7)

Instead of realizing the transfer function G(s) or ap-
proximating it by delayed samples [9,10,11], we decided to
work on a transfer function GN (s) associated to the state

representation
✓
h�1AN BN

CN 0

◆
.

Remark 3: One can remark that, if h ! 0, then u(t) !
Kx(t). Indeed, the state Xc(t) converges quickly to zero and,
by Taylor expansions, we have CN �!

h!0

⇥
B 0 . . . 0

⇤
.

To sum up, the input u(t) is given by the nominal control
law (2) where the integral term ◆(t) is approximated by
Equation (5) and where Legendre coefficients UN (t) are
replaced by quasi-Legendre coefficients Xc(t) which follows
a dynamics chosen arbitrary close to the one of UN (t). Thus,
this new finite-dimensional dynamical controller, constructed
smartly, is then implementable and can be seen as a quasi-
predictive control law. It is a finite-dimensional model with
an input x(t) and an output u(t) and of state representation✓
h�1AN + BNKCN BNKehA

KCN KehA

◆
=

✓
Ac Bc

Cc Dc

◆
.

In the next paragraph, the stability and robustness of the
closed-loop system with our finite-dimensional dynamical
controller is investigated.

III. STABILITY AND ROBUSTNESS OF THE
CLOSED-LOOP SYSTEM

In this section, one focuses on stability and robustness
properties of our closed-loop system and compares it with
other time-delay compensators.

A. Closed-loop system

The design of a finite-dimensional dynamical controller
leads to a closed-loop system which can be modeled as a
time-delay system.

Indeed, the closed-loop system verifies Equation (8).

⇠(t) = A⇠(t) + BdCd⇠(t� h), (8)

where the state ⇠(t) =


x(t)
Xc(t)

�
belongs to R� with � =

n + m(N + 1) and matrices A, Bd, Cd defined for given
matrices A, B, K and constant delay h by

A =


A 0
Bc Ac

�
, Bd =


B
0

�
, Cd =

⇥
Dc Cc

⇤
.

The characteristic roots of sI� �A+Ade
�hs can directly

be estimated through an algorithm based on Tchebychev
discretization developed and explained in [19]. A spectral



analysis is possible giving an idea of the performances and
the stability with an error margin made by discretization.
To go further into details, thanks to a Lyapunov-Krasovskii
functional, a fine enough sufficient condition of stability and
robustness with respect to the delay can be given.

B. Sufficient condition of stability

With similar calculation as presented in [14,15], a rewrit-
ing of the hierarchical sufficient condition of stability can be
given at an order M 2 N as it was already done in [16].

Theorem 2: If there exist symmetric positive definite ma-
trices P 2 S�+m(M+1), S 2 Sm, R 2 Sm and a delay h
such that

H(E(h)PF ) + S̃ + R̃ E(h)PG
GTPTE(h)T �S

�
< 0, (9)

where M is the order of the linear matrix inequality and
8
>>>>>>><

>>>>>>>:

E(h) = diag(I�, hIm(M+1)),

F =


A BdC⇤

M
BMCd AM

�
, G =


Bd

�C⇤
M

�
,

H =
⇥
Cd �1T

MIM⌦Im
⇤
, S̃ = HTSH,

R̃ =


hCT

d RCd 0
0 �hIM⌦R

�
,

then system (8) is asymptotically stable, for the delay h.
Proof: Following the proof given in [16], consider the

Lyapunov-Krasovskii functional candidate V given by (10).

V (t, ⇠) =


⇠(t)
⇠M (t)

�T
P


⇠(t)
⇠M (t)

�
+VS(t, ⇠)+VR(t, ⇠), (10)

with
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

⇠(t) =


X(t)
Xc(t)

�
, ⇠M (t)=

2

64

R 0
�hCd⇠(t+ ⌧)L0(⌧)d⌧

. . .R 0
�hCd⇠(t+ ⌧)LM(⌧)d⌧

3

75,

VS(t, ⇠) =

Z 0

�h

�
Cd⇠(t+ ⌧)

�T
S
�
Cd⇠(t+ ⌧)

�
d⌧

� ⇠TM (t)(
1

h
IM ⌦ S)⇠M (t),

VR(t, ⇠) =

Z 0

�h
(h+ ⌧)

�
Cd⇠(t+ ⌧)

�T
R
�
Cd⇠(t+ ⌧)

�
d⌧,

The positivity of V is ensured by the positive definiteness of
P , S and R and application of Bessel lemma on VS .
The derivative of V along the trajectories of system (8) is
bounded from above by
2

4
⇠(t)

1
h⇠M (t)
eM (t)

3

5
T H(E(h)PF ) + S̃ + R̃ E(h)PG

GTPTE(h)T �S

�2

4
⇠(t)

1
h⇠M (t)
eM (t)

3

5,

with the error eM (t) = Cd⇠(t�h)�C⇤
M⇠M (t).

