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Sleep Monitoring Systems: Current Status and Future Challenges 

Abstract 

Background: Sleep is essential for human health. Considerable effort has been put into academic and 

industrial research and in the development of wireless body area networks for sleep monitoring in terms 

of nonintrusiveness, portability, and autonomy. With the help of rapid advances in smart sensing and 

communication technologies, various sleep monitoring systems (hereafter, sleep monitoring systems) 

have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned, 

and suitable for long-term monitoring. 

Objective: This paper aimed to review current research in sleep monitoring to serve as a reference for 

researchers and to provide insights for future work. Specific selection criteria were chosen to include 

articles in which sleep monitoring systems or devices are covered. 

Methods: This review investigated the use of various common sensors in the hardware implementation 

of current sleep monitoring systems as well as the types of parameters collected, their position in the 

body, the possible description of sleep phases, and the advantages and drawbacks. In addition, the data 

processing algorithms and software used in different studies on sleep monitoring systems and their 

results are presented. This review was not only limited to the study of laboratory research but also 

investigated the various popular commercial products available for sleep monitoring, presenting their 

characteristics, advantages, and disadvantages. In particular, we categorized existing research on sleep 

monitoring systems based on how the sensor is used, including the number and type of sensors, and the 

preferred position in the body. In addition to focusing on a specific system, issues concerning sleep 

monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented 

an original sleep monitoring system solution developed in our laboratory. 

Results: By retrieving a large number of articles and abstracts, we found that hotspot techniques such as 

big data, machine learning, artificial intelligence, and data mining have not been widely applied to the 

sleep monitoring research area. Accelerometers are the most commonly used sensor in sleep monitoring 

systems. Most commercial sleep monitoring products cannot provide performance evaluation based on 

gold standard polysomnography. 

Conclusions: Combining hotspot techniques such as big data, machine learning, artificial intelligence, 

and data mining with sleep monitoring may be a promising research approach and will attract more 

researchers in the future. Balancing user acceptance and monitoring performance is the biggest challenge 

in sleep monitoring system research. 
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Introduction 

Background 
Sleep is crucial for human health and quality of life. Poor sleep and sleep disorders have been 

increasingly prevalent among the world's older population [1,2]. Polysomnography (PSG) has long been 

the gold standard to quantify sleep time, to differentiate sleep stages, and to assess sleep fragmentation. 

PSG provides comprehensive physiological information during sleep including electroencephalograms 

(EEGs), electrocardiograms (ECGs), electromyography (EMG), electrooculography (EOG), oral-nasal 

airflow, body position, thoracic and abdominal movements, pulse oximetry, and limb movements. The 

serious impact of sleep on health and well-being is the dominant motivation for sleep monitoring. 

 On personal health, sleep is a foundation for good health as important as diet and exercise, 

according to the National Sleep Foundation. Poor sleep can lead to adverse health consequences, 

including obesity [3], cardiovascular disease [4], and depressive disorders [5]. Sleep is also 

associated with creativity [6], memory consolidation [7], and cognitive function [8]. Patients 

affected by sudden cardiac death with sleep disorders such as obstructive sleep apnea (OSA) have 

been reported to have peak mortality during sleep hours [9]. 

 On society, the incidence of sleep disorders appears to be a concern worldwide. Among the global 

population, 16.6% of people in Africa and Asia [10], 18% of people in Europe [11], and more than 

20% of people in North America [12,13] are affected by nocturnal sleep disorders. Such 

prevalence has led to a range of societal problems, such as high rates of chronic diseases, road 

traffic accidents, and workplace accidents. Approximately 13% of work injuries are due to sleep 

problems [14]. In the United States, the expenditure for the treatment of moderate-to-severe sleep 

disorders and related disorders amounts to US $165 billion per year, far more than the costs of 

treating diseases such as heart failure, stroke, hypertension, and asthma, which range from US $20 

to US $80 per year [15]. In 5 OECD (Organisation for Economic Co-operation and Development) 

countries, the economic costs of sleep deprivation are 1.35% (Canada), 1.56% (Germany), 1.88% 

(United Kingdom), 2.28% (United States), and 2.92% (Japan) of their respective gross domestic 

product (GDP) [16]. 

Sleep Stages Scoring Rules 
Clinicians can obtain reliable sleep monitoring results, such as sleep stages, by analyzing the PSG 

recording during the night. For sleep stage guidelines and scoring rules, the R&K rules proposed by 

Rechtschaffen and Kales in 1968 [17] were used until 2007, when the American Academy of Sleep 

Medicine (AASM) updated the scoring manual commonly referred to as the AASM scoring manual [18]. 

The R&K rules and the AASM rules differ in the terminology used. The R&K rules divide sleep into 6 

distinct stages: W (wake), non–rapid eye movement (non-REM [NREM]) stages S1, S2, S3, and S4, and 



REM sleep stage. The AASM rules recognize 5 sleep stages: W (wake) stage N1 (formerly stage 1 sleep), 

stage N2 (formerly stage 2 sleep), stage N3 (formerly stages 3 and 4 sleep), and stage R sleep (formerly 

stage REM sleep), as illustrated in Figure 1. 

For the same sleep, the scoring results obtained from R&K rules and the AASM rules will be slightly 

different. One study [19] adopted both rules to score PSG sleep recordings of healthy subjects and 

patients (38 women and 34 men) aged 21 to 86 years. The results showed that sleep latency, REM 

latency, total sleep time, and sleep efficiency were not affected by the classification standard. In contrast, 

the time (in minutes and as a percentage of total sleep time) spent in stage 1 (S1/N1), stage 2 (S2/N2), 

and slow wave sleep (S3+S4/N3) differed significantly between the R&K and AASM classifications. While 

light and deep sleep increased (S1 vs N1 [+10.6 min, (+2.8%)]: P<.01; S3+S4 vs N3 [+9.1 min (+2.4%)]: 

P<.01), stage 2 sleep decreased significantly according to the AASM rules (S2 vs N2 [−20.5 min, (–4.9%)]: 

P<.01).  

The differences between the results of the 2 sleep standards can be attributed to the different rules used 

[20]. 

The reader is reminded that sleep stages should not be considered as distinct entities but rather as a 

gradual transition of a waveform. Sleep usually follows a predictable pattern, moving cyclically between 

the light sleep stage, the deep sleep stage, and REM. Each sleep cycle typically lasts about 90 min and is 

repeated 4 to 6 times during the night. In each sleep cycle, people usually experience a transition from 

light to deep sleep first and then switch to REM. However, some stages can be skipped during sleep. For 

example, one can switch to REM or return directly to deep sleep from REM sleep [21]. Sleep quality is 

analyzed using standard parameters such as sleep efficiency, total sleep time, sleep latency, sleep stages 1 

and 2, slow-wave sleep (sleep stages 3 and 4), rapid eye movement sleep, wake time after sleep onset, 

and nocturnal wake time [22]. 

Sleep disorders, the most recently released third edition of the International Classification of Sleep 

Disorders (ICSD-3) has identified 7 major categories of sleep disorders that include insomnia, sleep-

related breathing disorders, central hypersomnolence disorders, circadian rhythm sleep-wakefulness 

disorders, sleep-related movement disorders, parasomnia, and other sleep disorders [23]. Most sleep 

disorders can be monitored by sleep monitoring systems, and some of them are detailed below: 

 Insomnia refers to impairment in the quality and quantity of sleep. According to Ohayon [24], 10% 

to 30% of the adult population is affected by insomnia. The ICSD-3 criteria for this diagnosis 

include (1) a report of sleep initiation or maintenance problems, (2) adequate opportunity and 

circumstances for sleep, and (3) consequences during the day. The ICSD-3 duration criterion for 

chronic insomnia disorder is 3 months, and a frequency criterion (at least 3 times per week) was 

added. 



 Sleep apnea is characterized by pauses in breathing or instances of shallow breathing during sleep 

[25]. Due to sleep apnea, the patient wakes up regularly throughout the night to retrieve 

breathing. Frequent awakening results in very poor quality of sleep and excessive daytime fatigue. 

Usually, sleep apnea may be accompanied by loud snoring, which can be easily monitored by a 

microphone (many researchers have studied Snoring signal processing–based methods to achieve 

a supplementary diagnosis way of sleep apnea) [26-28]. 

 Restless legs syndrome (RLS) is based on an urge to move the legs, sometimes accompanied by an 

uncomfortable sensation that (1) occurs primarily with rest or inactivity, (2) is partially or totally 

relieved by the movement, for as long as the movement occurs, and (3) occurs primarily in the 

evening or night [29]. Up to 30% of cases are caused by iron deficiency. These abnormal leg 

movements can be easily monitored with an accelerometer [30-32]. 

 Periodic limb movement disorder (PLMD) is characterized by abnormal limb movements and is 

responsible for deterioration in sleep quality [33]. For young people, it will be considered as 

pathologic when the index of periodic limb movement during sleep (PLMS; number of PLMS per 

hour) is greater than 5. For older people, an index of PLMS greater than 15 is usually adopted as 

the pathological threshold. This disorder can be detected by using EMG [34] or actigraphy [30]. 

