
HAL Id: hal-02907062
https://laas.hal.science/hal-02907062

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint and Satisfiability Reasoning for Graph
Coloring

Emmanuel Hébrard, George Katsirelos

To cite this version:
Emmanuel Hébrard, George Katsirelos. Constraint and Satisfiability Reasoning for Graph Coloring.
Journal of Artificial Intelligence Research, 2020, 69, �10.1613/jair.1.11313�. �hal-02907062�

https://laas.hal.science/hal-02907062
https://hal.archives-ouvertes.fr

Journal of Artificial Intelligence Research 68 (2020) ?-? Submitted 01/2019; published 07/2020

Constraint and Satisfiability Reasoning for Graph Coloring

Emmanuel Hebrard hebrard@laas.fr
LAAS-CNRS, ANITI, Université de Toulouse, CNRS, France

George Katsirelos gkatsi@gmail.com

MIA Paris, INRAE, AgroParisTech and Université Fédérale de Toulouse, ANITI, France

Abstract

Graph coloring is an important problem in combinatorial optimization and a major
component of numerous allocation and scheduling problems.

In this paper we introduce a hybrid CP/SAT approach to graph coloring based on
the addition-contraction recurrence of Zykov. Decisions correspond to either adding an
edge between two non-adjacent vertices or contracting these two vertices, hence enforcing
inequality or equality, respectively. This scheme yields a symmetry-free tree and makes
learnt clauses stronger by not committing to a particular color.

We introduce a new lower bound for this problem based on Mycielskian graphs; a
method to produce a clausal explanation of this bound for use in a CDCL algorithm; a
branching heuristic emulating Brélaz’ heuristic on the Zykov tree; and dedicated pruning
techniques relying on marginal costs with respect to the bound and on reasoning about
transitivity when unit propagating learnt clauses.

The combination of these techniques in both a branch-and-bound and in a bottom-up
search outperforms other SAT-based approaches and Dsatur on standard benchmarks both
for finding upper bounds and for proving lower bounds.

1. Introduction

Many applications require to partition items into a minimum number of subsets of compat-
ible elements. For instance, when allocating frequencies, we may want to partition devices
so that the physical distance between any two devices in a subset is large enough to share
a frequency without interference (Aardal et al., 2007; Park & Lee, 1996). Alternatively, in
compilers, we may want to partition frequently-accessed variables into registers so that two
variables with overlapping live ranges are not given the same register (Chaitin et al., 1981).

Many such combinatorial problems can be seen as a Graph Coloring Problem. The
compatibility structure is represented by a graph G = (V,E) where V (the vertices) is a
set of items and E (the edges) is a binary relation on V representing incompatibility. This
problem is NP-hard, and in fact deciding if the chromatic number of a graph is lower than
a given constant is one of Karp’s 21 NP-complete problems (Karp, 1972).

Although local search and meta heuristics can be extremely efficient for that problem,
there are cases where proving optimality is important. For instance, in 2016, the U.S.
Federal Communications Commission (FCC) conducted a reverse auction to acquire radio
spectrum from TV broadcasters. At each iteration of the auction, the quote given by
the FCC decrease and some potential sellers may opt out. The auction ends when it is
not possible to allocate frequency bands (i.e., colors) to the broadcasters who opted out
of the auctions (i.e., vertices) so that two broadcasters that can potentially interfere (i.e.,

c©2020 AI Access Foundation. All rights reserved.

Hebrard & Katsirelos

adjacent) are allocated distinct frequency bands. This problem was solved by Newman et al.
(2017) using a portfolio of mainly SAT-based solvers. Indeed, having a guarantee that the
spectrum was acquired at the best price for the taxpayer was extremely important given
the magnitude of the transaction.

Contributions. In this work1, we propose a novel approach to solving the vertex coloring
problem. Our method is a hybrid of Conflict-Driven Clause Learning (Marques-Silva &
Sakallah, 1999; Moskewicz et al., 2001) with techniques tailored to graph coloring. We use
the idea of integrating constraint programming into clause learning satisfiability solvers by
having each propagator label each pruning or failure by a clausal explanation (Katsirelos &
Bacchus, 2005; Ohrimenko et al., 2007).

One of the main characteristics of the method we propose is to use a branching scheme
proposed by Zykov (1949) whereby a choice point consists in either contracting two non-
adjacent vertices, or adding an edge between them. This is not the first modern algorithm
to use this technique. The branch and price algorithm proposed by Mehrotra and Trick
(1995) branched using Zykov recurrence. Schaafsma et al. (2009) introduced edge variables,
i.e. variables whose truth value indicates whether two vertices get the same color, in order
to learn more general conflict clauses than the standard color-based SAT model permits.
However, whereas the former method is based on an implicit exponential set of variables
for computing a lower bound and the latter still requires standard variables standing for
color assignment in order to branch and propagate, the method we propose relies entirely
on edge variables.

There are two significant advantages to using Zykov recurrence. Firstly, color sym-
metries are completely eliminated, at no significant computational cost. Secondly, when
exploring a branch of the search tree, the density of the graph increases (through vertex
contractions and edge additions) and computing a maximal clique of this graph gives an
effective lower bound on the chromatic number.

Moreover, the use of a hybrid with constraint programming helps alleviate the potential
drawbacks of this search scheme. Most importantly, edge variables can be made consistent
at a reasonable computational cost via a dedicated propagator, whereas a clausal decom-
position would be too costly and propagation using a partial coloring would be weaker.
Moreover, it is possible to emulate Brélaz’ Dsatur heuristic without maintaining a partial
coloring, and experimental evaluation of the different approaches show that this is effective.

The method we propose also uses a novel lower bound, stronger than cliques, based on
finding a generalization of Mycielskian graphs (Mycielski, 1955) embedded in the current
graph. Mycielskian graphs can have large chromatic number without necessarily containing
large cliques. For example, the graphs M(k) described by Mycielski have chromatic number
k and are triangle-free, i.e., they contain no clique of size 3. Therefore, the Mycielskian
bound can potentially be stronger than the clique number. Since the two bounds (cliques
and Mycielskians) rely on the same principle of isolating subgraphs with large chromatic
number, failures have similar clausal explanations: at least one pair of vertices for which an
edge was added must be contracted in order to find an improving coloring.

Then, we show how to detect vertex contractions or edge additions whose marginal cost
with respect to either of these bounds violates the upper bound. In that case the domains

1. This article is an extended version of previously published work (Hebrard & Katsirelos, 2018).

2

Constraint and Satisfiability Reasoning for Graph Coloring

can be pruned accordingly. Thanks to this inference, our method is provably stronger than
the standard branch and bound method in the sense that the search tree explored by the
latter is larger.

As a final contribution, we describe two additional new inference techniques. First
we show how the propagation of learnt nogoods can be improved by taking into account
the current state of the addition/contraction graph. This technique yields stronger, more
general conflict clauses. Second, we introduce a preprocessing method whereby we extract
an arbitrary independent set of the graph and replace it by constraints, thus yielding a model
with fewer variables and which is stronger with respect to constraint propagation. These
techniques can sometimes improve the performance of the proposed approach. In particular,
the former significantly improves the results on two classes of benchmarks. However, on
average over the whole data set we used, the impact is nearly null for the former and slightly
negative for the latter.

2. Background

Graphs. A graph G is a pair (V,E) where V is a set of vertices and E is a set of edges.
An edge is a binary set of distinct vertices, i.e., E ⊆ V 2 \ {(vv) | v ∈ V }. When (uv) ∈ E,
we say that u and v are adjacent. We denote NG(v) the neighborhood {u | (uv) ∈ E} of v
in G (or N(v) when there is no ambiguity about the graph).

A coloring c of a graph is a labeling of its vertices such that adjacent vertices have
distinct labels, and its cardinality is the total number of distinct labels. The chromatic
number χ(G) of a graph G is the minimum cardinality of a coloring of G. The Graph
Coloring Problem asks for a minimum coloring of a graph and the decision problem of
whether there exists a coloring with at most k ≥ 3 colors is NP-complete.

A clique (independent set) is a set of vertices C ⊆ V , such that all pairs (no pairs) of
vertices u, v of C are adjacent. The clique number (stability number) of a graph G, denoted
ω(G) (α(G)), is the size of the largest clique (independent set) contained in G.

Since no two vertices in a clique can take the same color, we have ω(G) ≤ χ(G).
Therefore, the size of a clique (maximum or not) can be used as lower bound. A coloring
can be seen as a partition of a graph into independent sets (since no adjacent vertices may
have the same color) and finding the optimum coloring is a set covering problem over all
independent sets.

