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A Markovian approach for improving end-to-end data rates

in the Internet

Marine Ségneré-Yter, Olivier Brun, Balakrishna Prabhu

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract. We model the tradeo� between the monitoring costs and gain in throughput for
overlay-based routing in the Internet. A Markovian model is shown to �t the real through-
put traces quite well. The tradeo� problem is formulated as Markov decision process and it
is observed that the myopic policy that maximizes the immediate utility is close to optimal
on the real traces.

1 Introduction

More than two decades ago, it was observed that the performance of network �ows could be improved
by choosing other paths than those computed by IP routing protocols (see, e.g., [7]). Routing overlay
networks were then proposed as a solution for achieving spectacular performance improvements,
without the need to re-engineer the Internet (see [1] and references therein). An overlay network is
composed of Internet end-hosts which can monitor the quality of Internet paths between themselves
by sending probe packets. Since all pairs of nodes are connected, the default topology of a routing
overlay is that of a complete graph. Although the monitoring cost is highly variable depending on
the metric to be probed, it is usually not possible to discover an optimal path by probing all links in
large overlay networks (see [2] for a graph-theoretic analysis of this issue). An alternative approach
is to devise a parsimonious monitoring approach making the trade-o� between the quality of routing
decisions and the monitoring cost. Given a source and a destination node in the overlay, the idea is
to probe only a small number of overlay paths between the two nodes at each measurement epoch,
but to choose those paths so as to make the best routing decision.

Assuming known Markovian models for path delays, this trade-o� problem was formulated as a
Markov Decision Process (MDP) in [8] . Using delay data collected over the Internet, it was shown
that the optimal monitoring policy enables to obtain a routing performance almost as good as the
one obtained when all paths are always monitored, but with a modest monitoring e�ort.

In this paper, we adopt the theoretical framework introduced in [8], but focus on data throughput
rather than RTT. We note that e�cient parsimonious monitoring strategies are even more impor-
tant for the throughput metric. Indeed, although lightweight methods for estimating the available
bandwidth between two Internet end-hosts were proposed in [5,4], in practice the only accurate
method is to transfer a large �le between the two endpoints. It turns out that the MDP formula-
tion for maximizing the data throughput is equivalent to the MDP formulation for minimizing the
RTT. The contribution of the present paper is therefore not on the theoretical side, but rather to
investigate the applicability of the approach proposed in [8] for optimizing throughput in overlay
networks. To this end, we use we use throughput measurements that were made between 9 AWS
(Amazon Web Services) data centres.
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2 MDP formulation

The problem formulation in this section is essentially the same as in [8,6] except that the quantity of
interest is bandwidth instead of delay. Consider a single origin-destination pair and {1, 2, . . . , P} a
set of P paths between the origin and the destination. The network topology is thus that of parallel
links. At time step t, path i is assumed to be have a bandwidth Xi(t), where Xi(t) is a discrete-time
Markov chain taking values in a �nite set. The transition matrix for path i will be denoted by Mi.

At each time step, the routing agent has to decide on which path it should send data. For this,
the agent has at its disposal the last observed bandwidth for each path. Further, it can choose to
measure the bandwidth on one or more paths and update its state information before taking the
routing decision. The agent incurs a cost of ci for probing path i independently of time step. The
decision-maker must �nd a compromise between paying to retrieve information from the system to
get a higher bandwidth and not retrieving information leading to a lower bandwidth.

Let u(t) ∈ {0, 1}P whose ith component indicates whether path i is monitored in time step i or
not. The total cost paid for action u(t) is

∑
i|ui(t)=1−ci = −c · u(t) with c = (c1, · · · , cP ). Let r(t)

be the path chosen in time step t. A policy θ can be de�ned by the sequence {(u(t), r(t))}t≥0. Just
as in [8], it can be seen that knowing only the last observed bandwidth for a link is not enough to
determine the distribution the bandwidth that will be obtained in a given step. The state can be
made Markovian by incorporating the age of the last observed bandwidth as well. That is, the pair
(yi(t), τi(t)), where yi(t) is the last observed bandwidth of link i at time t and τi(t) is the age of the
last observation is su�cient as the state variable for a Markovian representation of path i. All this
information is summarized in a vector s(t) = (s1(t), s2(t), . . . , sP (t)) where si(t) = (yi(t), τi(t)).

Since the state is now Markovian, the problem can be formulated as a Markov Decision Process
(MDP). This MDP can be further simpli�ed by noting that in the model, the routing decision
does not have any impact on the evolution of the state. Thus, a locally greedy routing decision
conditioned on u(t) and the current state will be optimal. In other words, for a given u(t), it will
be optimal to choose the path that maximizes the expected bandwidth. With this in mind, the
decision problem can be reduced to determining which paths to monitor in each time step. For a
given state s ≡ (y, τ) of path i, de�ne the belief on the bandwidth being z of this path as follows:
bi(z|s) := P(Xi(τ) = z|Xi(0) = y), which is just the probability of path i transitioning from y to z
in τ steps, and can be computed by choosing the corresponding element of Mτ

i .
If path i is measured, then its actual bandwidth, Xi(t), will be known and can be used in the

routing decision. Otherwise, it is its expected conditional bandwidth E[Xi|si] =
∑
x∈Xi

x · bi(x|si)
that will be used. The locally greedy routing decision will be to choose r(t) that maximizes
(uiXi+(1− ui)E[Xi|si]). Note that this decision is taken after performing the action of monitor-
ing the subset of selected links. This leads to maximum bandwidth conditioned on s and u of
B(X|s,u) = maxi (uiXi+(1− ui)E[Xi|si]), and an expected maximum bandwidth of:

B̄(s;u) =
∑
x

(
P∏
i=1

bi(xi|si)

)
B(x|s;u). (1)

Here the product measure is used because Xis evolve independently.
Now that the routing decision is known, the �nal MDP takes the form:

max
θ

Eθs0

{ ∞∑
t=0

ρt
[
B̄(s(t);u(t))− c · u(t)

]}
. (2)
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where θ ≡ u(t)t≥0, is limited to monitoring decisions only.