 Disorders of arousal from NREM (DAN) include confusion arousal, sleepwalking, sleep terrors, and 

sleep-related eating disorders [23,35]. The general criteria for disorders of arousal include (1) 

recurrent episodes of incomplete awakening, (2) absent or inappropriate responsiveness, (3) 

limited or no cognition or dream report, and (4) partial or complete amnesia for the episode. 

Detection of repeated wakes during the NREM stage can be a sign of DAN. This disorder can be 

detected using EEG. 

 REM sleep behavior disorder (RBD) is characterized by the intermittent loss of REM sleep atonia 

and the appearance of elaborate motor activity associated with the situation in dreams, such as 

repeated episodes of behavior or vocalization arising from REM [36]. When specific movements 

and sounds are detected during the REM stage, a suspicion of RBD should be considered. This 

disorder could be detected by using a microphone, actigraphy, and EEG. 

Therefore, there appears to be a growing interest in researching new sleep monitoring system solutions 

to provide rapid, reliable, and long-term monitoring results to users and clinicians. Innovative home-used 

sleep monitoring systems offer users access to sleep phases and quality by themselves and can be a 

reference for the diagnosis of sleep disorders by clinicians. 

For sleep monitoring, a sleep monitoring system can include a wide range of wearable or noncontact 

devices, including sensors, actuators, smart fabrics, power supplies, wireless communication networks, 

processing units, multimedia devices, user interfaces, software, and algorithms for data capture, 



processing, and decision support. These systems are able to measure vital signs, such as body and limb 

movements, body and skin temperature, heart rate, ECGs, EEGs, EMG, and respiration rate. The 

measurements are transmitted via a sensor network either to a central connection node, such as a 

personal digital assistant, or directly to a medical center for storage, data processing, and decision 

making. 

To discuss this potential, this paper aimed to review the current state of research and development in the 

field of sleep monitoring system, highlighting the main features of the most promising projects being 

developed and future challenges.  

Methods 

Overview 
With the growing appearance of sleep problems, the sleep monitoring system study has been one of the 

hotspots in the field of smart human monitoring. As a result, advances in sleep monitoring system 

development technology are continuously accelerating. Simple, lightweight, and small-size sensor 

systems are being adopted to acquire sleep-related physiological information. These systems are 

designed to be adaptable to the gold standard PSG, including sleep stages, sleep or wake, sleep apnea, 

sleep positions, and so on. Furthermore, the advantages of such a system over the traditional PSG method 

are that it is affordable, requires little or no technician intervention, is installed in the home, and can be 

used over the long term. The systems have developed rapidly with the progress made in the 

miniaturization of sensors, the reduction of energy consumption, and various communication 

possibilities (Bluetooth, Wi-Fi, Sigfox, LoRa, and NB-IoT). These technologies enable current sleep 

monitoring systems to be less intrusive and effective, with remote and continuous monitoring. In this 

review, specific selection criteria are chosen as reference articles on sleep monitoring systems. 

Inclusion Criteria for Sleep Monitoring System Search 

Most sleep monitoring system research projects have focused on smart, portable, and nonintrusive 

devices that encompass wireless communication, moving the monitoring site from the hospital to the 

home, in patch or noncontact form. Systems that have the following features are included:  

 Wearable, portable, nonintrusive, wireless, and noncontact. 

 Patch, body sensor system, and sensor network. 

 Band, watch, textile, bedsheet, and belt. 

 Mobile, stationary, ambulatory, at home, and remote. 

 Automatic collection and transmission of acquired data and processing results can help physicians 

and caregivers easily follow sleep conditions over time. In addition, it can make it easier to find trends in 

the data, providing insight into individualized sleep patterns. 



Search Methods and Strategies 

This literature review focuses on the presentation of the hardware and software adopted in the current 

sleep monitoring system. We have included journal publications, conference publications, and 

information on related websites. The keywords for material collection are shown in Textbox 1. We 

conducted a keyword search in Web of Science, PubMed, and PubMed Central. 

Textbox 1. Keywords used for the literature search. 

 Sleep 

 Sleep quality 

 Sleep monitor 

 Sleep monitor system 

 Sleep monitor and sensor 

 Sleep monitor and smart patch 

 Sleep monitor and commercial products 

 Sleep monitor at home 

 Polysomnography 

 Electroencephalography 

 Rapid eye movement or light or deep sleep or wake 

 Long-term sleep monitor 

 Sleep phase classification 

 Sleep stage classification 

 Noncontact sleep monitor 

 Nonintrusive sleep monitor 

 Noninvasive sleep monitor 

 Sleep big data 

 Sleep data mining 

 Sleep deep learning 

 Sleep machine learning 

 Sleep artificial intelligence 

 

Results 
Owing to a large number of articles and abstracts retrieved, it was decided to include only articles 

published for the period 2013 to 2018 in Web of Science, PubMed, and PubMed Central. By counting the 

number of hits in the bibliographic database for each keyword, we can find search hotspots in this field 



and aspects that are still rarely covered. In this first search, we tried to find articles and abstracts, and 

websites with the keywords listed in Textbox 1. Keywords are used alone or combined using and, or 

operators. The article should report a clear description of the systems, the recipients or users requiring 

these systems, and issues related to sleep monitoring systems, including the parameters measured, 

wireless sensor network (WSN), user needs, and user acceptance. As this review does not constitute an 

exhaustive presentation of the scientific literature in the field of sleep monitoring systems, only a few 

representative sleep monitoring system research and development projects or products from academia 

or industry are presented. 

The number of hits in the sleep monitoring system research field between 2013 and 2018 is shown in 

Table 1. 

Table 1. Number of occurrences in the field of sleep monitoring system research over 5 years. 

Keywords Web of Science, n PubMed, n PubMed Central, n 

Sleep monitoring system 1416 1345 23,212 

Sleep stage 3955 4561 36,146 

Sleep phase 3542 2224 31,022 

Light sleep 3174 2204 30,367 

Deep sleep 1172 54,438 86,653 

REM 5224 3220 8044 

Sleep care 6760 13,154 51,882 

Sleep quality 15,517 11,616 48,324 

Wearable device 9001 3379 6232 

Assistive system 2735 663 4912 

Noncontact monitoring 1017 205 1929 

Nonintrusive monitoring 854 73 537 

Noninvasive monitoring 6507 9355 28,298 

Smart patch 561 56 1462 

Medicine skin patch 82 834 7232 

Portable device 9501 2760 13,910 

eHealth 2808 1633 3613 

mHealtha 11,712 20,583 70,836 

Homecare 508 404 1226 

Telecare 613 761 934 

Telemedicine 6378 10,211 7343 



Telemonitoring 921 617 1575 

Body sensor 12,356 2220 42,906 

Body sensor network 3368 271 17,487 

Wireless sensor network 37,771 1083 5239 

Wireless sensor network wearable 790 56 1528 

Body area network wearable 592 30 1982 

Personal area network 1975 4013 72,117 

Personal area network wearable 67 5 1389 

Sleep monitoring gold standard 131 277 4294 

PSGb 2036 2240 4219 

EEGc 31,027 29,396 36,069 

ECGd 18,358 26,588 41,139 

Sleep, data processing 1534 437 22,206 

Sleep, big data 131 69 5377 

Sleep data mining 0 0 4 

Sleep machine learning 277 187 2807 

Sleep artificial intelligence 27 202 1194 

User needs 53,375 2362 40,766 

User acceptance 7711 902 10,274 

User satisfaction 8892 1618 11,250 

amHealth: mobile health. 

bPSG: polysomnography. 

cEEG: electroencephalography. 

dECG: electrocardiography. 

 

Table 1 shows that the number of hits for sleep big data, sleep machine learning, sleep artificial 

intelligence, and sleep data mining is lower than the other keywords. It would appear that techniques 

such as big data, machine learning, artificial intelligence, and data mining have not been widely applied to 

the sleep monitoring research area, although they are now focused in other research areas. Therefore, the 

combination of these hotspot techniques and sleep monitoring may be a promising research direction 

and will attract more researchers in the future. To facilitate reading of the data in Table 1, a histogram is 

drawn, as shown in Figure 2. 



Discussion 
Through the observation and analysis of search results, we found that current and rapidly developing 

frontier hotspot techniques, such as large data sets, data mining, artificial intelligence, and machine 

learning, are not yet widely used in the field of sleep monitoring. However, due to the powerful 

performance and wealth of applications of these techniques, their application in the field of sleep 

monitoring is expected to be the future development trend and certainly presents great research value 

and market opportunities. 

Big data can be defined by 3 key concepts: volume, velocity, and variety. Volume refers to the amount of 

data generated and stored. In general, the larger the amount of data, the greater the statistical power for 

descriptive and predictive analysis. Applied to sleep monitoring systems, it could better describe sleep 

behavior and predict sleep-related disorders and health status. Velocity refers to the speed of data 

generation and processing. Big data are often available in real time. This makes it easier for people to get 

their sleep monitoring results in a timely manner, while helping subjects or medical staff to respond 

quickly to abnormalities and emergencies discovered during sleep monitoring. Finally, the term variety 

refers to different sources, types, and formats of data. Nowadays, more data types are being collected via 

sleep monitoring systems, including text, audio, image, and video data. Big data allow missing data to be 

completed through data fusion. This enables comprehensive sleep information to be obtained efficiently. 