Calculation details relied on application of Bessel lemma can
be found in [16].
Therefore, if the linear matrix inequality (9) is satisfied, the
origin of system (8) with that delay h is asymptotically stable
by application of the Lyapunov-Krasovskii theorem.

Remark 4: Notice that following [14], the principle of
hierarchy applied and if inequality (9) is satisfied for a delay
h at order M⇤, then this inequality is also verified at order
M > M⇤.

Remark 5: According to Remark 3, since A+BK is Hur-
witz and because the linear matrix inequality is continuous
in h, we expect to find an interval of delay which assert
stability from 0 to a maximal bound.

Lastly, assuming that the closed-loop system is stable for
a nominal delay h, one proposes a theorem which asserts the
stability of the system (8) for some delays around.

C. Robustness with respect to delay uncertainties

Consider an unknown delay h belonging to the interval
[h � �h, h + �h]. A criterion of robusteness is required
to ensure stability of the whole system with a controller
implemented for a delay h for all constant delays in the
pocket [h� �h, h+ �h].

Thanks to the previous Lyapunov-Krasovskii approach,
stability results can be extended to robustness. One defines
the matrix �(h) which appears in the linear matrix inequal-
ity (9) for a given h.

�(h) =

H(E(h)PF ) + S̃ + R̃ E(h)PG
GTPTE(h)T �S

�

It is clear that �(h) is affine in h. From this statement, it
is possible to rewrite the theorem proposed in [15]. The
following revisited theorem gives a linear matrix inequality
which ensures stability for all constant delays in the pocket
[h�, h+].

Theorem 3: If there exist symmetric positive definite ma-
trices P 2 S�+m(M+1), S 2 Sm and R 2 Sm and two
positive scalars h� and h+ such that

�(h�) < 0, �(h+) < 0, (11)

then system (8) is asymptotically stable, for all delays in the
interval [h�, h+].

Proof: Consider the Lyapunov-Krasovskii functional
candidate V given by (10). The positivity of V is again
verified by the positive definiteness of P , S and R.
Then, from the linearity of �(h) in h, the derivative of V
for system (8) leads to

V̇ (t, ⇠)  �(h) =
h� h�

h+ � h��(h+) +
h+ � h

h+ � h��(h�)

Thus, the negativity of �(h�) and �(h+) guarantees that the
origin of system (8) is asymptotically stable for any constant
delay h 2 [h�, h+].

Note that similar results could be found for robustness
with respect to a time-varying delay which is an important
issue (see [20]) or to model uncertainties on state matrix A
or input matrix B.

IV. EXAMPLES
In this last section, the stability and robustness of our

dynamical controller on two classical examples are evaluated.
These simulations are conducted on purpose on unstable
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Fig. 2: Maximal allowable delay given by Theorem 2.

systems because if A was stable, it would be better to set
up usual tools [7]. From the examples, to get closer to the
entire set of stability of our closed-loop system, a criterion of
stability based on Bessel-Legendre as Theorem 2 is required
and more precisely at an order M � N because the design of
our dynamical control is related to the N +1 first Legendre
coefficients. On Fig. 2, using Theorem 2 at order M = 5,
the pointwise maximum allowable delay is given for each
example and for a controller at order N 2 {0, . . . , 5}. It is
compared with the delay from which classical rectangular or
trapeze approximation methods fail to compute the nominal
predictive control law (see the horizontal line). It is the one
given by the stability of the nominal controller itself (i.e.
det(Im�KG(s)) has at least one zero with positive real part)
which is a necessary condition of stability of the closed-loop
according to [11].

In the sense that for stability, the impact of K turns out
to be minor, we decided to fix K for desired properties.

A. First example

Consider a 1-dimensional system (12), widely studied and
known to be practically unstable by usual approximations of
the nominal control law with K = �2 since h > 0.405 and
to have no stabilizing feedback gain K since h > 0.693 as
mentioned in [21].

