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Abstract. Structured safety arguments are widely applied in critical
systems to demonstrate their safety and other attributes. Graphical for-
malisms such as Goal Structuring Notation (GSN) are used to represent
these argument structures. However, they do not take into account the
uncertainty that may exist in parts of these arguments. To address this
issue, several frameworks for confidence assessment have been proposed.
In this paper, a comparative study is carried out on three approaches
based on Dempster-Shafer theory. We extract and compare the implicit
logic at work in these works, and show that, to some extent, these current
approaches fail to provide a consistent relationship between the informal
statement of arguments, their logical model and the use of belief func-
tions. We also propose recommendations to improve this consistency.

Keywords: Confidence Assessment · Goal Structuring Notation (GSN)
· Dempster–Shafer theory (DST) · Evidence fusion · Safety cases.

1 Introduction

The deployment of autonomous systems in the highly uncertain human environ-
ment raises the issue of safety. Argument structures are widely used to evaluate
and prove the safety of these systems. They are a clearly represented collection of
rational pieces of evidence like test or simulation results, expert judgments, anal-
ysis reports, etc. They aim to demonstrate that a certain property of the system
is satisfied. Many studies and standards define safety arguments as “Safety cases”
(e.g, in the automotive [17] or railway [12] industries), but it is now extended to
more general domains like dependability, assurance or trust cases. These cases
are presented in the form of texts, tables or, more interestingly, graphically. Us-
ing graphical tools to represent arguments structures is more relevant because
graphs are simpler to review, offer a clear overlook, help to understand the con-
nection between pieces of evidence, and moreover they are easier to use and
manage. Formalisms such as Goal Structuring Notation (GSN) [19] and Claims-
Arguments-Evidence (CAE) [2] are commonly used in this field. However, even
with all these benefits, these tools do not take into account the uncertainties per-
vading this sort of arguments. Especially since autonomous systems, and critical
systems in general, are becoming much more complex, they are affected by many
sources of uncertainty like any decision support system, AI based system and
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the like. As a response to this issue many research projects are conducted to find
a solution.

Several works have proposed methods based on Bayesian Networks (BN) to
model uncertainty in a safety argument [15, 6, 14]. Nevertheless, these approaches
have a major impediment, which is the need for data. As a matter of fact, using
BN requires statistical information that is often not available. Moreover, the use
of subjective probabilities is questionable in the presence of partial ignorance.
Dempster-Shafer theory (DST) (aka Theory of Evidence) was developed to ad-
dress the issue of imprecise evidence [21]. It represents a form of generalized
probability theory where probability masses are assigned to sets of possible val-
ues, instead of singletons. In some works on safety argumentation, aggregation
rules stemming from DST are used to merge confidence degrees in pieces of ev-
idence (represented by mass functions) and calculate an overall mass function,
in order to estimate an overall confidence in the top statement of a safety ar-
gument (e.g.,“the system is acceptably safe”). In our problem, the connection
between pieces of evidence is represented by various types of arguments. In the
literature, they strongly influence the choice of an aggregation rule. However, no
real consensus emerges in current research works to relate argument types, their
logical modeling, and aggregation rules based on DST.

In this paper, three approaches to uncertain safety cases using DST are com-
pared as to the different definitions of types of arguments they propose and
we review and discuss the aggregation methods they use. Section 2 presents the
background on safety cases and introduces the existing selected approaches. Sec-
tion 3 extracts the formal definitions of arguments from the selected articles [1, 4,
24]. Then, we compare and analyze the aggregation rules used to compute belief
degrees of the top statement of an argument. Section 4 suggests the existence of
two basic types of arguments and proposes a rigorous methodology.

2 Baseline and related work

This section introduces a safety case formalism (GSN), some works on confidence
quantification, and basic concepts of DST.