In addition, big data can provide targeted information through the comprehensive and detailed collection 

of various relevant information, such as age, gender, BMI, place of residence, occupation, and so on. For 

example, certain age groups, a certain gender, people living in a certain location, people working in a 

certain profession, and people of a certain body type have a higher rate of poor sleep quality. On the basis 

of this, it is possible to organize more medical resources in certain areas, and at the same time, more 

attention in terms of sleep health can be given to some people who have a higher rate of poor sleep 

quality. This will improve the efficiency of the medical system.  

Artificial intelligence refers to technology that presents human intelligence through computer programs. 

Machine learning uses data or previous experience to automatically improve the performance of specific 

algorithms. Data mining is a computational process that uses artificial intelligence, machine learning, 

statistics, and databases to discover patterns in relatively large data sets. In general, machine learning is 

considered a subset of artificial intelligence and consists mainly of data mining. As a tedious and 

repetitive task, sleep monitoring is well suited to the adoption of these promising and powerful 

approaches. When applying these approaches, it is more convenient and timely to obtain a large amount 

and variety of sleep-related data through the continued development of big data technology. This allows 

these approaches to be used to train more powerful models and to progressively extract higher-level 

features from the raw data to create a smarter, more efficient, and more convenient sleep monitoring 

systems. 



Current Issues With Sleep Monitoring Systems 

User Needs, Perception, and Acceptance 
A good sleep monitoring system should take into account user needs, perception, and acceptance before 

it is designed. User needs for sleep monitoring systems are diverse. These could include obtaining 

accurate and complete information about sleep. These needs could be met by professional medical 

instruments such as PSG and EEG. In addition, the user needs could also obtain auxiliary reference 

information, that is, only a small amount of key information such as sleep duration, number of 

awakenings, proportion of different sleep stages, and even only a summary of the sleep score. These 

needs are typically met by various apps in consumer electronics and smartphones with sleep monitoring 

functions. Compared with professional medical devices, this type of commercial product takes better 

account of the user’s perception and is usually noninvasive, nonintrusive, or even contact free. The user's 

perception of the sleep monitoring system is closely related to the number of electrodes or sensors 

attached to the body, the position, and the method of attachment on the body. 

For the number of electrodes or sensors, the fewer the number, the better the user’s perception. For the 

position of the attachment, it is preferable to attach it to the distal limbs such as the wrist, fingers, ankle, 

instep, and toes rather than to the main body, face, and head. The method of attachment to the body may 

be by using adhesive tape or a belt, such as a chest belt. In general, adhesive bonding may give a better 

user perception than a belt because there is less contact area with the body and less restraint on the 

body. User acceptance of sleep monitoring systems depends on the satisfaction of the user's needs and 

perception. Usually the satisfaction of user needs and the satisfaction of user perception are 

contradictory. To meet user needs as much as possible, more complete and accurate human physiological 

information needs to be collected, which often means that more sensors need to be attached to more 

body positions, often worsening user perception. Therefore, the design of a good sleep monitoring system 

has to find a compromise between users’ needs and their perception to achieve a good user perception, 

which is usually related to ease of use while trying to meet user needs as much as possible. 

Effectiveness 
Although PSG is the gold standard for sleep monitoring, it is expensive, highly invasive, and complicated 

to perform. PSG monitoring is not easily accessible, especially in developing countries [37]. Owing to the 

many limitations of PSG, most people are only subject to PSG monitoring for one night. However, 

monitoring at night is not sufficient to determine the actual sleep status. To improve effectiveness and 

obtain appropriate follow-up, long-term, at-home monitoring is necessary. 

Guettari et al [38] proposed a system based on one thermal sensor is used over a long period of time to 

supervise changes in sleep quality and can be used at home and consulted remotely by sleep medicine 

experts. Changes in sleep quality derived from long-term monitoring are very useful for assessing sleep 



health. Using existing equipment daily for sleep monitoring is found to be an effective approach, such as 

sleep monitoring using our smartphone router. Liu et al [39] proposed monitoring vital signs of breathing 

and heart rate during sleep using a single Wi-Fi access point (such as a router) and a single Wi-Fi device 

(PC or smartphone) without any wearable or dedicated devices. Thus, the system has the potential to be 

widely deployed and to perform continuous long-term monitoring. Smartphone apps are considered a 

good choice for large-scale, low-cost, and long-term sleep monitoring, which will improve effectiveness 

and accuracy [21,40]. Sleep Hunter [41] is a mobile service that uses smartphones' built-in sensors. It is 

implemented on the Android platform and can detect the transitions between sleep stages for monitoring 

sleep quality and the intelligent wake-up call, which wakes users in light sleep. The ability to perform 

long-term monitoring is important for the effectiveness of a sleep monitoring system. Long-term 

monitoring is essential for reliable results and early detection of abnormal sleep changes. To do this, 

sleep monitoring systems should be as inexpensive, easy to use, and easily accessible as possible.  

Interoperability 
Sleep monitoring devices are useful in health care. The value of these devices will increase if sleep 

monitoring system software apps can seamlessly collect medical data and upload the data to a database. 

The ISO/IEEE11073 (X73) family of interoperability standards was originally designed for point-of-care 

clinical environments. The latest branch of X73, X73 for personal health devices (X73PHD), enables the 

development of interoperable personal health ecosystems and brings benefits to both technology 

producers (design cost reduction, experience sharing, and marketing facilities) and users (plug and play, 

accessibility, ease of integration, and prices) [42]. OpenICE is an open-source software project of the 

Medical Device Plug-and-Play Interoperability Program at Massachusetts General Hospital, leveraging 

much of the program’s research performed since 2004 to support 4 distinct user groups: use case 

demonstrations, clinical adoption, regulatory science, and commercial adoption [43]. Data sharing and 

interoperability are positive for users, researchers, physicians, and businesses. With the development 

and popularization of big data technology, improving interoperability is a hotspot in sleep monitoring 

system research and will be the trend for future development. 

Hardware and Software Considerations 
The main considerations for sleep monitoring system hardware focus on 3 aspects: cost, comfort, and 

convenience, which could be the determining factors for the acceptance of implementation. In terms of 

cost, the equipment should be affordable for most people. In addition, for devices that require frequent 

maintenance, such as the need for frequent replacement of specific components and the consumption of 

specific reagents or materials, their costs should be considered. For devices designed to use disposable 

batteries instead of rechargeable batteries, the energy consumption should be taken into account, as 

frequent battery replacement will significantly increase the cost of use. In terms of comfort, contactless 



systems have the greatest advantage, but for contact systems, the emphasis is on wireless, 

miniaturization, and weight reduction. The comfort aspect includes ease of implementation and 

maintenance convenience. In terms of the convenience of implementation, daily implementation does not 

have to be complex and time consuming. The main objective is to allow users to carry out the application 

themselves without the intervention of professional technicians. Generally, in terms of maintenance 

convenience, the longer the maintenance interval, the easier the operations are. 

The main considerations for sleep monitoring system software are two-fold: effectiveness and efficiency. 

First, the sleep monitoring software must be able to effectively process the data collected to obtain the 

most accurate monitoring results. In terms of efficiency, this includes temporal efficiency and energy 

efficiency. It is very important for real-time sleep monitoring system processing to consider temporal 

efficiency. The cost of the execution time must be short enough to meet the real-time requirement.  

For non–real-time sleep monitoring systems that process data after the end of monitoring, time efficiency 

is also of great importance. After sleep, users tend to be concerned about the results obtained. Waiting 

time will have an impact on the user experience, so the shorter the processing time, the better. Energy 

efficiency depends on 2 aspects: optimization of the algorithm and sleep or wake programming for the 

hardware. If the algorithm can be optimized well, it will significantly reduce the energy consumption for 

the execution of the algorithm. Furthermore, with reasonable sleep or wake programming of the 

hardware, unnecessary energy consumption can be avoided. 

Medical, Wellness, and Quality-of-Life Benefits 
Sleep quality is a crucial factor for human health and quality of life. There is growing recognition of the 

harmful effects of poor sleep quality and sleep disorders. Patients with sleep disorders are prone to 

chronic diseases such as obesity, diabetes, and hypertension. The use of sleep monitoring systems could 

reduce the incidence of sleep-related illnesses or illnesses could be predicted by sleep through long-term 

monitoring and trend analysis. McHill et al [44] demonstrated the relationship between obesity and sleep 

time. Lee et al [45] examined the impact of sleep quantity and sleep quality on blood glucose control in 

type 2 diabetes. Fuchs et al [46] showed that OSA is a clear risk factor for resistant hypertension. The 

application of sleep monitoring system can overcome infrequent clinical visits that may not detect 

transient events that predict dangerous future events. Early diagnosis through long-term trend analysis 

could prevent the potential severity of a disease. These analyses could provide an instant diagnosis of 

acute events, issue alerts to health care professionals, and reduce the time of intervention through 

telediagnosis and teletherapy. Some typical sleep disorders, such as sleep apnea, restless leg syndrome, 

and periodic limb movement disorders can be detected in time through sleep monitoring. Unfortunately, 

people with sleep disorders such as OSA tend to go undiagnosed [47] because they are usually not even 

aware that sleep apnea events have occurred. This lack of awareness of symptoms during sleep is a 



serious health problem for modern life [48]. The early signs of these disorders could be monitored and 

treated with mild medications [49]. 