Constraint Satisfaction Problem. A constraint satisfaction problem is a triple
(X,D,C) where X is a set of variables, D is the domain function and C is a set of con-
straints. The domain function maps each variable X ∈ X to the set of its possible values.
A (partial) assignment to X′ ⊆ X is a mapping from each X ∈ X′ to a value in D(X). A
complete assignment is a partial assignment to X. A constraint c is a pair (scope(c), Pc)
where scope(c) ⊆ X and Pc is a polynomial time predicate over assignments to scope(c).
A constraint is satisfied by an assignment A if Pc(A) is satisfied. A CSP is satisfied by a
complete assignment if every constraint c is satisfied by the restriction of that assignment
to scope(c). Solving a CSP means finding a satisfying assignment and determining whether
that exists is an NP-complete problem.

A value v ∈ D(X) is domain consistent (also called generalized arc consistent or GAC)
with respect to a constraint C = (S, P) with X ∈ S there exists an assignment A to S that

3

Hebrard & Katsirelos

satisfies C and such that A(X) = v, otherwise it is domain inconsistent. A constraint is
domain consistent if for all variables X ∈ scope(c) and all values v ∈ D(X), v is domain
consistent with respect to c. A CSP is domain consistent if all its constraints are domain
consistent. Domain consistency can be enforced by removing values from domains that are
domain inconsistent, called pruning, until the unique domain consistent fixpoint is reached,
or a constraint has no remaining satisfying assignments. Depending on the predicate of a
constraint, the complexity of checking that a value is domain consistent may range anywhere
from polynomial time to NP-complete.

CSP solvers that we care about in this paper solve an instance with backtracking search.
Branching is typically binary, for example by assigning a variable to one of the values in
its domain in one branch and removing that value in the other branch. Other schemes
exist, but are not relevant to this work. At each node of the search, the solver executes a
propagator for each constraint, which tightens the domains of the variables in its scope in
order to enforce domain consistency, or potentially some weaker form of consistency. In the
latter case, we say that the propagator is incomplete. Crucially for the success of constraint
programming in general, propagators can execute any arbitrary algorithm, in particular
algorithms that take advantage of domain knowledge and whose propagation cannot be
replicated by simpler constraints (Bessiere et al., 2009).

Boolean Satisfiability. In satisfiability (SAT), we express problems with Boolean vari-
ables X. We say that a literal l is either a variable x or its negation ¬x and we write
x = var(l). Moreover, we write l = ¬l. Clauses are disjunctions of literals, written inter-
changeably as sets of literals or as disjunctions, which are satisfied by an assignment if it
assigns at least one literal to true. A formula is a conjunction of clauses, written also as a
set of clauses and is satisfied by an assignment if it satisfies all clauses. The SAT problem
is determining whether such a satisfying assignment exists and is NP-hard (Cook, 1971).

A SAT instance is closed under unit propagation if it contains no unit clauses. It is
failed if it contains the empty clause. In order to compute the unit closure of an instance,
for each unit clause (l) we remove all clauses that contain l and remove l from other clauses.
We call this procedure performing unit propagation.

The state of the art in solving SAT is the Conflict-Driven Clause Learning (CDCL)
algorithm (Marques-Silva & Sakallah, 1999; Moskewicz et al., 2001). The basic techniques
used in CDCL are a variant of backtracking search with unit propagation at each node,
frequent restarting and far-backjumping, learning implied constraints from conflicts in the
backtracking search which empower unit propagation (clause learning) and activity based
branching (VSIDS).

The techniques of CDCL can be readily adapted in CSP solvers, except for clause
learning. It has been shown (Katsirelos & Bacchus, 2005) that it is possible to do this
as well by using an appropriate propositional encoding of domains and generating clausal
explanations for each pruning and each constraint failure. This can be further improved
for some highly useful classes of constraints by using a domain encoding that takes domain
order into account (Ohrimenko et al., 2007). We shall abuse CSP notations when considering
Boolean literals. In particular, for a constraint involving a Boolean variable x, we shall say
that x (resp. ¬x) is GAC if and only if the assignment x = 1 (resp. x = 0) is GAC.

4

Constraint and Satisfiability Reasoning for Graph Coloring

3. Related Work

Complete approaches for the graph coloring problem can be broadly divided into three
categories: branch and bound, branch and price, and satisfiability-based.

Branch & Bound. One of the oldest and most successful techniques is a backtracking
algorithm using Brélaz’ Dsatur heuristic (Brélaz, 1979): when branching, the vertex with
highest degree of saturation is chosen and colored with the lexicographically least candidate.
The degree of saturation of a vertex v is the number of assigned colors within its neighbor-
hood N(v) in G. In case of a tie, the vertex with largest number of uncolored neighbors is
chosen among the tied vertices. This heuristic is often used within a branch-and-bound al-
gorithm with one variable per vertex whose domain is the set of possible colors. It is known
as dom+deg in the CSP literature (Frost & Dechter, 1995). More sophisticated tie-breaking
heuristics have been shown to improve Dsatur (Segundo, 2012).

One common caveat of Dsatur-based branch and bound algorithms, however, is that
the standard lower bound, which is the size of a maximal (not necessarily maximum) clique,
is computed only once at the root of the search tree. Indeed, the algorithm branches on
the coloring, but the structure of the graph does not change, hence there is no point in
computing another clique. Consequently, Furini et al. (2016) proposed three lower bound
techniques taking advantage of the coloring decisions. The first introduces an auxiliary
graph where the vertices sharing the same color are merged on which cliques are easier
to compute and are potentially larger. The second relies on computing the Lovász Theta
number (Lovász, 1979), which lies between the clique number and chromatic number of
a graph (Grötschel et al., 1981) and which can be computed in polynomial time using
semi-definite programming. Finally, the third bound uses a different auxiliary graph whose
independent sets can be mapped to coloring of the original graph (Cornaz & Jost, 2008).

Branch and price. A second type of approaches rely on the column generation method
(Mehrotra & Trick, 1995; Malaguti et al., 2011). The problem is a seen as a set covering
problem over all independent sets of the graph which are the 0-1 variables of the integer
linear program. Independent sets, however, are dynamically generated and when no inde-
pendent set that can potentially improve the master problem can be found, the current
solution of the set covering is an optimal coloring. This method is significantly better
than Dsatur-based approaches on some classes of graphs, however, it can be significantly
outperformed on some other classes (Malaguti & Toth, 2010; Segundo, 2012).

Boolean Satisfiability. A third type of approaches rely on Boolean Satisfiability. In
order to encode graph coloring with satisfiability, some approaches rely on color variables
xvi, where xvi being true means vertex v takes color i. For every edge (uv), there is a binary
clause xvi ∨ xui for every color i. If k is the maximum number of colors, then there is a
clause

∨
1≤i≤k xui. This corresponds to the direct encoding (Walsh, 2000) of the constraint

model where we have a color variable Xv for each vertex v, whose domain ranges from
1 to k and which indicates its assigned color and a constraint Xv 6= Xu for all pairs of
adjacent vertices. The CP and SAT models are exactly identical, so we refer to both by
the same name. Refinements to this encoding include Van Gelder’s log encoding versions,
where xvj is true if the j-th bit of the binary encoding of the color taken by vertex v is
1 (Van Gelder, 2008). However, the use of modern SAT solving techniques like restarting

5

Hebrard & Katsirelos

(Gomes et al., 1998; Huang, 2007) and clause learning (Marques-Silva & Sakallah, 1999) are
not straightforward to combine with symmetry breaking such as that of Van Hentenryck
et al. (2003) since it relies on dedicated branching. They can only be easily combined with
starting from an arbitrary coloring to a clique, but that is incomplete. The Color6 solver
(Zhou et al., 2014) uses symmetry breaking branching but forgoes restarting to maintain
complete symmetry breaking.

Zykov’s recurrence. In contrast to branching on colors, the search tree induced by the
recurrence relation (1) below, due to Zykov (1949), has no color symmetry.

Let G/(uv) be the graph obtained by contracting u and v: the two vertices are removed
and replaced by a single new vertex r(u) = r(v) and every edge (vw) or (uw) is replaced by
(r(v)w). Conversely, let G+ (uv) be the graph obtained by adding the edge (uv), in which
case we say that the vertices are separated.