2.1 Background

Safety arguments or safety cases can be defined in multiple ways. In fact, the
definition may vary slightly according to the field where it is used. For instance,
in the automotive industry [17], it is defined as : argument that functional safety
is achieved for items, or elements, and satisfied by evidence compiled from work
products of activities during development. This concept has been generalized
in the OMG (Object Management Group) standardized Assurance Case Meta-
model [5] and an instance of it is the goal structuring notation (GSN), which is
commonly used to represent safety cases [19]. As presented in Figure 1, it includes
nine main elements. It breaks down the conclusion called a Goal (following a
given Context and in accordance with a specific Strategy) into Sub-goals and
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Fig. 1. GSN main components.

supports each of them by evidence items called Solutions. The choice of strategies
and sub-goals is supported by the use of so-called Justifications. Figure 2 presents
an example of a GSN pattern.
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Fig. 2. GSN example adapted from Hazard Avoidance Pattern [20].

GSN is categorised as a qualitative method to justify safety. However, in this
example, many uncertainties may exist. For instance, what is the uncertainty
linked to the element “C1: List of identified hazards” or what is the confidence
in the solutions Sn (also called pieces of evidence). In order to estimate the
confidence in the top goal G1, all these uncertainties should be assessed. Some
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quantitative approaches have been proposed to assess uncertainties in such ar-
guments [13]. In[15, 6, 14], Belief Bayesian Networks (BBN) are used to assess
confidence in safety case structure and pieces of evidence. They measure confi-
dence by computing probabilities from evidence to conclusion. Due to the huge
amount of data required to apply BBN, other works based on subjective logic [18,
29] or on DST are proposed to define and estimate uncertainties. These works
are presented in Section 2.2.

Dempster-Shafer Theory offers a powerful setting to combine pieces of evi-
dence. A mass function, or basic belief assignment (BBA), assigns probabilities
over the power set of the universe of possibilities (Ω), known as the frame of dis-
cernment. Formally, a mass functionmΩ : 2Ω → [0, 1] is such that

∑
E⊆Ωm(E) =

1, and m(∅) = 0. Any subset E of Ω such as m(E) > 0 is called a focal set of
m. Mass assignment induces the concept of belief function (bel : 2Ω → [0, 1]). It
represents the summation of all the masses supporting the same statement and
is defined by : bel(A) =

∑
E⊆Ω,E 6=∅m(E). Belief in the denial or uncertainty

of the statement A are respectively represented by : disb(A) = bel(¬A) and
uncer(A) = 1− bel(A)− disb(A).

In our case, we use propositional variables for which the frame of discernment
has two states: Ω = {True(T ), False(F )}. As a consequence, in such frames,
mass function and belief function for T and F are equal. For example, consider
a statement A saying that a clock provides the right time. The mass function
mΩ such that mΩ({T}) = 0.5, mΩ({F}) = 0.2 and mΩ({T, F}) = 0.3 quantifies
respectively the degrees of belief (0.5), of disbelief (0.2) and of uncertainty (0.3)
in A. In this case, due to the Boolean form of the frame of discernment, we have
bel(A) = mΩ({T}), disb(A) = mΩ({F}) = 0.2 and uncer(A) = mΩ({T, F}) =
1 −mΩ({T}) −mΩ({F}). They represent respectively our belief that the time
read is correct, not correct, and the probability that we don’t know the time by
reading the watch (Tautology).

Another important tool from DST is the Dempster rule of combination. It
is used to merge various pieces of evidence coming from independent sources of
information, and is represented by mass functions mi, i = 1, . . . , n. It proceeds
in two steps. For two mass functions:

1. a conjunction of random sets: m∩ = m1 ⊗m2 such that
m∩(A) =

∑
E1,E2:E1∩E2=A

m1(E1) ·m2(E2);
2. a renormalization step if m∩(∅) > 0: m(A) = m∩(A)/(1−m∩(∅)). The value
m∩(∅) represents the degree of conflict between m1 and m2.

This combination rule is commutative and associative.