Cost, Psychological, and Socioeconomic Barriers 
Wireless patches, wristbands, chest belts, headbands, or other wearable devices that connect a sleeper to 

formal or informal caregivers, a data center or call center, who can then notify medical services in the 

event of abnormal sleep, are affordable and reliable. This technology has been available for more than 15 

years, but despite its affordability [50], its adoption is minimal in almost all countries. Wearing 

permanent health care mobile devices and systems has psychological effects on patients. Significant 

barriers limit the widespread use of these systems due to the lack of studies on testing smart wearable 

systems by end users who provide feedback and preferences [51]. The high cost of current sleep 

monitoring system services limits their expansion. Wireless networks are another barrier to sleep 

monitoring system deployment. Until the end of 2019, the global internet penetration rate was only 

58.7% [52]. Consequently, access to services via internet is not always available. People affected by sleep 

disorders may have difficulties in finding adequate sleep monitoring devices and services to support 

them in monitoring the quality of their sleep. Economic and social issues also need to be addressed to 

ensure that the market for sleep monitoring systems is opened up. A sound analysis of the costs and 

benefits of sleep monitoring systems has not been conducted. Some studies focus solely on system 

technology and performance [40,53]. Sociotechnical design science needs to be taken into consideration 

to ensure that sleep health care meets the needs of society. Ultimately, Coiera [54] argued that it is the 

beliefs and values of our culture that shape what we will create and what we will dream about. A total of 

4 rules govern the design of health services: (1) technical systems have strong social consequences, (2) 

social systems have technical consequences, (3) we do not design technology; designing sociotechnical 

systems does not just mean designing technology, and (4) the design of sociotechnical systems must 

consider the way in which people and technologies interact. 

Privacy, Ethics, and Legal Barriers 
With the continuous development of sleep monitoring technology, the collection of user information via 

sleep monitoring system has become increasingly detailed and diverse. At the same time, it has gradually 

evolved from traditional overnight monitoring to long-term monitoring. This series of developments has 

improved the accuracy and reliability of sleep monitoring but has significantly increased the risk of 

leakage of user privacy information. To protect the privacy of users, the traditional method is to provide 

informed consent before receiving sleep monitoring, and data collection can only take place once the user 

has signed the informed consent. Consent is normally used to authorize a single study, and there are no 

specific regulations for data sharing in the research community. Given the high value and gradually 



popular trend of big data apps, privacy issues related to data sharing need to be addressed urgently by 

legislators. 

Impact of Sleep Monitoring Systems on Society 
Sleep disorders affect a significant part of the population [10-12]. The socioeconomic consequences can 

be dramatic. It includes drowsiness while driving, drowsiness in the workplace, and cardiovascular 

diseases [55]. Surantha et al [56] argued that sleep quality monitoring is one of the solutions to 

maintaining sleep quality and preventing chronic diseases, mental problems, or accidents caused by sleep 

disorders. 

On the basis of these considerations and issues, many types of sleep monitoring systems have been 

developed. The features of these are detailed in the following section. 

Sleep Monitoring System Features 

Conventional Sleep Monitoring Systems 

Polysomnography 

Polysomnography (PSG) is the gold standard in sleep assessment introduced in the 1960s as a tool for 

assessing sleep disorders. The subject equipped with a PSG is illustrated in Figure 3. A PSG records a 

minimum of 12 channels requiring a minimum of 22 wires attached to the patient. These channels vary in 

each laboratory and can be adapted to meet the physician’s requirements. There are a minimum of 3 

channels for the EEG, 1 or 2 measure airflow, 1 or 2 are for chin muscle tone, 1 or more for leg 

movements, 2 for eye movements (EOG), 1 or 2 for heart rate and rhythm, 1 for oxygen saturation, and 1 

for each waist belt, which measures movements of the chest wall and upper abdominal wall. Belt motion 

is usually measured using piezoelectric sensors or respiratory inductance plethysmography. Breathing 

amplitude is often measured with the temperature changes that occur with breathing, as measured by a 

thermistor or thermocouple placed in the path of the airflow (nose and mouth). Body movement was 

measured by using EMG. Oximetry is adopted to measure oxygen saturation levels in the blood by passing 

infrared light through the finger and measuring absorption patterns (made by the oxygen-carrying 

pigment, hemoglobin, in the blood). The body position sensor is used to distinguish between lying, 

standing, and lateral positions during sleep. 

Although PSG provides the most accurate and objective measurement of sleep, specialized equipment, an 

elaborate facility, and dedicated and experienced PSG technologists are required to perform and analyze 

recordings, which are costly and labor intensive. This technique is not practical for large-scale and long-

term sleep monitoring [57]. 



Figure 3 shows the standard configuration of a polysomnogram. In Figure 3, the patient lies in a bed with 

sensors attached to the body. In Figure 3, the polysomnogram recording shows the blood oxygen level, 

the respiratory event, and the REM sleep stage over time. 

Electroencephalography 

EEG is an electrophysiological monitoring method that records electrical activity of the brain using 

electrodes placed along the scalp to measure the voltage fluctuations resulting from ionic current in the 

neurons of the brain [58]. The EEG signal is the most important signal in the classification of sleep stages 

[59]. 

Different sleep stages are characterized by different brain activities that can be detected by EEG 

recordings. The EEG patterns of the different sleep stages are shown in Figure 4. Stage 1 is the transition 

stage between wakefulness and sleep. It usually lasts between 1 and 5 min. This stage consists of a low 

voltage EEG trace with well-defined alpha (Figure 5) and theta (Figure 5) activity, occasional vertex 

peaks, and slow eye movements. This stage, on average, represents 4% to 5% of total sleep and is free of 

sleep spindles (Figure 5) and K-complexes (Figure 5). Stage 2 is the baseline of sleep and is characterized 

by the occurrence of sleep spindles and K-complexes and a relatively low voltage, mixed frequency EEG 

background. In addition, high voltage delta waves may account for up to 20% of stage 2 epochs. Stage 3 is 

a period in which at least 20% and no more than 50% of sleep consists of EEG signals with a frequency 

less than or equal to 2 Hz and an amplitude greater than 75 µV (delta waves; Figure 5). Stage 4 is quite 

similar to stage 3, except that delta waves cover 50% or more of the recording. Stage 4 typically 

represents 12% to 15% of total sleep time. 

Stages 3 and 4 together are also called deep sleep or slow wave sleep (SWS), and it is the most restorative 

part of sleep. REM is the sleep stage in which dreams occur and makes up 20% to 25% of a normal night’s 

sleep. It is well known that the incidence of rapid eye movements under closed eyelids, motor atonia, and 

low voltage EEG patterns. During REM sleep, the brain activity is reversed from stage 4 to a pattern 

similar to that in stage 1. The characteristics of each sleep stage are summarized in Table 2. Although the 

EEG is accurate for determining sleep stages, the complexity and intrusiveness of the user make it 

difficult to achieve large-scale, long-term, and home sleep monitoring. 

Table 2. Characteristics of each stage of sleep. 

Sleep 

stages 

Proportion of 

sleep, % 

EEGa frequency 

(Hz) 

EEG amplitude 

(mv) 

EEG percentage (one screen) 

Awake <5 15 to 50 <50 α>50% 

N1 2 to 5 4 to 8 50 to 100 Theta wave >50% or alpha 



wave <50% 

N2 45 to 55 4 to 15 50 to 150 Delta wave <20%; K-complex 

>1.7% 

N3 3 to 8 2 to 4 100 to 150 Delta wave 20% to 50% 

N4 10 to 15 0.5 to 2 100 to 200 Delta wave >50% 

REMb 20 to 25 15 to 30 <50 EEG with mixed wave  

aEEG: electroencephalography. 

bREM: rapid eye movement. 

 

Electrocardiography 

Electrocardiography (ECG) is the process of recording the electrical activity of the heart over a period of 

time using electrodes placed on the skin. These electrodes detect tiny electrical changes on the skin that 

result from the electrophysiological pattern of depolarization and repolarization of the heart muscle with 

each heartbeat. In a conventional 12-lead ECG, 10 electrodes are placed on the patient’s limbs and on the 

surface of the chest. The correlation behavior in the heartbeat rate significantly differed for light sleep, 

deep sleep, and REM sleep. During deep sleep, the heartbeat rate is reduced, whereas a relative increase 

is observed in REM sleep [61]. Furthermore, spontaneous movements during sleep are preceded by an 

increase in heart rate [62]. These observations indicate a functional link between cardiac activities and 

sleep stages. As with PSG and EEG, the complexity, high equipment, and expertise requirements of the 

standard ECG are barriers to its use as a large-scale, long-term, home sleep monitoring method. 