χ(G) = min{χ(G/(uv)), χ(G+ (uv))} (1)

Indeed, given a coloring of G, either the vertices u and v have distinct colors hence it is
also a coloring of G+ (uv), or they have the same color and it is a coloring of G/(uv).

Moreover, branching using this recurrence yields graphs with non-decreasing sets of
edges. Therefore, using the clique number as lower bound is easy, and this lower bound can
only increase when branching. In contrast, in the color variable formulation, the standard
technique is to compute a clique at the root node only as discussed earlier.

Example 1. Figure 1 illustrates the Zykov recurrence. From the graph G in Figure 1a, we
obtain the graph G+ (cd) shown in Figure 1b by adding the edge (cd) and the graph G/(cd)
shown in Figure 1c. One of these two graphs has the same chromatic number as G.

a

b

c d

e

f

g

(a) G

a

b

c d

e

f

g

(b) G+ (cd)

a

b c, d

e

f

g

(c) G/(cd)

Figure 1: Zykov recurrence

This branching scheme was successfully used in a branch-and-price approach to color-
ing (Mehrotra & Trick, 1996). In the context of satisfiability, Schaafsma et al. (2009)
introduced a novel and clever way of taking advantage of Zykov’s idea: first, they intro-
duce edge variables for every pair of non-adjacent vertices. When an edge variable is set to
true, the two vertices get the same color, and are assigned different colors otherwise. Then,
when learning a clause involving color variables, they show that one can compactly encode
all symmetric clauses using a single clause that only uses edge variables and propagates

6

Constraint and Satisfiability Reasoning for Graph Coloring

the same as if all the symmetric clauses were present. In their approach, they only intro-
duce edge variables as needed and they have no lower bound computation except for that
achieved by attempting to assign the color variables. They achieve good empirical results,
but the scheme is quite complicated to implement.

4. Zykov Tree Search

In our approach, similar to that of Schaafsma et al., we use a model which leads to the
exploration of the tree resulting from the Zykov recurrence. We have one Boolean edge
variable euv for each non-edge of the input graph with the same semantics as those used for
edge variables by Schaafsma et al. A complete assignment partitions the vertices of G into
a set of independent sets, which correspond to colors. The number of independent sets is
the size of the coloring that we have computed. We somewhat abuse notation in the sequel
and write clauses using variables euv even when (uv) ∈ E and assume that the variable is
always false. Moreover, in this paper we consider only undirected graphs, hence euv and
evu are the same variable.

The decision to assign the same color to two vertices is the same as following the branch
that contracts the vertices in the Zykov recurrence, while assigning them different colors
corresponds to the branch that adds an edge between them. Therefore, we can associate a
graph GX with a (partially assigned) set of edge variables X. GX is the graph that results
from contracting all vertices u, v of G for which euv is true and separating (adding an edge
between) all pairs of vertices u, v of G for which euv is false. When euv and evw are both
true, this means that we contract u and v and then contract w and r(v). Similarly, if euv
is true and evw is false, we contract u and v and add an edge between r(v) and w. The
operation of contracting vertices is associative and commutative, so we get the same graph
GX regardless of the order in which we process the variables in X. It is also a bijection, so
each contracted graph can be mapped back to exactly one assignment. We can therefore
use X and GX interchangeably.

We now describe a propagation algorithm for the following constraint Coloring, for a
graph G = (V,E), an integer k, and the set of variables X = {euv | u, v ∈ V }:

Coloring(G, k,X) ≡ ∃c : V 7→ N
c(u) = c(v) =⇒ euv

∧ |{c(u) | u ∈ V }| ≤ k
∧ (2)

euu ∀u ∈ V ∧ (3)

euv ∀(uv) ∈ E (4)

The constraint Coloring is satisfied by any assignment of the edge variables that cor-
responds to a coloring with fewer than k colors, and is therefore clearly NP-hard. Equation
2 enforces that the equalities are consistent with a k-coloring, while constraints 3 and 4
ensure that the coloring is legal with respect to the edges of the graph.

Moreover, the property of having the same color is transitive, so if euv and evw are true,
then so is euw. Transitivity also implies that if euv is true and evw is false, then euw must
also be false. We enforce transitivity using the implied constraint Transitivity:

Transitivity(G,X) ≡ (euv ∧ evw) =⇒ euw ∀u, v, w ∈ V (5)

7

Hebrard & Katsirelos

We can enforce GAC on this constraint using a clausal decomposition of size O(|V |3):

(euv ∨ evw ∨ euw) ∀u, v, w ∈ V (6)

Performing unit propagation on this decomposition takes O(|V |3) time cumulatively over
a branch of the search tree. In our implementation, we have opted instead for a dedicated
propagator described in Section 4.2, whose complexity over a branch is only O(|V |2).

Let |GX | be the number of vertices of the graph GX resulting from the additions and
contractions X. From Zykov (1949), we know that there exists a transitive assignment of
X, compatible with the edges of G such that |GX | = χ(G) (and trivially, |GX | ≥ χ(G) for
any X). Therefore, the constraint Coloring can be rewritten:

Coloring(G, k,X) ≡ Transitivity(G,X) ∧
|GX | ≤ k ∧

euu, ∀u ∈ V ∧
euv, ∀(uv) ∈ E

We describe two algorithms for computing lower bounds on |GX | in Sections 5.1 and
5.2. The first algorithm computes the well known clique lower bound (Section 5.1) on the
graph GX and the second a novel, stronger, bound (Section 5.2). If that bound meets or
exceeds k, the propagator fails and produces an explanation. Moreover, we describe how to
(incompletely) prune the domains of with respect to these bounds in Section 6.3.

Neither of the bounds that we use is cheap to compute, and computing marginal costs
in order to prune domains can be expensive as well, hence the propagator for the bound
runs at a lower priority than unit propagation and the Transitivity constraint.

Clearly, our approach is closely related to that of Schaafsma et al. However, there are
some important differences. First, since we do not need the color variables to compute the
size of the coloring, we completely eliminate the need for the clause rewriting scheme that
they implement and get color symmetry-free search with no additional effort. In addition,
since our model is a CP/SAT hybrid model, we can use a constraint to compute a lower
bound at each node, thus avoiding a potentially large number of conflicts.

The approach of Schaafsma et al. of decomposing the constraint Transitivity using
color variables (so that Xv = Xu ⇐⇒ euv) does not enforce domain consistency on the
constraint Transitivity. For instance, consider three vertices u, v and w such that Xv, Xu

and Xw can all take values in {1, 2} and we have the unit literals euv and euw. The literal
evw is not GAC for Transitivity, however it is GAC for the decomposition. In contrast,
the propagator described in Section 4.2 maintains GAC on this constraint, without having
to encode channeling between the edge variables and the color variables.

The main drawback of this model is that we need a large number of variables. This is
especially problematic for large, sparse graphs, where the number of non-edges is quadratic
in the number of vertices and significantly larger than the number of edges. Indeed, in
4 of the 125 instances we used in our experimental evaluation, our solver exceeded the
memory limit2. The approach of Schaafsma et al. does not have the same limitation, as

2. CPLEX exceeded the memory limit in 16 cases.

8

Constraint and Satisfiability Reasoning for Graph Coloring

they introduce variables only when they are needed to rewrite a learnt clause, in a way
similar to lazy model expansion (De Cat et al., 2015). It is possible that this approach of
lazily introducing variables can be adapted to our model, but this, as well as other ways of
reducing the memory requirements, remains future work.

4.1 Optimization Strategy

Previous satisfiability-based approaches to coloring have mostly ignored the optimization
problem of finding an optimal coloring of a graph and instead attack the decision problem of
whether a graph is colorable with k colors. In our setting, we have the flexibility to do both.
In particular, before starting search the solver computes initial bounds χlow ≤ χ ≤ χup for
the chromatic number, using the bound described in section 5.1 or 5.2 and a run of the
Dsatur heuristic, respectively.

After that, it may use one of two search strategies: branch-and-bound or bottom-up.
The former uses a single instance of a solver, uses χup to create the initial Coloring
constraint and then iteratively finds improving solutions. For each solution, it adds to the
model a new Coloring constraint with the new, tighter, upper bound3. This is similar to
the top-down approach one would use when solving a series of decision problems, starting
from a heuristic upper bound and decreasing that until we generate an unsatisfiable instance,
in which case we have identified the optimum. The advantage of the branch-and-bound
approach is that it does not discard accumulated information between solutions, namely
learned clauses and heuristic scores for variables. Moreover, it more closely resembles the
typical approach used in constraint programming systems.