We remark that the above problem formulation resembles the multi-armed bandit (MAB) frame-
work. However, unlike standard MABs in which the cost function is decomposable in the individual
costs of the bandits, in our problem the overall cost is not decomposable.

3 Numerical results

In order to validate our approach on real data, for which the Markovian assumption is not perfectly
met, we use throughput measurements that were made between 9 AWS (Amazon Web Services)
data centres located in several places around the world. In summer 2015, we measured the available
throughput between all pairs of data centres every �ve minutes, by transferring a 10 MB �le through
the Internet, for a period of four days. We thus collected some 8.3 × 104 measurement data over
the 4 days period. Assuming that the available throughput over a path is the minimum of the
throughputs of its constituent links, the analysis of these data revealed that the IP route is the
maximum throughput route only in 23% of the cases, and that most of the time, the maximum
throughput overlay route passes through 1 or 2 intermediate nodes (see [1] for details).

We selected three origin-destination (OD) pairs: Virginia/Ireland, Virginia/Frankfurt and Frank-
furt/Tokyo. For the �rst two pairs, in addition to the IP path, we selected two alternative paths
which were sometimes better than the IP path, whereas for the last example there was one alter-
native path.

For each path, we �tted a Markov model using a clustering method called, Hierarchical Ag-
glomerative Clustering [3]. This method creates a hierarchy between clusters, like a tree. At the
beginning, each value of bandwidth is a cluster. The algorithm agglomerate one by one the closest
data (in term of a distance metric chosen) together in a new cluster, until it creates one big cluster.
On our data, we use the Euclidean distance between the bandwidth values. After that, we decided
where to cut the tree and obtain a certain number of clusters.

Now that we have our di�erent states, we have to determine the transition probability matrices,
Pi. We elaborate this matrix by counting the number of transition between each pair of states.
Finally, we search the minimum value τmaxi which satisfy max(P lim

i − P τmaxi
i ) < 10−2. It appears

that, on real data, the τmax per link is lower than 10 and the number of states per link is between
2 and 12.

We evaluate the average utility (see (2)) for four policies : optimal, myopic policy that optimizes
the immediate cost only, a receding horizon policy (with a horizon of 3) and a decomposition based
heuristic. For a description of the last two policies, we refer the reader to [6].

First, we check that the Markov models we �tted are representative of the real traces. For this,
for each OD pair, using the transition matrices, we generate a sample path of throughputs on each of
the paths. On these sample paths, we apply the three heuristics (but not the optimal) and compute
the average utility for each policy. We then apply the policies on the real traces and compute the
average utilities. Table 1 shows the percentage relative error between the average utility computed
on a sample path and that on the corresponding real trace. The relative error is less than 2% which
indicates a good match. Finally, Table 2 shows the utilities of the four policies for varying monitoring
costs. One surprising observation from these examples is that the myopic policy is almost optimal.
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c 1 2 3 4 5

Myopic 1.38 1.14 0.52 0.95 0.01

RH 1.38 0.98 0.50 0.62 0.01

H2 1.73 1.81 1.84 1.90 1.97

(a) Virginia/Ireland.

c 1 2 3 4 5

Myopic 1.36 0.91 0.6 1.07 0.03

RH 1.34 1.046 0.62 1.067 0.03

H2 1.63 1.90 1.92 1.97 2.06

(b) Virginia/Frankfurt.

Table 1: Percentage relative error between utility computed using Markov model and on real
trace.

c OPT Myopic RH H2

1.0 41.98 41.98 41.98 40.45

2.0 39.42 39.40 39.43 38.72

3.0 37.90 37.89 37.90 36.98

4.0 36.99 36.92 36.97 35.25

5.0 36.43 36.43 36.43 33.52

(a) Virginia/Ireland.

c OPT Myopic RH H2

1.0 41.91 41.91 41.91 40.77

2.0 39.45 39.47 39.45 38.84

3.0 38.02 38.03 38.03 36.97

4.0 37.11 37.11 37.11 35.13

5.0 36.38 36.36 36.36 33.30

(b) Virginia/Frankfurt.

c OPT Myopic RH H2

1.0 58.44 58.44 58.44 57.83

2.0 57.71 57.67 57.71 56.59

3.0 57.20 57.20 57.20 55.35

4.0 57.20 57.20 57.20 54.11

5.0 57.20 57.20 57.20 53.09

(c) Frankfurt/Tokyo.

Table 2: Utilities for di�erent policies as a function of the monitoring cost.

4 Conclusion and future work

The results indicate that Markovian models are a good �t for throughput on paths in the Internet.
Further, a myopic policy is nearly optimal for minimizing a linear combination of the throughput
and monitoring costs.

As future work, we would �rst like to understand why the myopic policy works well on these
examples. It would be interesting to obtain conditions under which this is true. Next, we would
like to generalize these models to multi-agent settings in which each node of the overlay can be
seen as an agents. These agents can be either cooperative or be non-cooperative. Another possible
improvement of the setting would be to allow the routing decision to in�uence the future evolution
of the bandwidth of the path and to get state information from the current routing decision.
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