Wireless Body Area Network 

Introduction 

The wireless body area network (WBAN) is a wireless sensor network that aims to monitor the vital signs 

and physiological information of the user by deploying sensors on or next to the human body. Parameters 

acquired from the WBAN can include brain waves, heart rate, body movements, body temperature, blood 

oxygen saturation level, sound, and so on, or environmental conditions such as temperature, brightness, 

noise level, and humidity. Owing to advances in sensor and communication technology, WBAN enables 

the exchange of information or commands over short distances between sensor components. Moreover, 

remote data transmission or control between the sensor components and the database or control center 

is also available based on WBAN. Such features make the WBAN a very suitable tool for performing 

continuous monitoring tasks without requiring too much manual intervention, which meets the 



requirements of sleep monitoring. As a result, many sleep monitoring systems have been developed by 

researchers and technicians based on the WBAN. 

WBAN technology is highly valued in the fields of medical sciences and human health care [63]. In the 

health care field, WBAN has established itself as a leading technology capable of providing real-time 

patient health monitoring in hospitals, asylums, and even at home [64]. WBAN allows the removal of 

cables and the delocalization of instrumentation and intelligence to the sensor nodes themselves, which 

is useful for establishing a nonintrusive, portable, continuous home sleep monitoring system [55]. 

Currently, WBAN-based sleep monitoring system has attracted increasing attention from researchers 

worldwide [65-67]. Similar to the evolution of the WBAN, the trends in sleep monitoring system are 

miniaturization, intelligence, and long-term monitoring capability. In this section, we have selected a few 

representative works on WBAN-based sleep monitoring systems in recent years, which we briefly 

present from a hardware and software perspective. 

Hardware Implementation 

A WBAN-based sleep monitoring system is a sensor network application in which the sensor is an 

essential piece of hardware. The choice of sensor determines the type of body parameters that will be 

acquired, and the position of the sensors directly influences the efficiency, quality of data acquisition, and 

user acceptance. For these reasons, we list the type and position of sensors used in several works, specify 

the possible description of sleep phases, and briefly analyze the advantages and drawbacks of each type 

of sensor, as presented in Multimedia Appendix 1 [89-124]. Table 3 lists the sensors used in each study. 

Table 3. Choice of sensor for different works related to sleep monitoring. 

Sources Accelerometer Pressure 

sensor 

Temperature 

sensor 

Thermopile sensor 

(Infrared) 

Microphone ECGa 

sensor 

Pulse 

sensor 

Kalkbrenner et al 

[91] 
✓b

 —c — — ✓ 
— — 

Guettari et al [38] — — — ✓ 
— — — 

Seba et al [77] ✓ 
— ✓ ✓ 

— — — 

Velicu et al [89] ✓ 
— — — — ✓ 

 

Suzuki et al [121] ✓ 
— ✓ 

— — ✓ ✓ 

Suzuki et al [97] ✓ 
— — — — — ✓ 

Saad et al [117] ✓ 
— ✓ 

— — — ✓ 

Sadek et al [123] — ✓ 
— — — — — 

Sadek et al [76] — ✓ 
— — — — — 



Lee et al [75] ✓ 
— — — — ✓ 

— 

Chan et al [122] ✓ 
— — — — ✓ 

— 

Samy et al [126] — ✓ 
— — — — — 

aECG: electrocardiography. 
bThe sensor is included. 
cThe sensor is not included. 

 

As shown in Multimedia Appendix 1 [89-124], the accelerometer is the most commonly used sensor in 

these works, usually placed on the wrist or chest or close to both positions. The microphone was adopted 

only once among these works. However, the microphone is a widely used sensor in sleep apnea 

monitoring [63,68,69]. As a sound recording sensor, the microphone is useful for detecting snoring or 

even abnormal breathing [70], which are also important physiological parameters related to the sleep 

state. Both the ECG sensor and the pulse sensor are used for heart rate monitoring, but due to different 

detection principles, their positions are different. Multimedia Appendix 1 [89-124] shows that in most 

cases, the ECG sensor is placed near the chest, whereas the pulse sensor is placed near the wrist. Thus, for 

user acceptance, the pulse sensor is better than the ECG sensor. 

Both the accelerometer and the thermopile sensor can be used for motion detection, but they have their 

own advantages. In terms of user acceptance, the accelerometer should generally be attached to the 

user’s body, but the thermopile sensor is a noncontact sensor, so the thermopile sensor is preferable. 

However, with regard to measurement accuracy, thermopile sensors are easily disturbed by the user’s 

coatings, such as duvets, which affect the measurements. In addition, thermopile sensors can only 

monitor effectively in a limited and fixed area. It is difficult for thermopile sensors to specifically measure 

the movement of certain parts of the body, such as measuring only leg movement to detect periodic leg 

movements during sleep. As a result, the accelerometer outperforms the thermopile sensor. In short, the 

type of sensor to be chosen depends on the application scenario and specific requirements. 

Software and Algorithm Processing 

Software or algorithms are used to process the data collected by the hardware. Table 4 presents the 

algorithms, software, and system results illustrated in several books or articles.  

 

 

 

 

 



Table 4. Implementation of software or algorithm in different works. 

Sources Involved algorithms or software Outputs 

Kalkbrenner 

et al [94] 

1. An FIRa bandpass filter with boundaries between 200 and 2000 Hz was used on 

the initial raw tracheal body sound signal acquired by microphone to obtain a 

pure breathing sound signal 

2. A bandpass filter with the boundaries between 5 and 30 Hz was applied on the 

initial raw tracheal body sound signal acquired by microphone to suppress 

breathing and most of the artifacts to get heart beat sound 

3. A LDb classifier was used on cardiorespiratory features and movement features 

for automated sleep staging 

1. Sleep and wake classification 

2. Wake, REM, and NREM classification 

3. Wake, REM, light sleep, and deep 

sleep classification 

Sadek et al 

[123] 

1. Wavelet decomposition was used on microbend fiber optic sensor data to 

achieve the measuring of heart rate 

2. Third-order polynomial fit and Savitzky-Golay smoothing was used on 

microbend fiber optic sensor data to achieve the measuring of respiratory rate 

3. Adaptive thresholding method was used on SD of the respiratory signal for 

apnea or nonapnea classification 

4. Chebyshev type-I bandpass filter was used on microbend fiber optic sensor 

data to extract BCGc and respiratory signals 

5. The MODWTd with the multiresolution analysis was used on microbend fiber 

optic sensor data to estimate heart rate 

Heart rate, respiratory, and apnea 

Guettari et al 

[38] 

1. SAXe method was used on thermal sensor data for segmentation processing of 

the thermal signal 

2. SOMf algorithm—Kohonen maps is used on features of thermal signal 

segmentation level, thermal signal segmentation duration and the variance of 

each thermal signal segmentation for achieving classification 

Classification of signal segments as 3 phases of 

sleep:  

1. Deep and paradoxical sleep (REM, 

N3) 

2. Agitated and light sleep (N1, N2)  

3. Awake phase (Wake) 

Seba et al [77] K-means algorithm was used on IButton skin temperature sensor data to achieve data 

clustering and classification  

Classification of the activities into 3 classes: 

awakening, calm sleep, and agitated sleep 

Saad et al 

[117] 

This sleep monitoring system involves Arduino IDEg software and Visual Studio 2015. 

1. Arduino IDE is programmed that consist of sensor algorithms to enable those 

sensors and to read the value that has been captured from room ambience and 

body condition. 

2. A window application was programed by Visual Studio to display the value of 

those parameters 

The relationship between the room ambience 

and quality of sleep 

Sadek et al 

[124] 

1. Multiresolution analysis of the maximal overlap discrete wavelet transform 

was used on piezoelectric sensor data to compute heart rate 

2. Bandpass Butterworth filter is used on microbend sensor data to retrieve BCG 

signal 

Heart rate of the person sitting in the massage 

chair 

Velicu et al 

[89] 

Kushida algorithm–derived equation was used on accelerometer data as the discriminator 

for wake or sleep, wake or REM, and light or deep by applying 3 different thresholds 

Discrimination for wake or sleep, wake or REM, 

and light or deep 

Sadek et al 

[76] 

1. For comparison, 5 classifiers are employed, that is, RFh, SVMi, multilayer, 

feedforward NNj, LDAk, and DTl 

2. Butterworth bandpass filter with frequency limits of 1 Hz and 12 Hz was used 

on microbend fiber optic sensor data to extract BCG component 

3. MATLAB based software was developed as a data labeling tool 

Classification of informative and 

noninformative signal for further heart rate 

detection work 

Kalkbrenner 

et al [91] 

1. The developed software for visualizing and storing received data 

2. Heart sound was extracted by applying a bandpass filter ranging from 15 Hz up 

to 80 Hz on microphone data 

3. Breath sound was extracted by applying a bandpass filter ranging from 100 Hz 

up to 1.5 kHz on microphone data 

Heartbeats, breathing, snoring, sleeping 

positions, and movements of the volunteer 



4. Stable results of accelerometer are provided by using the Madgwick-Filter 

Sadek et al 

[125] 