The bottom-up approach temporarily sets χup = χlow and tries to solve the resulting
instance, i.e., one in which k = χup in the Coloring constraint. If the instance is satisfiable,
it terminates with χ = χlow, otherwise it increases χlow by one and iterates until the lower
bound meets the true chromatic number. This has none of the advantages of the branch-
and-bound approach, as it is not safe to reuse clauses from a more constrained problem
in one that is less constrained. Moreover, it cannot generate upper bounds before it finds
the optimum. But it gains from the fact that the more constrained problems it solves may
be easier. One particular behavior we have observed is that sometimes the lower bound
computed at the root coincides with the optimum and finding the matching upper bound is
quite easy with the bottom-up strategy, while finding that solution with branch-and-bound
can be very hard.

4.2 Transitivity Propagation

The propagator for the Transitivity (G, X) constraint works by maintaining a graph H
that is updated to be equal GX as the current partial assignment A grows and using that
to compute the literals that must be propagated. For brevity, in the rest of this section, we
always write N(v) to mean NH(v) and abuse the neighborhood notation to write N(S) for⋃
u∈S N(u). Additionally, the propagator maintains for each vertex v a bag b(v) to which

it belongs. Each unique bag corresponds to a vertex in H. Initially, b(v) = {v} for all v,
since no contractions have taken place.

3. The actual implementation makes this modification in-place so that the number of Coloring constraints
remains 1, regardless of the number of solutions found.

9

Hebrard & Katsirelos

We set the propagator for Transitivity (G, X) to be invoked for every literal that
becomes true. Call this literal p. When the propagator is invoked for p = euv, which
corresponds to the contraction of u and v, then all vertices v′ ∈ b(v) and u ∈ b(u) must be
assigned the same color, so it sets eu′v′ to true for all v′ ∈ b(v), u′ ∈ b(u). The contraction
implies that every vertex in b(v) must be separated from all vertices in N(b(u)) with which it
does not already have an edge (and symmetrically for vertices in b(u)). Hence the propagator
also sets eu′v′ to false for all v′ ∈ b(v) and u′ ∈ N(b(u) \N(b(v)) and for all v′ ∈ N(b(v) \
N(b(u)). Finally, it sets B = b(u) ∪ b(v), updates b(v′) = B for all v′ ∈ B and contracts v
and u in H. In the case where the propagator is invoked for p = euv, it sets eu′v′ to false
for all v′ ∈ b(v), u′ ∈ b(u) and adds an edge between v and u in H.

A small but important optimization is that if the propagator is invoked for euv becoming
true (resp. false) but u and v are already in the same bag (resp. already separated)
then it does nothing. This ensures that it touches each non-edge at most once, hence its
complexity is quadratic over an entire branch. This is also optimal, since in the worst
case every variable must be set either as a decision or by propagation. Notice also that
the operation of merging and keeping track of b(v) can be performed in amortized constant
time using the union-find data structure (Tarjan & van Leeuwen, 1984), where euv becoming
true entails the union operation Union(v, u) and r(v) = Find(v). Of the two, the latter is
important, as we can check whether two vertices v, u have been contracted by checking
whether Find(v) = Find(u), or r(v) = r(u). On the other hand, amortized constant time
Union is not important, because contracting two vertices u, v has complexity O(|b(v)||b(u)|),
which dominates even a naive implementation of Find. Indeed, since the algorithm has to
iterate over all vertices in both bags anyway, our implementation simply updates r(u) as it
performs this iteration.

This propagator uses the clauses (6) as explanations. The way it chooses explanations
for literals that it propagates is fairly straightforward, using the vertices involved in the
literal that woke the propagator as pivots. For example, if b(v) = {v, v′}, b(u) = {u, u′} and
it is woken on the literal euv, it sets euv′ using (evv′ ∨ euv ∨ euv′) as the reason, eu′v using
(euu′ ∨ euv ∨ eu′v), and only then finally setting eu′v′ using (euv′ ∨ euu′ ∨ eu′v′) which relies
on the fact that euv′ has been just set to true.

4.3 Transitivity-Aware Unit Propagation

Consider a (learned) clause c = (F ∨ evu ∨ evw), where F is a set of literals which are all
false in the current node of the search tree and u, w are in the same bag. Notice that if
we set evw to false, the transitivity propagator will also set evu to false, since v and w are
in the same bag. This will violate clause c and hence we should set both evw and evu to
true. More generally, when c = (F ∨ B), all the literals in F are false, and B are the only
unset literals, they have the same polarity and are over vertices that belong to exactly two
bags, the literals in B will all necessarily get the same value: we will either merge the two
bags, so all variables become true, or we will add an edge between them and all variables
become false. So if the unset literals are negative, we must satisfy them all by adding an
edge between the bags, while if they are positive, we must satisfy them all by merging the
two bags.

10

Constraint and Satisfiability Reasoning for Graph Coloring

Unit propagation is unable to make any inference when more than one literal is unset,
while the transitivity constraint is unaware of the learned clauses, so this inference cannot
be made by any single component of the solver. In order to detect this situation, the unit
propagation procedure can be made aware of vertices and partitions. In particular, suppose
we have a clause c, watched by l1 with var(l1) = euv and l2, and l2 has just become false.
The standard unit propagation algorithm finds another, non-false, literal l3 6= l1 and uses it
as the watch, or determines that the clause is unit or failed if no such literal exists. Instead
of stopping on the first non-false literal, we keep on searching for a literal l3 that is either
a) true, b) has different polarity to l1 or c) var(l3) = ewz and {r(u), r(v)} 6= {r(w), r(z)},
i.e., u and v are not assigned to exactly the same partitions as w and z. If any of these
conditions is true, we use l3 as the new watch and continue. If not, then the clause has been
reduced to a positive or negative clause over variables involving exactly two partitions and
hence other literals must either all be true or all false because of the transitivity constraint.
Since the clause must be satisfied, we must make one of them true.

We cannot use the clause c as the reason for this propagation, since it is not unit.
To construct an explanation, let l be the literal that we have chosen to make true, with
var(l) = euv, and let VB be the vertices {v | l′ ∈ B ∧ var(l′) = euv}. In other words, the set
B is the set of vertices which appear as a subscript of a literal euv or euv in B. Partition
VB into V1 and V2 such that V1 = {w | w ∈ VB ∧ r(w) = r(v)} and V2 = Vb \ V1. Then, the
explanation is F ∪ {l} ∪ {euu′ | u′ ∈ V1 \ {u}} ∪ {evv′ | v′ ∈ V2 \ {v}}. In words, the clause
states that because all literals in F are false, the vertices in V1 are in the same bag as u,
and the vertices in V2 are in the same bag as v, we must make l true.

Example 2. Consider again the clause c = (F ∨ evu ∨ evw) where all literals in F are
false, evu and evw are unset and u,w are in the same bag. Since this clause meets the
conditions defined above, we can make the literal l = evw true. Since the clause c has two
unset literals, it cannot be used as the clausal explanation for setting l to true. To construct
the explanation, we proceed as above with B = {evu, evw}, VB = {v, u, w} and partition this
into V1 = {u,w} and V2 = {v}. The clausal explanation we compute is F ∪ {evw} ∪ {euw}.

To see why this a valid explanation, consider the case where the literal l is positive, i.e.,
l = evu. We trace back the steps that propagation of the Transitivity constraint would
perform if we set l to false. For each literal l′ ∈ B, l′ = ev′u′ , l 6= l′, u′ ∈ V1, v′ ∈ V2, we
resolve with the clauses {euu′ , eu′v, euv} and {evv′ , eu′v′ , eu′v}, both of which are entailed by
the Transitivity constraint. This eliminates the literal eu′v′, introduces euu′ and evv′ as
required and leaves euv in the clause. Once we repeat this for all literals l′ 6= l, l′ ∈ B, we
get the explanation clause described above. Similar reasoning can be used when v = v′ or
u = u′ and for the case where l is negative.

This feature makes unit propagation stronger at a moderate increase in runtime cost.
In our experiments in Section 7, we show that while using this technique does not pay off
overall, it improves performance in some classes.

4.4 Emulating Brélaz Heuristic in Zykov Search Tree

Schaafsma et al. have already shown that any particular partial coloring can be mapped
to a node in the Zykov recurrence. We have alluded to the procedure for doing this earlier:
we contract all vertices that get the same color and add edges between vertices that get

11

Hebrard & Katsirelos

different colors. The correspondence also works in the other direction, although it is not
unique: from every node of the Zykov recurrence, we can construct several possible partial
colorings. Consider a node n of the Zykov recurrence and the graph Gn at that node.
We can choose any maximal clique in Gn and color its vertices arbitrarily to get a partial
coloring. Since there are (exponentially) many cliques in a graph, this is clearly not a
unique mapping. However, it allows us to replicate in the Zykov model any computation
that requires a coloring to work with.