2.2 Some DST-based approaches to safety cases

In this subsection, we discuss three uncertainty management methods in safety
cases proposed in the literature. All such methods are DST-based. Two of them
use Goal Structuring Notation (GSN) for structuring arguments. Our objective
is to extract, in each paper, definitions of argument types, and to evaluate their
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consistency with the proposed aggregation rule that computes degrees of belief
of conclusions.

Cyra and Gorski [4] present an argument model called VAA inspired by
Toulmin [23] to graphically represent all pieces of evidence that support a conclu-
sion (e.g., ”The system is safe”). It proposes a method that, in a first step, trans-
forms qualitative expert opinions expressed in natural language, about pieces of
evidence (forming premises), into belief and plausibility functions, using [18]. In
a second step, the authors define five argument patterns and associate to each of
them an appropriate belief aggregation rule. These rules use as inputs the values
obtained at the first step, to calculate the overall confidence in the conclusion.

Anaheed et al. [1] define four basic types of arguments. Each argument
type is composed of at least two premises that support a conclusion. Premises are
assessed by two parameters (sufficiency and insufficiency) and every argument
type is associated to an aggregation rule. In this paper, they propose an algorithm
based on a bottom-up approach that computes the degree of confidence in each
premise to calculate the overall confidence in the system.

Wang et al. [25, 24, 26, 27] propose a confidence assessment method by con-
verting qualitative expert opinions, on their confidence in pieces of evidence
appearing in a GSN, into mass functions. These values are then merged by
Dempster rule of combination to obtain the overall confidence in the studied
system. The paper also defines two parameters to assess confidence: Trustwor-
thiness to quantify confidence in the evidence; Appropriateness to quantify the
confidence in the claim that the evidence supports the conclusion.

3 Comparative study

In this section, we introduce a framework for confidence assessment. Then, we
compare argument types given in the studied papers and the propagation rules
used to calculate the overall confidence.

3.1 General framework for BF-based confidence estimation

In order to estimate the overall confidence of the argument structure, our main
issue is how to propagate the quantitative values coming from the confidence in
premises in accordance with the characteristics of its structure. In this regard,
it is important to propose a general method to compute degrees of belief in
conclusions of safety cases. Most works omit to provide this general method
putting together logic and belief functions. Such a methodology was described
more than 30 years ago [3] and is recalled here.

The first step is to define the nature of the relationship between premises in
their support of the conclusion, known as argument types. These types should
be firstly expressed informally in a natural language (e.g, if premises P1 and P2

are true, then the conclusion (C) is true) because it is more understandable for
the human expert. Then this verbal relation should be transformed into a formal
logical sentence (e.g., P1 ∧ P2 ⇒ C). The importance of these definitions lies in
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the fact that they significantly affect the logical expression of the links between
pieces of evidence and the conclusion. The second step is mass assignment. This
task consists in defining masses assigned to the focal sets deduced from the
logical expressions obtained from argument definitions.

Consider a set of well-formed formulasK = {φ1, . . . φn} in propositional logic,
and a formula C such that K ` C. Assume each formula φi is a piece of evidence
that comes from a specific source independent of other ones. Uncertainty about
the validity of each formula can be represented by a mass function mi assigning
some probabilities to φi,¬φi and the tautology >. Take for example the case of
a simple premise P and a rule in the form of an equivalence P ≡ C. One mass
function will be assigned to the premise P in the form of three values m1(P ),
m1(¬P ) and m1(>) summing to 1, and another will be assigned to the rule
(m2(P ≡ C) +m2(>) = 1).

The third step is to choose the appropriate aggregation rule. This rule will
be used to calculate the belief in the top goal (conclusion) based on beliefs
about premises and rules. Extending classical logic inference to this uncertain
environment can be done by means of Dempster rule of combination [3], first
computing an overall mass function, m = m1⊗· · ·⊗mn and then computing the
degree of belief in the conclusion C as Bel(C) =

∑
φi`C m(φi). There are also

several variants of this combination rule that could be used in evidence fusion.
However, each method obeys certain assumptions and describes some kind of
situation. That is why it is needed to make sure that every definition resulting
from the first step verifies the assumptions and each fusion rule fits with the
given situation. Here, pieces of evidence and rules are supposed to come from
independent sources. If this assumption is not satisfied, idempotent combination
rules can be used as discussed in [7, 8].