1. The BCG signal is decomposed using CEEMDAN (complete ensemble empirical 

mode decomposition with adaptive noise) 

2. Sensor data fusion method: time domain average 

3. The BCG signal is extracted using a Butterworth high-pass filter (fifth-order 

with a cutoff frequency of 0.2 Hz) followed by a Butterworth low-pass filter 

(10th order with a cutoff frequency of 30 Hz) on microbend fiber optic sensor 

data 

Heart rate 

Suzuki et al 

[121] 

1. Silmee framework provides basic functionality of Silmee system by locating 

Silmee sensor node, smartphone (or tablet or wearable terminal) and cloud 

server 

2. Silmee firmware provides vital signal processing capabilities such as noise 

reduction, important information extraction, or data compression 

3. Silmee API: This API provides basic information to realize wide-variety of 

smart healthcare MWsm and apps 

4. Silmee MWs are located in smartphone (or tablet or wearable terminal) or in 

health care cloud server. The MWs provide less medical expert API than Silmee 

API. For example, determination of REM and non-REM sleep, which is a popular 

term, is one of Silmee MW API, which is calculated by R-R intervals information 

included in the Silmee API 

ECG wave, pulse wave, body temperature and 

body movements were measured by the set 

and send to a smartphone using a Bluetooth 

wireless connection 

Suzuki et al 

[97] 

1. The Cole algorithm for wake and sleep identification from the amount of 

activity data  

2. Fast Fourier transformation (FFT) is executed for the even-interval pulse-to-

pulse intervals to get the frequency spectrum 

3. The k-means clustering method is adopted to classify sleep stages 

Wristwatch-shaped physiological sensor that 

monitors user’s wrist motion and pulse wave 

interval 

Lee et al [75] 1. To capture the respiratory signal, first-order derivation is used to compensate 

for the drifting phenomenon of pressure sensor 

2. A low-pass filter is applied to eliminate short-term fluctuations in respiration 

signals 

3. Sum all the pixels in the lower half of the pressure image and mark a leg 

movement when a significant drop or increase in pressure is detected 

4. A simple thresholding technique for movement reporting 

Classification of sleep stages: 

1. Wake  

2. NREMn 

3. REMo 

Beattie et al 

[74] 

The Scikit library used to explore different types of classifiers: LD classifiers, quadratic 

discriminant classifiers, RF, and SVM approaches, and the LD classifier achieved the best 

performance 

Classification of sleep stages: 

1. Wake 

2. Light (N1 or N2) sleep 

3. Deep (N3) sleep 

4. REM 

aFIR: Finite impulse response. 
bLD: linear discriminant. 
cBCG: ballistocardiography. 
dMODWT: maximal overlap discrete wavelet transform. 
eSAX: symbolic aggregate approximation. 
fSOM: self-organizing map. 
gIDE: integrated development environment. 
hRF: random forest. 
iSVM: support vector machine. 
jNN: neural network. 
kLDA: linear discriminant analysis. 
lDT: decision tree. 
mMW: middleware. 
nNREM: nonrapid eye movement. 
oREM: rapid eye movement. 

 

Data or signal processing algorithms usually include spectral analysis, wavelet transformation, empirical 

mode decomposition (EMD), and various varieties of filters. Many sleep-related physiological signals, 



such as EEG and ECG, are nonstationary. A wavelet analysis is very useful for processing nonstationary 

signals, which is why it has been adopted by many researchers specializing in sleep monitoring. EMD, 

proposed by Huang et al [71], is usually used to extract breathing and heartbeat signals from measured 

data. Unlike wavelet-based decomposition methods, this method is data-driven and does not require a 

parent wavelet to be defined beforehand. With this technique, any complicated signal can be decomposed 

into a defined number of high- and low-frequency components, called intrinsic mode functions. This 

technique is suitable for the analysis of nonlinear and nonstationary biosignals [72] and can extract local 

temporal structures such as heartbeats superimposed on respiration signals [73]. In sleep monitoring, 

several types of biosignals of different frequencies are acquired simultaneously. Therefore, filters are 

effective and simple tools for signal discrimination that are widely adopted in this field. 

The classification algorithm is usually used for the classification of sleep stages. Sleep stage classification 

is an important and common output of sleep monitoring system. Although sleep stages include stages 1, 

2, 3, and 4 and stage REM according to the AASM [18], most research classifies sleep stages in a simpler 

way as wake, light sleep (stages 1 and 2), deep sleep (stages 3 and 4), REM [74] or wake, NREM (stages 1, 

2, 3, and 4), REM [75], or some other similar way. This simplification of sleep stages involves balancing 

the difficulty of the task with the application requirements. Commonly used classifiers include random 

forest (RF), support vector machine (SVM), multilayer, feedforward neural network (NN), linear 

discriminant analysis (LDA), decision tree (DT), and Bayes. Some papers compare the performance of 

several classifiers in their work to find the best one [74,76]. 

Research Prototypes 

Noncontact Methods 

Seba et al [77] discussed the development of a new approach to sleep analysis. This system, based on 

temperature monitoring (patient and ambient), aims to be integrated into the telemedicine platform 

developed in the framework of the Smart-EEG project by the SYEL—SYstèmes ELectroniques team. The 

proposed method is based on the thermal signature to classify the activity into 3 classes: awakening, calm 

sleep, and agitated sleep by k-means clustering. A thermopile sensor (TMP007) was placed above the bed 

at a distance close to 2 m to measure the upper Bed+Patient temperature. A thermal camera giving 

images in medical format but also information on the target temperature according to a spatial 

distribution is used to label the different events related to changes in the patient's posture in the bed by 

visual analysis of an expert. An inertial unit is used to obtain the wrist acceleration in 3 axes to compare 

the responses of the thermopile sensor. The system measured the wrist, distal, and proximal skin 

temperatures using IButtons [78]. The day and night alternation corresponds, on the one hand, to the 

alternation between wakefulness and sleep and, on the other hand, to the alternation between high and 



low temperature. During sleep, the body temperature decreases whereas it increases during the day. Skin 

temperature, unlike the body temperature, increases during sleeping and decreases after awakening. The 

work in [79] examined possible mechanisleep monitoring system linking rhythms in sleep and core body 

and skin temperature, focusing on the causal effects of changes in core and skin temperature on sleep 

regulation. Several studies refer to the links between body temperature and sleep [78,80]. This work gave 

a figure of an example of classification for sleep base on thermal data. 

Guettari et al [38] presented the design and first evaluation of a new monitoring system based on 

contactless sensors to estimate sleep quality. A passive thermopile sensor fixed on the wall produces 

thermal signals to detect human presence in the bed and then to estimate the quality of sleep. The 

Symbolic Aggregate Approximation (SAX) method has been implemented [81], which uses Gaussian 

window in the thermal signal segmentation processing. Each segment is generated by the SAX method 

based on a segmentation of the midvariance and then by identifying its sleep phase. The system extracted 

3 features: the duration of the thermal data segment, the variance of the thermal segment of each 

segment, and the level of each segment. The Kohonen self-organized map (SOM) [82] was used to classify 

the signal segments into 3 sleep phases: deep or paradoxal sleep (R, N3), agitated or light sleep (N1, N2), 

and awake phase (W). It synchronized the thermal signal with the sleep stage labels based on the 

physiological parameters measured by the PSG with a hypnogram being established manually by the 

physicians. This study involved 13 patients, 11 people for learning the SOM model, and 2 other patients 

for evaluation of the learned SOM model. The evaluation results showed 87% good classifications. 

Gu et al [41] presented Sleep Hunter, a mobile service that detects the transition between sleep stages for 

monitoring sleep quality and intelligent wakefulness. The smartphone was placed next to the 

participant’s pillow. Using sensors integrated in smartphones, Sleep Hunter integrates body movements, 

acoustic events, environmental lighting conditions, sleep duration, and personal factors using a statistical 

model: linear-chain conditional random field (CRF) [83] for sleep stage detection. It argued that, 

compared with the hidden Markov model [84], CRFs are more relevant for sequences that have long 

interdependencies and may therefore perform better in this application. On the basis of the duration of 

each sleep stage, Sleep Hunter also provides a report on sleep quality and a smart call service for users. In 

this work [41], commercial product Zeo [85] was adopted as the reference device. One study [86] 

indicated that the quality of sleep is actually determined by the distribution of the different stages of 

sleep rather than the length of sleep during the night. This work distinguished sleep stages between 

wakefulness, light sleep, deep sleep, and REM. The sleep quality score is then calculated based on the 

duration of each sleep stage. The detection accuracy of the Sleep Hunter proposed in this work [41] was 

64.55%. 



Krishna et al [87] proposed SleepSensei, an automated sleep quality monitor that estimates the sleep 

duration for the user. It uses (1) the built-in web camera and microphone of a personal computer 

connected to a power source, and custom software to collect environmental features and (2) the 

accelerometer sensor of a smartphone to detect body movements. Smartphones are placed close to the 

user (next to the pillow). In this system, the user can be in 1 of 2 sleep states: deep sleep or light sleep. The 

user's sleep state (sound or light) is determined solely on the basis of the variance of the user's body 

movements during sleep. Environmental features such as light intensity, ambient noise, temperature, and 

humidity have been entered by using custom software. 