In particular, Brélaz’ branching heuristic remains extremely competitive for finding good
colorings, as evidenced by the performance of the Dsatur method in our experimental eval-
uation (Section 7). Moreover, Schaafsma et al. observed that branching on color variables
was significantly better than branching on edge variables. We therefore use the observation
above to emulate this heuristic without introducing color variables.

Indeed, adding color variables is not really desirable. First, it adds the overhead of
propagating the reified equality constraints. Second, using these variables to follow Dsatur
requires branching on them, which in turn requires some kind of symmetry breaking method,
like the rewriting scheme of Schaafsma et al. So it would be preferable to get the benefit of
the more effective branching heuristic without needing to introduce color variables.

As shown earlier, we can achieve behavior similar to that of Dsatur in the edge variable
model, by exploiting the mapping from the current graph GX back to a coloring of the
original graph. To do this, we pick a maximal clique C in GX . We pick the vertex v
that maximizes |N(v) ∩ C|, breaking ties by highest |N(v) \ C|, and an arbitrary vertex
u ∈ C \N(v). Notice that u may not exist when the original graph is not connected. In this
case we pick a different clique until we find a clique C with N(v)∩C 6= ∅. We then set euv
to true. This uses the current maximal clique to implicitly construct a coloring and uses
that to choose the next vertex to color as Dsatur does. If the assignments euv are refuted
for all u ∈ C, then v is adjacent to all vertices in C and so C ∪ {v} is a larger clique, which
corresponds to using a new color in Brélaz’ heuristic. This construction generalizes the
construction we discussed earlier. From a node of the Zykov recurrence, we can construct
not only a coloring, but also the state of the domains in the color variable model under that
coloring, so that, for example, the current domain size of Xv is χup − |N(v) ∩ C|.

This branching strategy can be more flexible than committing to a coloring by assigning
the color variables. For example, unit propagation on learned clauses as we explore a branch
of the search tree can make it so that the maximal clique C ′ at some deep level is not an
extension of the maximal clique C at the root of the tree, i.e., C 6⊆ C ′. This is further
supported by our experiments juxtaposing the two algorithms for finding cliques that we
describe in Section 5.1: the one that tries to extend a clique performs overall worse than the
computationally more costly algorithm which non-incrementally searches for cliques in the
entire graph. The Brélaz heuristic on the color variables commits to using C at the root,
hence cannot take advantage of the information that C ′ is a larger clique. The modification
that we present here achieves this.

5. Lower Bounds

As we already discussed, an important advantage of the edge-variable based model is that
computing a lower bound for the current subproblem is as easy as for the entire problem.

12

Constraint and Satisfiability Reasoning for Graph Coloring

For example, for X the set of partially assigned edge variables, the clique number of the
graph GX is a lower bound for the subproblem.

5.1 Clique-Based Lower Bound

In order to find a large clique we use the following greedy algorithm, called
GreedyCliqueFinder. Let o be an ordering of the vertices, so we visit all vertices in the
order vo1 , . . . , von . We maintain an initially empty list of cliques. Iterating over all vertices
in the order o, we add each vertex to all the cliques which admit it and if no clique admits
it we put it in a new singleton clique. When this finishes, we iterate over the vertices one
more time and add them to all cliques which admit them, because in the first pass a vertex
v was not evaluated against cliques which were created after we processed v. We then pick
the largest among these cliques as our lower bound.

The number of bitwise operations performed by this algorithm is O(|V |2). Indeed, we
construct at most |V | cliques and for each vertex we check whether it can be added to each
clique. The bitwise operations each have cost O(|V |), so the complexity of the algorithm
is O(|V |3), but we found it practical to think in terms of number of bitwise operations, as
their cost if often near-constant time, at least for the graph sizes we dealt with.

We tried a few different heuristics for the ordering o of the vertices, including the in-
verse of the degeneracy order (Lick & White, 1970), which tends to produce large cliques
(Eppstein et al., 2013; Jiang et al., 2017). We found that it works best to sort the vertices
in order of decreasing bag size.

If the lower bound meets or exceeds the upper bound k, the propagator reports a conflict.
We construct a clausal conflict as follows: each vertex v of the current graph is the result of
the contraction of one or more vertices of the original graph. In keeping with the notation
for the transitivity propagator, we call this the bag b(v). We arbitrarily pick one vertex r(v)
from the bag of each vertex v in the largest clique C, and set the explanation to

∨
v,u∈C

er(v)r(u) (7)

This clause contains O(|C|2) positive literals. When we falsify it, it means that the
corresponding contracted graph contains edges between all pairs of vertices in C. Therefore,
falsifying the clause entails violating the upper bound, so it is logically entailed.

This explanation is not unique. In particular, we can generate mixed-sign clauses as
explanations, which are also shorter.

Example 3. Suppose that under the current partial assignment to X, the graph GX contains
the clique C = {v, u1, u2, w1, w2} such that v corresponds to the bag {u,w} and |C| ≥ χup.
Further suppose that NG(u) = {u1, u2} and NG(w) = {w1, w2}. To generate an explanation
for this according to (7) we arbitrarily pick r(v) = u and the clause that we generate will be
of the form c ∪ {euw1 , euw2}, where c contains the literals implied by (7) which involve only
the vertices {u1, u2, w1, w2}. It also implicitly includes the literals {euu1 , euu2}, but since
the edges (u, u1) and (u, u2) are present in G, it is as if there exist unit clauses (euu1) and
(euu2), so they can be resolved away from the explanation clause. However, this clause is
not the only possible explanation. The clause c ∪ {euw} is also a valid explanation. Indeed,

13

Hebrard & Katsirelos

falsifying it means that we make euw true, which means that we contract u and w and that
the resulting vertex has neighborhood {u1, u2, w1, w2}. Moreover, this clause that contains
both positive and negative literals is shorter than the clause generated by (7) by 1 literal,
because the single contraction entails 4 edge additions ((u,w1), (u,w2), (w, u1), (w, u2)), two
of which ((u,w1), (u,w2)) are needed for the explanation.

This example can be extended to show that in some cases it is possible to generate an
explanation of length O(|C|) as opposed to O(|C|2). We have experimented with producing
such mixed-sign explanations. However, it is computationally costly to find which choice of
representative from each bag generates the shortest clause. Moreover, although mixed-sign
explanations that we tried tend to be much shorter and speed up search in terms of number
of conflicts per second, they also significantly increase the overall effort required, both in
number of conflicts and runtime. Therefore, we use exclusively the positive clauses given
by equation (7).

Incremental clique updates. The heuristic method we described above for finding
cliques has the disadvantage that it examines the entire (contracted) graph each time that
the propagator is invoked. Depending on the instance, this can end up a significant over-
head. Therefore, we have also implemented a different method which sacrifices the quality
of the bound to achieve significantly better performance per invocation.

This algorithm, which we call IncrementalCliqueFinder, proceeds as follows. When
invoked at the root of the tree, it only forwards to GreedyCliqueFinder and then discards
all cliques except those that have largest cardinality. For subsequent invocations, it requires
access to a list of vertices which have gained edges as a result of contraction or separation
of vertices in the graph. When we contract u and v as a result of euv becoming true,
both vertices may gain new edges, as their neighborhoods are updated to all be identical
N(v)∪N(u). Similarly, when we separate two vertices which were previously non-neighbors
as a result of evu becoming false, both u and v gain an edge in their neighborhood. The
neighborhood of all such vertices may now contain one of the cliques which we have stored
(but when we contract two vertices v, u, only r(v) = r(u) is examined). This list can be
easily kept up to date as the propagator is woken for every literal that becomes true or
false. Given this list, IncrementalCliqueFinder examines each vertex v in it and adds v
to all stored cliques C such that N(v) ⊇ C. At the end, it again filters the set of stored
cliques to keep only those with largest cardinality. IncrementalCliqueFinder returns this
largest cardinality as the lower bound.

One complication is that on backtracking, the set of stored subgraphs are no
longer cliques, as vertices are uncontracted and edges removed, hence they are invalid.
Rather than implement a trailing or copying scheme for these cliques, after a conflict
IncrementalCliqueFinder again simply forwards to GreedyCliqueFinder, as it does at
the root.