The complete process includes an additional preliminary step, which con-
sists in transforming expert opinions (qualitative values) expressed in natural
language (safe, little safe, uncertain, etc.) into a numerical format that can be
computed with (i.e. mass, belief or plausibility functions). This could be done in
[4] using the triangle method of Josang [18]. This is needed to compute the belief
in the conclusion. The choice of this transformation has a profound impact on
the results. However this aspect of the evaluation process will not be addressed
in this paper.

3.2 Definition of argument types

The concept of argument type pertains to the logical relationship between the
premises and the conclusion. In other words, it answers the question : In which
format do the premises support the conclusion ? The terminology is not uniform.
For instance, in [4] this relation is named a warrant, in [29] it is called an affection
factor and in [24] it is named appropriateness. Moreover, most papers only give
an informal definition.

Table 1 presents formal definitions of argument types that we infer from
the reviewed papers. We notice from the formal definitions given in Table 1
that the premises are related to the conclusion by either an equivalence or an
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Table 1. Formal definitions of arguments. Note that argument types 4 and 5 are
logically equivalent (∧n

i=1[pi ⇒ C] ≡ [∨n
i=1pi]⇒ C).

Formal definition Terminology for argument types

Type 1 (∧n
i=1pi) ≡ C NSC-Arg [4], Consensus [29], Full complementary [24]

Type 2 ∧n
i=1(pi ≡ C) Disparate [24]

Type 3 (∧n
i=1pi)⇒ C SC-Arg, C-Arg [4], Conjunctive argument [29]

Type 4 ∧n
i=1(pi ⇒ C) A-Arg [4], Alternative argument [1]

Type 5 (∨n
i=1pi)⇒ C Disjunctive argument [29], Full redundant [24]

Type 6

{
∧n

i=1(pi ≡ C)
(∧n

i=1pi) ≡ C
AC-Arg [4], Complementary [24], Containment, Overlap-
ping arguments [1]

Type 7

{
∧n

i=1(pi ≡ C)
(∨n

i=1pi) ≡ C
R-Arg [24]

implication connective. The choice could be justified by the intuitive perception
of the relation between premises and conclusion (e.g. “The system is safe” is
supported by “Hazard H1 has been addressed”).

As already noticed, there are two types of arguments, one using implication,
the other using equivalence. Using equivalence assumes that there is a symme-
try between the conclusion and premises. Consider a small safety case where
the statement “The system is safe” is supported by the premise “All tests are
conclusive”. Using equivalence means, on the one hand, that the system is safe
because we are confident in our tests; on the other hand, that the actual safety of
the system can only be ensured by the success of the tests, which is not necessary
true. In addition to this, the use of equivalence generates cases for the denial of
the conclusion (disbelief) which appears in the calculation as a conjunction of
one or several premises with the negation of the conclusion (¬C). For instance,
consider the case of a conclusion (C) supported by a single premise (p) with
an equivalence relation between them (Type 1 or 2). Combining the masses of
(p) and the rule (p ≡ C) with DS combination rule reveals two cases where
the conclusion is not satisfied (¬p ∧ ¬C) and (p ∧ ¬C). Using implication can
only indicates that, due to the tests, the system is safe; it cannot prove that it is
faulty. Choosing between equivalence or implication could also be justified by the
purpose of the safety case. Generally speaking, a safety case is used to demon-
strate that a system is acceptably safe. Its purpose is to provide a structured
argument in order to certify a critical system, and not to present statements
that it could be faulty, i.e. that there is disbelief about safety greater than 0.
This is actually guaranteed when using only implication. In contrast, if the goal
is to use the safety case at the debugging phase, i.e. to consider that disbelief in
the conclusion may be not null, the equivalence may be an appropriate choice
between premises and conclusion. Since we are interested, in this study, in the
certification aspect of safety cases, the remainder of the paper will be focusing
on argument types modelled by implication from tests to a statement of safety.