Temperature, ambient sound (noise and music), and light conditions have been found to be strong 

indicators of the user’s environment that clearly affect sleep [88]. The system proposed a regression 

model consisting of linear regression and SVM regression. The regression model estimates the share of 

each time slot (30-min window) that contributes to the completion of a user’s sleep quota (the total 

duration of sleep a user needs to obtain satisfactory sleep). The ground truth of this system comes from 

the data provided by users on sleep quality by answering the question: was the sleep fulfilling? It uses 

SVM and naive Bayes models as classifiers. By comparing the results of each classifier with 2 and 4 times 

cross-validation, the SVM model with 2 times cross validations has the best results and has an average 

accuracy of 79.84%. 

Contact Methods 

Distributed Sensor System on the Body 
Velicu et al [89] proposed a system based on an accelerometer and an ECG sensor for the classification of 

sleep phases (wakefulness, light sleep, deep sleep, and REM). The accelerometer was embedded into a 

wristband, but the position of the ECG sensor was not mentioned. It described the classification logic: (1) 

body movements become less intense and less frequent as we enter the deeper phases of sleep and (2) 

HR becomes more stable as sleep deepens. The Kushida algorithm–derived equation [90] was adopted in 

this system as a discriminator between wake and sleep using accelerometer data collected every minute, 

with a 9-min sliding time window, showing 69% agreement with the EEG sensor result. This work shows 

a part of the classification results for an experiment lasting 3 hour and 43 min. However, the results have 

not been validated against PSG or any other reliable standard.  

Kalkbrenner et al [91] presented the first step in the development of a sleep monitoring system. It 

includes the capabilities of capturing heartbeats, breathing, snoring, sleeping positions, and movements 

of 2 volunteers. In this system, a microphone was set up at the suprasternal notch to record breathing 

sounds and heart sounds. The heart signal is extracted by applying a bandpass filter from 15 Hz to 80 Hz. 

Nakano [92] and Yadollahi [93] showed that placing a stethoscope such as a microphone in the 



suprasternal notch at night can detect sleep apnea. At the same time, an MPU6000 inertial measurement 

unit embedded in an abdominal belt worn by the patient determines the sleep position and movements. 

The data are transmitted wirelessly to the laptop via Bluetooth and processed, visualized, and stored 

using developed software. The validation of the proposed system by comparison with the gold standard 

was published in [94]. A total of 60 adult subjects were subjected to overnight diagnosis, and a PSG 

screening was included for validation of the proposed system. A total of 30 dimensions of features were 

extracted from data on breath, heartbeat, and movement. A linear discriminant (LD) classifier was used 

for automated sleep staging. The classifier achieved 86.9% accuracy and a kappa of 0.69 for sleep or wake 

classification, 76.3% accuracy and a kappa of 0.42 for Wake or REM or NREM classification, and 56.5% 

accuracy and a kappa of 0.36 for wake or REM or light sleep or deep sleep classification. 

Lee et al [95] proposed smart patches and wearable bands (W-band) for recording biosignals during 

sleep. The system consists of 15 smart patches attached to the user's face to monitor multiple biosignals 

(EEG, ECG, EMG, and EOG). A total of 14 biosignal sensing (SN) patches to monitor biosignals, a network 

controller (NC) patch placed behind the ear to manage the whole system and used as a reference 

electrode for ECG, EEG, and EOG signals. All electrodes are implemented on a multilayered fabric patch 

based on the Planar Fashionable Circuit Board technology. The biosignals recorded by the SN patches 

were collected in the NC patch with an internal 20 kb SRAM via the W-band. When the memory is full, the 

recorded data are transmitted to an external device via an inductively coupled interface. The program 

displaying the data runs on an external PC so that the user can check the monitoring result after waking 

up. The performance of biosignal recording by this system has not been compared with a gold standard.  

Stand-Alone System With Several Sensors 
Shambroom et al [96] evaluated a wireless system for automatic collection and scoring of human sleep. 

This system uses dry silver-coated fabric sensors in the headband to collect electrophysiological signals 

from the forehead, which include contributions from the EEG and eye and frontal muscle movements. The 

resulting signal is transmitted to a base station using an ultra–low-power wireless protocol at 2.4 GHz. 

The system was compared with the PSG data scored by 2 technicians according to the R&K criteria. A 

reduced set of sleep stage classifications was adopted, including awake, REM, light sleep (combined 

stages N1 and N2), and deep sleep (combined Stages N3 and N4) [17]. A total of 26 healthy adults were 

subjected to simultaneous sleep measurements using this system and the PSG. The agreement was 62% 

and 56%, respectively, with regard to PSG1 (PSG recording scored by technician 1) and PSG2 (PSG 

recording scored by technician 2). The mean (SD) entire night sleep stage agreement for the 26 subjects 

was 75.9% (7.0%) for this system versus PSG1 (PSG recording scored by technician 1), 74.7% (8.5%) for 

this system versus PSG2 (PSG recording scored by technician 2), and 81.2% (7.4%) for this system versus 

PSGC (PSG recording scored consistently by 2 technicians). 



Suzuki et al [97] described a wristwatch-shaped wearable sleep monitoring system for home use. The 

sensor incorporates a photoelectric pulse wave sensor and a 3-axis accelerometer to measure pulse 

waves and accelerations on a user’s wrist and stores the computed pulse intervals (PPIs) and amount of 

activity in a flash memory (4 MB). It uses the Cole algorithm to identify wake or sleep from the amount of 

activity data [98]. The system compared the estimation result with the PSG results. Fast Fourier 

transform (FFT) is performed to obtain the heart rate spectrum. In the frequency domain, the integral 

value of the power from 0.04 Hz to 0.15 Hz is called LF (low frequency), which shows both sympathetic 

and parasympathetic nervous activities. The integral value of the power from 0.15 Hz to 0.4 Hz is called 

HF (high frequency), which shows parasympathetic nervous activity. The balance between sympathetic 

and parasympathetic nervous activity is related to sleep stages. According to the study by Baharav et al 

[99], there is a decrease in LF during sleep, with minimal values during non-REM slow-wave sleep, that is, 

deep sleep, and high levels similar to those of wakefulness during REM. 

The HF increased with the onset of sleep, reaching maximal values during slow-wave sleep, and behaved 

as a mirror image of LF, as shown in Figure 6. The correlation between HF, LF of PPI, and sleep stages is 

summarized in Table 5. 

Table 5. Correlation between high frequency and low frequency from pulse-to-pulse intervals and sleep 

stages. 

Frequency bands Sleep onset Slow wave sleep Wakefulness 

HFa Increase Maximal Low level 

LFb Decrease Minimal high level 

aHF: high frequency. 

bLF: low frequency. 

 

The sympathetic predominance that characterizes wakefulness decreases during non-REM sleep, is 

minimal during slow wave sleep, and approaches average levels of wakefulness during REM sleep. 

Autonomic balance shifts to parasympathetic predominance during slow-wave sleep. To classify sleep 

stages from the LF and HF data sets, the k-means clustering method is adopted. It defines the coincidence 

ratio as a moving average sleep stage correlation coefficient (20-min window) between the stages 

estimated by this method and those estimated by the PSG. A mean coincidence ratio of 0.735 (SD 0.052) 

was obtained for the classification of the SWS, REM, non-REM, and wake stages. 

Beattie et al [74] estimated sleep stages using a wrist-worn device that measured movements using a 3D 

accelerometer and an optical pulse photoplethysmograph, which provided data on movement, breathing, 

and heart rate variability. Overnight recordings were obtained from 60 adult participants wearing these 

devices on their left and right wrists, simultaneously with a type III home sleep testing device (Embletta 



MPR) that included EEG channels for sleep staging. The reference Embletta recordings were scored for 

sleep stages using the AASM guidelines [100], which labeled sleep stages as awake, light (N1 or N2), deep 

(N3), and REM over 30 second epoch level. Motion-based features include the number of activities over 

30 second, the magnitude of rotation (using the 3D accelerometer to combine the maximum−minimum of 

each axis), the time from the last significant movement, and the time to the next significant movement. It 

extracted heart rate features such as HF power (0.15-0.4 Hz), LF power (0.04-0.15 Hz), very low 

frequency (VLF) power (0.01-0.04 Hz), root mean square of the successive differences, pNN50 

(proportion of the number of pairs of successive RR intervals (the interval between R waves of ECG, that 

is, the time between heart beats) that differ by more than 50 msec divided by the total number of RR 

intervals), delta RR (intervals between beats), and mean heart rate. 

The spectral features of the estimated breathing rate on a 1 s basis such as HF power (0.15-0.4 Hz), LF 

power (0.04-0.15 Hz), and VLF power (0.015-0.04 Hz) were formed. This system used the Scikit library to 

explore different types of classifiers: LD classifiers, quadratic discriminant classifiers, RFs, and SVM 

approaches. The LD mode seems to work slightly better than the others, so it was chosen as the final 

model. On the basis of a single validation, the overall accuracy per epoch of the automated algorithm was 

69%, with a Cohen kappa of 0.52 (SD 0.14). 