The advantage of IncrementalCliqueFinder, compared to GreedyCliqueFinder, is
that it examines only the part of the graph that has been modified since the last invocation,
and that only in relation to a small set of cliques. More concretely, if the neighborhood of
p vertices has changed and it has stored q cliques, it performs O(pq) bitwise operations to
update the set of cliques and get a new bound, so its complexity is O(pq|V |). Empirically,
q is small (less than 5), so even if nearly all vertices have had their neighborhood changed,

14

Constraint and Satisfiability Reasoning for Graph Coloring

it is faster than GreedyCliqueFinder by a factor of |V | and even faster in the more typical
case where only a small subset of vertices have changed since the last invocation.

Despite the advantage of IncrementalCliqueFinder over GreedyCliqueFinder in
terms of runtime complexity, we have discovered empirically that the cliques that cause
bound violations may arise from regions of the graph that initially do not contain large
cliques and will therefore be ignored by IncrementalCliqueFinder. This is somewhat
mitigated by the fact that we store all cliques of largest cardinality and that we call
GreedyCliqueFinder after every conflict. However, as we show in Section 7, using the
IncrementalCliqueFinder algorithm in our solver degrades overall performance, despite
the fact that it improves speed in terms of number of conflicts per second.

The empirical observation that finding diverse sets of cliques is important for perfor-
mance is also informative in light of the correspondence between nodes of the Zykov tree
and colorings of the graph, discussed in Section 4. Since a) finding diverse sets of cliques is
important for performance, b) maintaining a single coloring is analogous to maintaining a
single clique, and c) using color variables forces us to maintain a single coloring, we conclude
that using color variables cannot replicate the results of using edge variables.

5.2 Mycielski-Based Bound

Although being a useful bound in practice, the clique number is both hard to compute
and gives no guarantees on the quality of the bound. We propose here a new lower bound
inspired by Mycielskian graph.

Definition 1 (Mycielskian graph (Mycielski, 1955)). The Mycielskian graph
µ(G)=(µ(V),µ(E)) of G =(V ,E) is defined as follows:

• µ(V) contains every vertex in V , and |V | + 1 additional vertices, the vertices U =
{ui | vi ∈ V } and another distinct vertex w.

• For every edge vivj ∈ E, µ(E) contains vivj , viuj and uivj. Moreover, it contains all
the edges between U and w.

The Mycielskian µ(G) of a graph G has the same clique number, however its chromatic
number is χ(G) + 1. Indeed, consider a coloring of µ(G). For any vertex vi ∈ V , we have
N(vi) ⊆ N(ui), and therefore we can safely use the same color vi as for ui. If can be shown
that at least χ(G) colors are required for the vertices in U , and since N(w) = U , then
w requires a χ(G) + 1-th color. Mycielski introduced these graphs to demonstrate that
triangle-free graphs can have arbitrarily large chromatic numbers, hence the clique number
does not approximate the chromatic number.

The principle of our bound is a greedy procedure that can discover embedded pseudo
Mycielskians. Indeed, the class of embedded graphs that we look for is significantly broader
than the set of pure Mycielskians {M2,M3,M4, . . .}. First, the witness subgraph may not
necessarily be induced. Therefore, trivially, Mycielskians with extra edges also provide valid
lower bounds. Moreover, rather than starting from a single edge, as in the construction of
the pure Mycielskians, we construct Mycielskians of cliques. Finally, the method we propose
can also find Mycielskians modulo some vertex contractions. Clearly, those are also valid
lower bounds since contracting vertices is equivalent to adding equality constraints to the
problem.

15

Hebrard & Katsirelos

(a) M2 (b) M3 (c) M4

Figure 2: A 2-clique M2 = µ(∅), its Mycielskians M3 = µ(M2) and M4 = µ(M3)

Given a subgraph H = (VH , EH) of G, and v ∈ VH , we define:

Sv = {u | NH(v) ⊆ NG(u)} (8)

Suppose that there exists a vertex w with at least one neighbor in every set Sv:

w ∈ ∩v∈VHNG(Sv) (9)

and let u(v) be any element of Sv such that u(v) ∈ NG(w) and U = {u(v) | v ∈ V }, then:

Lemma 1.

H ′ = (V ∪ U ∪ {w}, E ∪
⋃
v∈V

NH(v)× u(v) ∪
⋃
u∈U
{(uw)}) =⇒ χ(H ′) ≥ χ(H) + 1

Proof. The proof follows from the facts that H ′ is the Mycielskian graph of H possibly with
contracted vertices, and is embedded in G.

Suppose first that, for each v ∈ V , u(v) 6= v and w 6∈ V . Then we have H ′ = µ(H) by
using u(vi) for the vertex ui, and w for itself, in Definition 1.

Suppose now that H ′ 6= µ(H). This can only be because either:

• For some vertex vi of H, we have u(vi) = vi. In this case, consider the graph µ(H)
and contract ui and vi. The resulting graph µ(H)/(uivi) has a chromatic number at
least as high as µ(H). However, it is isomorphic to H ′.

• The vertex w is the vertex vi from the original subgraph H. Here again contracting
vi and w in µ(H) yields H ′.

Notice that there is not a third case where w is taken among U since, for any v ∈ VH ,
we have u(v) 6∈ ∩v∈VHNG(Sv) because u(v) is not a neighbor of itself.

H ′ is a subgraph of G since the edges added to H ′ are all edges of G

16

Constraint and Satisfiability Reasoning for Graph Coloring

Example 4. Figure 3a shows the graph G/(cd) obtained by contracting vertices c and d in
the graph G of Figure 1. Let H be the clique {a, b, c}. We have Sa = {a, e}, Sb = {b, f}
and Sc = {c}. Furthermore, NG({a, e}) ∩ NG({b, f}) ∩ NG({c}) = {b, c, g} ∩ {a, e, c, g} ∩
{a, b, e, g, f} = {g}, from which we can conclude that this graph has chromatic number at
least 4. As shown in Figure 3b, when called with H = {a, b, c} Algorithm 1 will extend it
with a first layer U = {e, c, f} and an extra vertex w = g. Notice that the graph obtained
by adding the edge (cd) has a 4-clique (see Figure 1). Therefore, the graph G in Figure 1a
also has a chromatic number of at least 4.

a

b c, d

e

f

g

(a) H = G/(cd)

a

b c, d

u(a)

u(b)

w

(b) Trace of Algorithm 1 on H

Figure 3: Embedded Mycielski

Algorithm 1 greedily extends a subgraph H = (VH , EH) of the graph G (with χ(H) ≥ k)
into a larger subgraph H ′ = (V ′H , E

′
H), following the above principles. As long as this

succeeds, in the outermost loop, we replace H by H ′ and iterate. The computed bound k
is equal to χ(H) plus the number of successful iterations.

We compute the sets Sv (Equation 8) and the set W of nodes with at least one neighbor
in every Sv in Loop 1. Then, if it is possible to extend H (Line 4), we compute the pseudo
Mycielskian (V ′H , E

′
H) as shown in Lemma 1 and replaces H with it in Line 5 before starting

another iteration.

Complexity. An iteration of Algorithm 1 does O(|VH | × |V |) bitset operations (Line 2 is
1 ‘AND’ operation and Line 3 is O(|V |) ‘OR’ operations and 1 ‘AND’). The second part
of the loop, starting at Line 4, runs in O(|VH |2) time. Typically, the number of iterations
is very small. It cannot be larger than log |V | since the number of vertices in H is (more
than) doubled at each iteration. It follows that Loop 1 is executed at most 2|V | times, and
therefore, the worst case time complexity is O(|V |2) bitset operations (hence O(|V |3) time).