We also notice from Table 1 that the premises are linked with each other by
AND, OR logic gates or by a combination of the two. It depends on whether,



8 Y. Idmessaoud et al.

for instance, tests justifying a conclusion are alternative or complementary. For
example, type 3 represents the situation where the conjunction of all premises
is needed to support the conclusion. In the contrary, type 4 represents the case
of separate rules where each premise alone can support the whole conclusion.

3.3 Mass assignment

As seen in previous sections, masses are allocated to propositions of interest.
Apart from the assignment of masses to logical expressions resulting from the
definition types arguments (called appropriateness in [24]), masses are also as-
signed to premises to assess their degree of confidence. This evaluation is used
under the name trustworthiness in [24] and affection factor in [29]. Normally,
mass functions assigned to premises (Pi) have two parameters : belief (i.e.
mp(Pi)), disbelief (i.e. mp(¬Pi)) and the remainder is their uncertainty (i.e
mp(>) = 1−mp(Pi)−mp(¬Pi)). In cases when the argument is an implication,
not an equivalence, the disbelief in the premises will not affect the conclusion,
and need not be taken into account in the uncertainty propagation. This remark
reduces the number of useful focal sets and simplifies the calculation.

The choice of mass functions is a very important step in the assessment
process. It has a huge impact on the form of the final result. We can either
define several mass functions, one for each logical expression, to emphasize the
fact that there are multiple independent sources of information. Or, one mass
function is distributed over all the logical expressions to represent the situation
where a single source supplies these pieces of information.

3.4 Belief Aggregation

As we saw in the previous Section 3.2 the informal definition of argument types
is important for the belief assessment process. Since masses are also assigned
to the logical formulas resulting from these definitions, many authors confuse
logical and numerical aspects. But as explained in Section 3.1, the definition of
argument type, especially the informal ones, conditions the choice of focal sets,
on the one hand. On the other hand, it also affects the choice of the aggregation
rule. For example, one may think of using the disjunctive consensus rule [10],
if disjunction is expressed in the definition. In this section, we are interested in
choosing aggregation rules based on Dempster-Shafer Theory and observing the
effect of mass functions assignment on the degree belief of the conclusion.

DST offers many aggregation rules (Dempster rule, disjunctive consensus,
Yager’s rule, etc. see [21, 22] for surveys). However, we are going to focus on
the methods used in the studied papers listed in Table 2. In general, Dempster
combination rule computes the intersection of focal sets. If some focal sets from
one source are inconsistent with some from another source, a renormalization
must take place. It also assumes that sources are independent and reliable. Other
combination rules that express a conjunction exist (e.g. Yager’s [28] and Inagaki’s
rules [16]). For instance, Yager’s rule uses a renormalization scheme different
from the one of Dempster, reallocating mass of the empty set to the whole
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frame. The disjunctive rule of combination is a union of random sets and does
not need renormalization. Finally, the weighted average rule [21] is used to make
a trade-off between conjunctive and disjunctive methods.

So long as the focal propositions involved in a safety case are not conflict-
ing, there is no need to renormalize the resulting mass function, nor to use
the disjunctive rule. By taking into account the definition of a safety case and
the underying assumptions, applying Dempster rule (without normalization) to
aggregate evidences is well adapted.

Table 2. Consistency between argument types and combination rules.