ẋ(t) = x(t) + u(t� h). (12)

First, taking K = �2, an estimation of the spectrum
assignment of the closed-loop system with the dynamical
controller at order N = 1 is computed for h = 0.4, h = 1
and h = 3 (see Fig. 3). The closed-loop system is stable for
a larger bound of delays in comparison with approximation
techniques. Indeed, thanks to Theorem 2 at order M = 5
and increasing pointwise the delay h, it appears that the
system with our finite-dimensional dynamical controller is
asymptotically stable for 0 < h < 1.3 from order N = 1
(see Fig.2a).

Furthermore, for a delay equal to 0.4, 1 and 3 the
eigenvalues have respectively positive real parts lower than
�1, 0 and higher than 0. It means that there is a first
interval of delay in which the performance given by A+BK
are conserved and a second interval in which the closed-
loop stays stable but the performances are degraded. This is
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Fig. 3: Characteristic roots of the controlled system (N = 1).

Fig. 4: First example : Simulation in time with controller at
order N = 1.

confirmed by simulation in time of our closed-loop system
with the dynamical controller (4) with K = �2 for the
corresponding delays. This is highlighted by Fig. 4 where
the output x(t) is drawn in continuous line. The system with
initial value x(0) = 1 is converging to the origin x = 0
for h 2 {0.4, 1} even if for h = 1 the exponential decay is
reduced. Notice that, by rectangular approximation method
of the integral, the output would diverge for h = 1.

Finally, Theorem 3 until order M = 5 gives a criterion
of robustness with respect to delay uncertainties. For a
controller at order N = 1 designed respectively for h = 0.4
and h = 1, the closed-loop system is proven to be stable on
the pocket [h � �h, h + �h] with �h = 0.3 and �h = 0.1.
On Fig. 4, dotted lines represent the output of the controlled
system with an error done on the delay randomly chosen
on [��h,+�h] . One can see that our closed-loop system at
order N = 1 is robust with respect to delay uncertainties.
Moreover, once the closed-loop system is stable for h, the
performances are deteriorating while the error is increasing.
We also noticed that the bound �h is independent of the
order N . Same statements could be done with respect to
uncertainties on the state or input matrix.

B. Second example

Consider now system (1) with A =
h
2 0 1
1 2 �2
0 1 �1

i
, B =

h
0
0
1

i
,

and with a gain K designed using a LQR (linear quadratic
regulator) method as in [2]. Notice that A is unstable.

The stability margin with respect to a constant delay h is
computed with Theorem 2 for controllers from order N = 0
to N = 5 on Fig. 2b. The system remains stable until



Fig. 5: Second example : Simulation in time with controller
at order N = 1.

h = 0.64 for N � 1 which means a bound much larger than
the one usually computed (h = 0.3). It is significant to note
that N = 1 is enough to reach the maximum allowable delay
because it also means that a smaller finite-dimensional set
than classical approximation techniques (where hundreds of
samples are taken into consideration) are required to design
the controller. But, to balance these promising results, even
if this dynamical controller is easy to compute and enlarges
the interval of stability compared to the one reached by
rectangular approximations, the stability of the closed-loop
is still not guaranteed for all delays.

Finally, as for the previous example, Theorem 5 ensures
some robustness with respect to uncertainties on the delay h.
On Fig. 5, for a dynamical controller designed for h = 0.3
at order N = 1, the behavior of systems having a delay
equal to 0.3 (continuous line) and 30 randomly chosen
delays in 0.3± 0.1 (dotted lines) are drawn. The simulation
in time confirms that the outputs x(t) is converging from⇥
1 0 0

⇤T to
⇥
0 0 0

⇤T and that one more time we get
the worst performances for the upper bound h+ �h.

V. CONCLUSIONS

A finite-dimensional dynamical controller has been de-
signed through several steps based on an interpolation of
the nominal control law by first Legendre polynomials.
Techniques based on Legendre polynomials has been then
proposed to ensure its stability with respect to the delay and
its robustness as well for uncertain delays. As in many papers
in the literature, one obtains also a closed loop system which
is asymptotically stable up to a prescribed upper bound.
Keeping the same feedback state representation, future work
will focus on the choice of the control gain to optimize
the closed-loop performances and robustness properties. In
contrast to this late lumping approach, an early lumping
approach could also be investigated.
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