Explanation. Similarly to the clique based lower bound, the explanations that we pro-
duce here correspond to the set of all edges in the graph H:

∨
(uv)∈EH

euv (10)

Adaptive application of the Mycielskian bound. In preliminary experiments, we
found that trying to find a Mycielskian subgraph in every node of the search tree was

17

Hebrard & Katsirelos

Algorithm 1: MycielskiBound(k,H = (VH , EH), G = (V,E))

while |VH | < |V | do
W ← V ;
∀v ∈ VH Sv ← {v};

1 foreach v ∈ VH do
foreach u ∈ V do

2 if NH(v) ⊆ NG(u) then Sv ← Sv ∪ {u} ;

3 W ←W ∩NG(Sv);

4 if W 6= ∅ then
k ← k + 1;
(V ′H , E

′
H)← (VH , EH);

w ← any element of W ;
foreach v ∈ VH do

V ′H ← V ′H ∪ { any element of (NG(w) ∩ Sv)};
E′H ← E′H ∪ {(wu)} ∪ {u×NH(v)};

5 (VH , EH)← (V ′H , E
′
H);

else break;
return k;

too expensive and did not pay off in terms of total runtime. Therefore, we adapted a
heuristic proposed by Stergiou (2008) which allows us to apply this stronger reasoning less
often. In particular, we only compute the clique lower bound by default. But every time
there is a conflict, whether by unit propagation or by bound computation, we compute the
Mycielskian lower bound in the next node. If that causes a conflict, we keep computing
this bound until we backtrack to a point where even the stronger bound does not detect a
bound violation. This has the effect that we compute the cheaper clique lower bound most
of the time, but learn clauses based on the stronger bound. This combination of stronger
clause learning with faster propagation measurably outperforms the baseline of computing
a bound based only on cliques, as we show in Section 8.

6. Preprocessing and Inference

In addition to the lower bound, we implemented three additional inference mechanisms: two
preprocessing techniques and a method to extend the lower bounds we propose to marginal-
cost pruning. The former preprocessing is well-known, however, the latter is novel, and is
made possible by the hybrid SAT/CP architecture of our approach.

6.1 Peeling

The so-called peeling procedure is an efficient scale reduction technique introduced by Abello
et al. (1999) for the maximum clique problem. Since vertices of (k + 1)-cliques have each
at least k neighbors, one can ignore vertices of degree k − 1 or less. As observed by Verma

18

Constraint and Satisfiability Reasoning for Graph Coloring

et al. (2015), this procedure corresponds to restricting search to the maximum χlow-core of
G where χlow is some lower bound on ω(G):

Definition 2 (k-Core and degeneracy). A subset of vertices S is a k-core of the the graph G
if the minimum degree of any vertex in the subgraph of G induced by S is k. The maximum
value of k for which G has a non-empty k-core is called the degeneracy of G.

Verma et al. noted that the peeling technique can also be used for graph coloring, since
low-degree vertices can be colored greedily.

Theorem 1 (Verma et al. 2015). G is k-colorable if and only if the maximum k-core of G
is k-colorable.

Indeed, starting from a k-coloring of the maximum k-core of G, one can explore the
vertices of G that do not belong to the core and add them back in an order (the inverse of
the degeneracy ordering) such that any vertex is preceded by at most k−1 of its neighbors.
It follows that these extra vertices can each be colored without introducing a k+1-th color.

Lin et al. (2017) recently proposed a similar reduction rule for graph coloring instances,
which allowed them to reduce the size of large, sparse graphs.

Proposition 1 (Lin et al., 2017). Let G be a graph with χ(G) ≥ k and let I be an inde-
pendent set of G such that for all v ∈ I, d(v) < k. Then, k − 1 ≤ χ(G \ I) ≤ χ(G) and if
χ(G \ I) = k − 1 then χ(G) = k.

However, applying the rule of proposition 1 actually computes the maximum χlow-core,
hence we used a linear-time algorithm to compute the degeneracy order instead.

Besides the obvious advantage of trimming the graph this reduction might also improve
the lower bound found by a heuristic maximal clique algorithm. The reason is that what-
ever heuristic we use for finding a maximal clique may make a suboptimal choice and this
preprocessing step removes some obviously suboptimal choices from consideration.

We have used the following preprocessing: first we compute a lower bound χlow, then
we remove vertices that do not belong to the maximum χlow-core. However, we observed
very little benefit in our instance set, which comprises smaller and denser graphs than
the one that Lin et al. used. We also used it, however, as initial ordering for the greedy
clique-finding algorithm.

6.2 Independent Set Extraction

It has recently been shown (Jansen & Pieterse, 2018) that graph coloring is fixed parameter
tractable with parameter k = q+ s where q is the size of the coloring the graph admits and
s is the cardinality of the minimum vertex cover. The idea of that algorithm is based on
the observation that, similar to peeling, for any vertex v of G, a q−coloring of the graph
induced by V \ {v} (that we denote G |V \{v}) can be extended to a q−coloring of G, if at
most q − 1 colors are used to color the vertices N(v). Then, v is simply colored with any
color not used in its neighborhood. This reasoning can be extended to any independent
set, since being an independent set ensures that the coloring of the residual graph can be
extended to all vertices in the independent set without interfering with each other. If G
admits a vertex cover S of size s, then V \ S is an independent set of G and so G admits

19

Hebrard & Katsirelos

a q−coloring if and only if G |S admits a q−coloring such that for every v ∈ V \ S, the
number of colors in N(v) is at most q−1, i.e., a coloring must respect the local independent
set constraints:

χ(N(v)) ≤ q − 1 ∀v ∈ S

We can test all possible sq q−partitions of G |S to determine whether there exists one
that is a coloring and satisfies the above constraints. This gives an algorithm with time
complexity O(sqp(|V |)) for a polynomial p, proving that the problem is FPT.

We can exploit the same observation in our solver, noting that during branch-and-
bound, if the incumbent uses k colors, we set q = k − 1 for the constraints required by
the FPT algorithm. We heuristically find an independent set after peeling, which makes
it slightly stronger than what is proposed by Jansen and Pieterse. Indeed, the vertices
removed during peeling do not need to be independent from other vertices that we remove,
allowing for greater reduction.

During search, we enforce the constraints by checking whether any of the cliques we have
stored are contained in N(v) for any removed v. If so, we trigger a conflict as if the upper
bound had been violated. There are two complications here: first, since we contract vertices
during search, the neighbors of v may not be present in the current graph. Hence, as we
descend a branch, we remap constraints so that each vertex v is replaced by its representative
r(v), so that the constraint χ(N(v)) ≤ q−1 becomes χ({r(u) | u ∈ N(v)}) ≤ q−1. Second,
explanations for a global bound violation can be generated by using an arbitrary vertex from
each bag that participated in the subgraph that violates the bound. In the case of local
independent set constraints, this is not true. Consider for example the case where q = 4,
we have the bags {v1, u1}, {v2, u2} and {v3, u3} with r(ui) = r(vi) = vi for i in {1, 2, 3}
in a 3-clique and we have the local constraint χ({u1, u2, u3}) ≤ 3. In this configuration,
the local constraint gets rewritten to χ({v1, v2, v3}) ≤ 3. Even though the global upper
bound is not violated, the clique {v1, v2, v3} is contained in subgraph involved in the local
constraint, hence the constraint is violated and we can backtrack. However, the explanation
procedure will generate a clause explaining the edges between the vertices vi, i ∈ {1, 2, 3},
but this clause is not a valid explanation for the violation of the local IS constraint. Indeed,
if we simply add all the edges between the vertices vi, the local constraint is not rewritten
and not violated. Instead, we have to explicitly instruct the explanation procedure to pick
representatives that are mentioned in the original local constraint. This is sufficient to
produce valid explanations for local constraint violations.

To our surprise, using this technique resulted in worse performance overall, therefore
it is not used by default in our solver. Part of the reason for this is the cost of checking
the local constraints, but the main issue was that the problem reduction did not result
in a sufficient reduction of search effort. We are optimistic that this remains a promising
direction.

6.3 Clique-Based Pruning

Since maximal cliques and embedded Mycielskian graphs provide non-trivial lower bounds,
it is natural to prune the domain of variables based on the marginal cost of the values with
respect to the bound.

20

Constraint and Satisfiability Reasoning for Graph Coloring

In our case, however, the marginal cost cannot be greater than 1. Indeed, setting a
variable euv to true corresponds to contracting the vertices u and v, whilst setting it to
false corresponds to adding the edge (uv). Now, let u and v be two vertices of a graph
G = (V,E) with (uv) 6∈ E. From a χ(G)-coloring of G we can derive a χ(G) + 1-coloring
of G+ (uv) or G/(uv) by simply using a fresh color (e.g. χ(G) + 1) for u, since all the new
edges contain u.

Therefore, we can hope to get some pruning only when the bound is tight, that is, when
we find a subgraph with chromatic number χup− 1 with χup the current best upper bound.
In this case, we can use the two following lemmas (whose proofs are trivial).

Lemma 2. If the subgraph H = (V ′, E′) of G = (V,E) has chromatic number k and there
exists a vertex v ∈ V \ V ′ such that V ′ \N(v) = {u} then χ(G+ (uv)) = k + 1.