Authors Argument types Combination rules Consistency

Cyra and Gorski [4]

NSC-Arg DS rule Yes
SC-Arg DS rule Yes
A-Arg Yager’s rule No
C-Arg Weighted average No
AC-Arg - -

Anaheed et al. [1]

Alternative DS rule No
Disjoint Weighted average No
Containment

DS + Weighted average
No

Overlapping No

Wang et al. [24]

Disparate

DS rule

Yes
Complementary Yes
Full complementary Yes
Redundant Yes
Full redundant Yes

As can be seen from Table 2, several combination rules are proposed to ob-
tain the overall confidence in the conclusion. But, none of the reviewed papers
clearly justifies its choice of the applied method, nor does it lay bare the under-
lying independence assumptions. Also, some of the proposed expressions are not
consistent with the verbal definition. For instance, in [1], the type Alternative
argument is used when several independent premises support the conclusion.
The formal definition induced is : ∧ni=1(pi ⇒ C) (Table 1). However, the au-
thors only consider the confidence in the premises (also called trustworthiness,
in [24]), but they did not consider the confidence in the relation between them
and the conclusion (the rule). A possible formula that takes into consideration
this definition could be equation (1).

Consider the example of a conclusion (C) separately supported by two premises
p1 and p2, which refers to an argument of type 4 in Table 1, i.e., (p1 ⇒ C)∧(p2 ⇒
C). We develop this example below. For other argument types, the calculation
follows the same method. The confidence assessment process is measured through
two parameters. The confidence in premises is modelled by mass functions mpi

and the confidence in the support of the the conclusion by each premise (the
rules) is modelled by the mass function mri . Then, we apply Dempster combi-
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nation rule, presented earlier, to merge each premise with its appropriate rule
(see Table 3), and secondly merge the two resulting mass functions mi (see Table
4). Notice that we could also merge premises and rules separately first, then fuse
partial conclusions together. The result will be the same because Dempster rule
is associative and commutative.

Table 3. Combination of a premise with its rule

m1 = mp1 ⊗mr1 mr1(p1 ⇒ C) mr1(>)

mp1(p1) p1 ∧ C p1
mp1(>) p1 ⇒ C >

In the example given in Table 3, the focal formula p1 ∧ C results from the
conjunction between formulas p1 and p1 ⇒ C. Its mass is calculated by multi-
plying the masses values in the corresponding line and column. Since the frame
of discernment (Ω) of elementary mass functions has two states, masses and
belief functions of non-tautological inputs are equal. The calculation of the
remaining masses follows the same logic. An example is given here, where,
beli⇒(pi ⇒ C) represents the degree of belief that the ith premise supports
the conclusion and belip(pi) represents the belief degree in the ith premise. For
instance, m1(p1 ∧ C) = mp1(p1) × mr1(p1 ⇒ C) = bel1p(p1) × bel1⇒(p1 ⇒ C).
Likewise the combination of m1 and m2, yields mass function m12 using Table
4.

Table 4. Combination of confidence in type 4 : ∧n
i=1(pi ⇒ C)

m12 = m1 ⊗m2 m2(P2 ∧ C) m2(P2) m2(P2⇒ C) m2(>)

m1(P1 ∧ C) P1 ∧ P2 ∧ C P1 ∧ P2 ∧ C P1 ∧ C P1 ∧ C

m1(P1) P1 ∧ P2 ∧ C P1 ∧ P2 P1 ∧ (P2 ⇒ C) P1

m1(P1 ⇒ C) P2 ∧ C P1 ∧ (P2 ⇒ C) (P1 ∨ P2)⇒ C P1 ⇒ C

m1(>) P2 ∧ C P2 P2 ⇒ C >
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The calculation of the degree of belief belc(C) in the conclusion for type 4
arguments is as follows (in Table 4 cells in gray identify φ’s that imply C):

bel4c(C) =
∑

φ:φ implies C

m12(φ) = m12(P1 ∧ P2 ∧ C) +m12(P1 ∧ C) +m12(P2 ∧ C)

= m1(P1 ∧ C)
∑
φ2

m2(φ2) +m2(P2 ∧ C)
∑
φ1

m1(φ1)−m1(P1 ∧ C)m2(P2 ∧ C)

= m1(P1 ∧ C) +m2(P2 ∧ C)−m1(P1 ∧ C)m2(P2 ∧ C)

= bel1p(P1)bel1⇒(P1 ⇒ C) + bel2p(P2)bel2⇒(P2 ⇒ C)