Only One Sensor Attached to One Site of Body 
Tataraidze et al [101] presented an algorithm for detecting wakefulness, REM, and non-REM sleep based 

on a set of 33 features extracted from the respiratory inductive plethysmography signal captured by the 

PSG thoracic belt. The features extracted include the logarithm of power in different frequency ranges, 

time and frequency domain features, motion, breathing, and volume-based features. A bagging classifier 

was used in the experiments and a heuristic algorithm was applied to increase the performance of the 

classification. Compared with the PSG gold standard, an accuracy of 80.38 (SD 8.32%) and a Cohen kappa 

of 0.65 (SD 0.13) were obtained with the classifier. 

Commercial Products 
Given the various shortcomings of PSG, such as its invasiveness, high cost, and one-night monitoring, the 

industry has shown great enthusiasm for the development of commercial sleep monitoring products with 

the advantages of being portable, noninvasive, and suitable for long-term monitoring. Commercial 

products used for home sleep monitoring are currently available for direct purchases on the market. 

Some of the most popular and representative products are briefly introduced below. 

Zeo [85] is a headband based on a true lightweight EEG brainwave pod monitor. It can provide a 

classification of sleep stages into awake, light (stages 1 and 2 combined), deep (stages 3 and 4 combined), 

and REM sleep. The Companion for Zeo smartphone app was developed for data collection. A validation 



study has been published [96]. Compared with the PSG, the epoch-to-epoch concordance of light, deep, 

and REM sleep is greater than 74%. 

Up (Jawbone) [102] is a soft rubber wristband. In terms of sleep monitoring, it provides total sleep 

duration, time to fall asleep, and the number of nighttime awakenings. It also interacts with smartphone 

apps. To date, there have been no validation studies. 

Fitbit [103] is also a wristband product. Its sleep monitoring algorithm classifies night sleep into awake, 

light sleep, deep sleep, and REM based on wrist movements and heart rate data. It also provides total sleep 

duration, sleep starting time, and end time. The publication [104] evaluates the performance of the Fitbit 

against the PSG. It showed a sensitivity of 0.96 (sleep detection accuracy), a specificity of 0.61 

(wakefulness detection accuracy), an accuracy of 0.81 for the detection of N1+N2 sleep (light sleep), an 

accuracy of 0.49 for the detection of N3 sleep (deep sleep), and an accuracy of 0.74 for the detection of 

REM sleep. 

RestOn [105] is a thin belt. It uses a single click of the magnetic cover to fix the device on the bedsheet; 

the position corresponds to the user’s chest. RestOn can measure heart rate and respiratory rate in real 

time. Medical-grade sensors that are 2-foot long are embedded into a thin belt less than a length of 2 mm. 

The device can provide sleep time, actual sleep time, and sleep stages including awake, light, medium, and 

deep sleep. Its smart alarm can wake the user during the lightest sleep time. 

The Sleep Dot [106] measures sleep cycles and body movements by simply attaching it to the upper 

corner of the pillow. It can play music to help the user fall asleep. Soothing sounds and music are adopted 

as alarm tones to wake the user more naturally during the lightest sleep. This product works with a 

smartphone app and generates a sleep report that can be shared with family and friends. 

Withings Aura [107] is a bedside device with a white cloth sleep sensor placed under the mattress, 

aligned in position with the user’s chest. It is recommended that the 11-inch high bedside device be 

placed at least 1 m from the bed. The bedside device measures environmental parameters such as 

temperature, light, and noise. The white cloth sleep sensor indicates the time to sleep, number of 

awakenings during the night, duration of light sleep or deep sleep or REM sleep, and percentage of sleep 

goal achieved. 

Our Proposition of Sleep Monitoring System 
The LAAS-CNRS (Laboratory for Analysis and Architecture of Systems-French National Centre for 

Scientific Research) has been developing systems for monitoring people since 1990 [108,109]. This 

mainly includes research on health monitoring for elderly and frail people at home based on a wireless 

local body area network (WLBAN) [110-112]. On the basis of the techniques and experiences of studying 

the WLBAN monitoring system for many years, our laboratory has started research on sleep monitoring. 

The objective is to perform continuous and long-term sleep monitoring at home, focusing on the variance 



of sleep conditions night by night and monitoring indicator deviations after each night. The first week's 

sleep is considered the reference nights and is used for comparison of the following nights. When an 

abnormal condition is detected, the user is warned via a specific visual interface (graph or other) on a 

computer, tablet, or smartphone. 

Many indicators may be relevant for monitoring sleep conditions, such as the following: 

1. Distribution of sleep stages during the night. 

2. Number of wrist activities. 

3. Amount of leg activity during sleep (this is also the main indicator of Restless Legs Syndrome 

[RLS]). 

4. Body turnover time. 

5. Onset of snoring. If so, the duration and number of apneas. 

The contribution here is to propose the following indexes: 

 Change in apnea behavior. 

 Sleep phase deviation. 

 Leg movement. 

 Heart rate and blood oxygen saturation. 

 Finger, big toe, and chest temperature. 

  Temperature and brightness of the environment. 

Thresholds on these indexes could trigger alerts to the doctor. It is also possible to correlate these indices 

to provide an overall index of sleep quality. 

The current research at the LAAS-CNRS on sleep monitoring is shown in Figure 7. The developed system 

consists of a local network integrating sensors embedded on the person, and these sensors communicate 

using Bluetooth to a data concentrator (Master). The master communicates via an Android app with the 

person itself. The master transmits the data via the LoRa technology to a gateway that takes care of 

sending the data to a database that can be remotely consulted by the physician. 

Using this system, we collect a hypnogram based on wrist movement data using the clustering algorithm 

and to monitor the restless leg syndrome using leg movement data and to detect symptoms such as 

snoring using sound data. 

We proposed threshold-based and k-means clustering based methods to process acceleration data from 

the nondominant wrist. The threshold-based method uses 3 thresholds to achieve falling asleep or 

waking up detection and 4-sleep stages classification (awake, light sleep, deep sleep, and REM). The k-

means clustering-based method performs 5-iteration of k-means clustering for epochs between falling 

asleep and waking up to also achieve a 4-sleep stage classification (awake, light sleep, deep sleep and 

REM). The epochs between falling asleep and waking up are determined by falling asleep or waking up 



detection from the threshold-based method. Furthermore, a method for calculating sleep scores for a 

night's sleep is also proposed in our system. The calculation of the sleep score was based on the sleep 

duration and the duration of each sleep stage. With tests carried out on 5 volunteers, all the methods we 

propose give promising results. The related article will be submitted soon.  

Conclusions 
The objective of this paper is to provide an overview of the current state and future prospects of research 

and development of sleep monitoring system s. Observation and sleep monitoring is a very important 

medical issue for the possible consequences on life behavior. The gold standard used is the PSG 

technique, which is an intrusive method that can only be used in a clinical setting. In addition, several 

studies have focused on the development of methods and strategies for lighter and longitudinal 

monitoring. sleep monitoring systems have been proposed but they raise questions about the acceptance 

of the wearing of these devices by users, socioeconomic aspects, privacy, and impact on society, but also 

about the performance of the proposed algorithmic processing. This document deals with these issues 

and the different solutions reported in the literature and available on the market. The sleep monitoring 

system features a broad and heterogeneous range of devices, WSN standards, apps, and involve the 

efforts of numerous researchers, developers, and users. Owing to its interdisciplinary nature, a number of 

apps related to sleep monitoring integrate biomedical engineering and medical informatics. Other 

knowledge in the fields of medicine, social sciences, psychology, economics, ethics, and law must be taken 

into account and integrated into the development and deployment of wearable health care systems. Most 

systems are still in their prototype stages, and developers have not yet faced deployment issues. 

Information technology and electronics are mature fields and can provide viable, disposable, and 

affordable wearable systems. Systematic evaluations of the effectiveness and efficiency of sleep 

monitoring system are considered crucial to ensure potential user acceptance. Sleep monitoring is 

important for individuals and clinicians. Beyond the interest in healthy lifestyle and clinical diagnosis, 

sleep monitoring may also be important in reducing fatigue-related workplace injuries, particularly for 

shift workers. However, this type of monitoring will only be practical if systems with proven reliability 

and validity are in place. Consumers and patients will have the opportunity to take part in the revolution 

in personal health data. Increasingly powerful and convenient wearable technologies will be able to 

provide rich health information, but it is not clear that this will translate into workable health decisions. 

The democratization of devices previously reserved for doctors should improve access to health data and 

overall awareness of personal health. It is important that such information is properly communicated and 

understood by consumers. More complex integrated sensor technologies, detection, and analytical 

algorithms are likely to be developed in the coming years. Other wearable diagnostic tools for consumers, 

or even implantable devices and nanotechnologies, are currently under development. Products exist that 



can integrate sensors into clothing. Ideally, these technologies will empower consumers and patients and 

promote preventive medicine. The most important challenges are the development of nonintrusive 

hardware implementation, smart signal processing, data analysis and interpretation, communication 

standards interoperability, electronic component efficiency, energy self-sufficiency, and long-term 

monitoring. 
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