− bel1p(P1)bel1⇒(P1 ⇒ C)bel2p(P2)bel2⇒(P2 ⇒ C)

= 1− [1− bel1p(P1)bel1⇒(P1 ⇒ C)][1− bel2p(P2)bel2⇒(P2 ⇒ C)]

In general, with n premises, the formula for type 4 arguments is as follows.

bel4c(C) = 1−
n∏
i=1

[1− belip(pi)beli⇒(pi ⇒ C)] (1)

Letting belic(C) = belip(pi)bel
i
⇒(pi ⇒ C) be the degree of belief in C due to

premise pi, the expression in equation (1) is a many-valued disjunction connective
aggregating the weights belic(C). So it is enough that belic(C) = 1 for some pi to
get belc(C) = 1, which is in agreement with the argument type.

It is important to mention that in equation (1), a mass function m⇒ was
assigned to each rule pi ⇒ C, assuming independence between them, according
to type 4 in Table 1. In type 5 argument, we assign a single mass function m⇒
to the complete rule with a disjunction of premises ([∨ni=1pi]⇒ C). The formula
resulting from this new mass assignment is given in (2). In general, the belief
in the conclusion for type 5 arguments is as follows, using Dempster rule of
combination:

bel5c(C) = bel⇒([∨ni=1pi]⇒ C)[1−
n∏
i=1

(1− belip(pi))] (2)

where bel⇒([∨ni=1pi]⇒ C) is the belief that the disjunction of all premises sup-
port the conclusion. We stress again that in equation (1), we assign one mass
function to each simple rule, while in (2), we assign a single mass to a composite
rule. So, even though types 4 and 5 are logically equivalent (∧ni=1[pi ⇒ C]) ≡
([∨ni=1pi] ⇒ C), because the assignment of masses is different in types 4 and
5, they produce different results for the belief calculation. The same combina-
tion pattern applies to arguments of type 3 in Table 1. It requires all premises
be true to justify the conclusion, and a simple support mass is assigned to the
implication [∧ni=1pi]⇒ C. It yields for type 3 arguments:

bel3c(C) = bel⇒([∧ni=1pi]⇒ C)

n∏
i=1

belip(pi) (3)
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In (2) a multivalued disjunction connective is applied to the degrees of belief in
the premises while in (3), it is a multivalued conjunction.

In contrast, equation (4) below for type 4 arguments supposes a single mass
function m⇒ with masses distributed over the elementary rules pi ⇒ C, assum-
ing

∑n
i=1m⇒(pi ⇒ C) + m⇒(>) = 1. The resulting belief in the conclusion is

then a weighted sum of the degrees of belief in the premises:

bel′c(C) =

n∑
i=1

bel⇒(pi ⇒ C)belip(pi) (4)

In front of these three expressions (equations (1), (2) and (4)) which result from
the same logical form of the argument, a question arises. Which of them is
the most appropriate for this argument type? The choices of the assignment of
mass function in each equation do not model the same situation. Comparing the
first and second formulas, on the one hand (1) suggests that each argument is
based on one piece of evidence that could support the whole conclusion and is
independent from the other ones. On the other hand, 2 supposes that all such
arguments are provided at once by a single source. If we also compare equations
(1) and (4), (1) represents the situation when the elementary arguments are
independent, so that a mass is allocated each implication independently of the
others. On the contrary, in (4) the belief mass assigned to in one implication
affects those assigned to other ones, because, due to the use of a single mass
function, the sum of all such masses must be one.

It is important to use each formula giving the belief in the conclusion in the
appropriate situation, laying bare the underlying assumptions. For instance, the
A-Arg presented in [4] is formally defined by ∧ni=1(pi ⇒ C), and uses Yager’s
combination rule to calculate the overall confidence in the conclusion. However,
Yager’s rule was developed to deal with highly conflicting sources in place of
Dempster rule. But the authors of [4] do not explain the presence of a conflict
between pieces of evidence. Conflicts occur in cases when the intersection be-
tween focal sets is empty, which could be the case if masses were assigned to
expressions supporting the negation of the implication (e.g., pi ∧ ¬C), or in ar-
gument types involving equivalence. In the argument types discussed above, the
focal sets resulting from handling argument of types 3, 4, 5 inspired by the se-
lected articles do not generate such conflicts. In particular, the degree of disbelief
in the conclusion is always 0 with these argument types.

4 Lessons learned

As shown in the previous sections, defining an “Argument Type” is a very deli-
cate process. It depends on the assessor’s understanding of the argument. Four
important issues emerge from this paper:

Formal representation of the argument: The assessor should faithfully
translate the informal definition of each argument into a formal one, by choos-
ing the proper logical connectives relating premises to one another (conjunction,
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disjunction) or between them and the conclusion (equivalence, implication). In
order to do so, it is necessary to avoid vagueness and imprecision in the formu-
lation of (informal) verbal definitions and to describe the characteristics of each
argument type as accurately as possible. In this paper, two basic types have
been laid bare : Those using conjunction of premises (Type 3) and those using
a disjunction (Type 4 and 5). Indeed, it is important to know if for instance the
truth in one premise is sufficient to ensure the conclusion, or if all premises are
necessary to ensure the conclusion.

Using equivalence vs. implication connectives: Implication is the com-
monly used logical operator for representing arguments supporting a conclusion.
However, we have seen that some verbal descriptions used in the literature on
safety arguments can be formally translated into equivalences. The equivalence
operator should be used carefully because it involves several situations that we
may not intentionally want to encounter. Consider for example a conclusion (C)
supported by one premise (P). Using the rule (P ≡ C) implies that (P ⇒ C)
and that (C ⇒ P ). We saw in Section 3.4 that the second implication is not nec-
essary true. In addition to this, equivalence is also expressed as (¬P ≡ ¬C), in
particular, ¬P ⇒ ¬C); this is why using equivalence, disbelief in the conclusion
may be different from zero.

Assigning mass functions: It should be clear that the formal definition of
the argument types is not enough determine the degree of belief in the conclusion.
For instance, when we changed the mass functions definition in the 4th and 5th

logically equivalent types in Table 1 while using the same combination rule (i.e.,
Dempster rule), we obtained three distinct formulas (1, 2, 4). It is necessary
to be sure that the choice of mass assignment reflects as well as possible the
situation described in the arguments.

Choosing a combination rule : Changing the combination rule obviously
affects the result of uncertainty propagation. So, it is important to choose the
right one. However, as we saw in Section 3.4, applying Dempster combination
rule is well adapted to computing the overall confidence, because no conflict is
met during the combination step using arguments modelled by implication. In
that case it is equivalent to Yager’s rule. A possible use of this rule could be
justified to cope with conflicts between the involved pieces of evidence, in place
of Dempster rule. On the other hand, the disjunctive rule is too weak to be
applied if one wants to jointly exploit the pieces of evidence in the safety case. A
trade-off could be the rule in [11] which combines focal sets conjunctively when
they are consistent and disjunctively when they conflict.

5 Conclusion

In this paper, we propose a comparative study between some confidence propa-
gation methods in safety cases. We highlight four important elements to be con-
sidered in the development of a safety case. First, arguments should be expressed
in formal logic. Second, we advocate the use of the implication connective, rather
than equivalence, to describe the relationship between premises and conclusion.
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Then, we propose a simplified framework to define mass functions attached to
premises and arguments. Finally, we argue that Dempster rule of combination
should be preferred when the focal sets issued from independent mass functions
to be combined do not conflict.

In future works, we plan to experiment an approach that exploits this method-
ology in an application pervaded with high uncertainties, such as autonomous
vehicles. Another issue is the improvement of methods proposed for translat-
ing expert opinions into usable numerical values, such as those proposed in [18]
and applied in [4, 24]. In this regard, it would also be interesting to develop
non-quantitative approaches using qualitative counterparts of belief functions as
suggested in [9].
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