Lemma 3. If the subgraph H = (V ′, E′) of G = (V,E) has chromatic number k and there
exist two vertices u and v such that V ′ ⊆ (N(u) ∪N(v)) then χ(G/(uv)) = k + 1.

From Lemma 2 and 3, we can design two pruning algorithms. Lemma 2 requires to
count, for each subgraph H = (V ′, E′) witnessing for the lower bound (i.e., such that
|V ′| = χlow), the number of neighbors within V ′ of every vertex in V \V ′. This can be done
in O(|E|) time for every witness subgraph. There are at most O(|V |) of them, although
only the subgraphs of size χup− 1 need to be checked and there are much fewer of them. In
particular, on hard instances the gap between lower and upper bound is large even relatively
deep in the search tree and therefore this pruning technique can be skipped altogether.

Moreover, if we incrementally maintain the cliques used as lower bound, as described in
Section 5.1, then this complexity can be amortized down a branch of the search tree. We
can maintain, for every vertex v and every maximal clique i, the number µiv of neighbors
of that vertex in that clique. When a new edge (uv) is added, the stored values µiv, for v
(u) and for every clique i that u (v) belongs to, are incremented. The contraction of two
vertices u and v is treated similarly, as it corresponds to adding several edges.

Lemma 3, however, requires a similar count for each pair of vertices without edge in
V \V ′ hence an extra linear factor to the time complexity. On the one hand, our experimental
results (see Section 7.2) show that looking for implied contractions (Lemma 2) is sufficiently
cheap in practice to have a positive impact on the overall method. On the other hand,
looking for implied edge additions is too expensive.

Under some fair assumptions, it is possible to show that our approach including the
clique-based lower bound and the pruning technique described above (denoted gc-cdcl) is
strictly stronger than the standard color variable-based model (denoted Dsatur).

As observed in Section 4.4, there is a surjective (but non-injective) function from the
partial coloring of a graph G to the graphs obtained by adding edges and contracting
vertices in G. Furthermore, there is a similar function from domains of color variables to
contraction-addition graphs of G. It is important to distinguish between partial colorings
and domains, because when baktracking on the decision to assign the color i to vertex v, a
domain can represent the fact that color i is now forbidden for v, even if no neighbor of v
is currently colored with i.

Given a domain D : V 7→ 2{1,...,k} of G = (V,E), let the Zykov graph of (G,D) be the
graph obtained by contracting the vertices {v | D(v) = {i}} for 1 ≤ i ≤ k (the representative

21

Hebrard & Katsirelos

vertex is denoted vi) and adding an edge between every pair of vertices v, u in the contracted
graph such that D(v) ∩D(u) = ∅. We make the following assumptions:

1. Both methods make the same decisions. The same mapping applies: u = i for Dsatur
can be emulated by u = vi for gc-cdcl if there is a vertex vi already mapped to i,
or by the set of decisions {u 6= vj | j < i} if i is a fresh color. Moreover, Dsatur
branching on u 6= i can be emulated by gc-cdcl branching on u 6= vi.

2. Dsatur model uses only binary inequalities.

3. gc-cdcl finds, in the Zykov graph of (G,D), the k-clique corresponding to the set of
representatives obtained from singleton domains: {vi | D(u) = {i}, u ∈ V }.

Theorem 2. Under the three assumptions above, the search tree explored by Dsatur is not
smaller than the search tree explored by gc-cdcl.

Proof. Let D be a domain on the color variables of a graph G = (V,E). Let ACDsatur(G,D)
be the domain consistent fixpoint of the domain D in the model used by Dsatur. Similarly,
let ACgc-cdcl(G,D) be the graph corresponding to the domain consistent fixpoint of the
Zykov graph of (G,D) in the model used by gc-cdcl. We say that a graph H is as tight as
a graph G if and only if H can be obtained by contracting vertices and adding edges in G.

Since we assume the same decisions, we prove the theorem by showing that given
equivalent search states (i.e., respectively (G,D) for Dsatur and the Zykov graph H of
(G,D) for gc-cdcl), the domain consistent fixpoint reached by gc-cdcl is strictly tighter
than that reached by Dsatur. The fixpoint reached by Dsatur is defined by the domain
ACDsatur(G,D). We first show that the graph ACgc-cdcl(G,D) is at least as tight as the
Zykov graph H’ of (G,ACDsatur(G,D)). Notice that failures in Dsatur may only happen
when the total number of colors (distinct singleton domains in D) is higher than or equal to
the upper bound. Since we assume that gc-cdcl finds that clique, the same failure would
happen in gc-cdcl, hence we consider non-empty arc-consistent fixpoints from now on.

Consider first an edge (uv) of H’ that is not in H, that is, implied by domain consistency
on Dsatur’s model. This edge is implied by the fact that the domains of the variables xu
and xv are disjoint in the domain consistent fixpoint. However, a color i is removed from
the domain of a variable xu only if there is w a neighbor of u in G such that D(w) = {i} or
if xu 6= i is the result of a previous branch xu 6= i. In the latter case, the same branching in
gc-cdcl has added an edge between u and a vertex w mapped to color i. Therefore, this
new edge implies that the union of the neighborhoods of u and v include, for every possible
color, at least one vertex already mapped to that color. In this case the pruning rule from
Lemma 3 would trigger and add the edge (uv) in ACgc-cdcl(G,D).

Now consider that the vertex v in H’ is the contraction of v and u in H, i.e., D(xv) =
D(xv) = {i} for some color i. The same observation can be made as in the previous case,
and thus we know that one of these vertices (say v w.l.o.g.) has at least one neighbor whose
domain is the singleton {j} for every possible color j 6= i. However, in this case Lemma 2
would trigger and u and v will be contracted in ACgc-cdcl(G,D).

To prove strictness, we simply need an example where gc-cdcl’s search tree is smaller.
The easiest example is to use a Mycielskian graph, such as the one in Figure 2b, which
gc-cdcl will find at the root node whereas Dsatur will be forced to branch.

22

Constraint and Satisfiability Reasoning for Graph Coloring

7. Experimental Evaluation

We implemented the techniques described in previous sections into a graph coloring solver
called gc-cdcl. It runs in either of the two configurations described in section 4.1: branch-
and-bound, denoted gc-cdcl, or bottom-up, denoted gc-cdcl↑. We implemented gc-cdcl

with MiniCSP4 as the underlying CDCL CSP solver.5 In both cases, we use adaptive
application of the Mycielskian bound, as explained in Section 5.2. When computing the
Mycielskian bound, we apply Algorithm 1 on all of the maximal cliques, and keep the best
outcome. Moreover, both default approaches use the pruning technique described in Sec-
tion 6.3 limited to Lemma 2 and the Dsatur-emulating heuristic described in Section 4.4.
However, they do not use the independent set extraction technique described in Section 6.2,
nor the incremental lower bound algorithm described in Section 5.1 since the results are
slightly worse overall. Even though the results are extremely close, it does not use the
transitivity-aware unit propagation described in Section 4.3 either. All these techniques are
tested in Section 7.2.

We experimented primarily on the DIMACS data set, composed of 125 instances6 from
Trick’s graph coloring webpage and described in the proceedings of the COLOR02 workshop
(Trick, 2002). In the subsequent tables, however, we omit 26 of these instances that were
solved by every method to optimality. Further experiments were performed on a data set
(denoted RCBII) of randomly generated graphs introduced in (Segundo, 2012).

All experiments were run on 7 cluster nodes, each with 36 Intel Xeon CPU E5-2695 v4
2.10GHz cores running Linux Ubuntu 16.04.4. Sources were compiled using g++8. Every
algorithm was run ten times with the same set of distinct random seeds and a time limit of
one hour and a memory limit of 3.5GB on every instance in the data sets.

7.1 Comparison with the State of the Art

We first compare with the state-of-art SAT-based solver Color6 (Zhou et al., 2014), a
very efficient clause-learning algorithm for graph coloring. Similarly to our approach, it
is based on a SAT solver, however, it uses the color-based formulation. It was shown to
outperform the state of the art on many instances. As Color6 solves satisfiability instances
only (testing whether a coloring with a specific number of colors exists), we implemented
a branch-and-bound wrapper on top of it, denoted Color6, as well as well as a wrapper
that implements the bottom-up strategy, denoted Color6↑. We use the lower and upper
bounds computed by our approach (respectively the maximal clique algorithm described
in Section 5.1 and a greedy run of Dsatur) as initial bounds for Color6 and Color6↑.
Moreover, we also compare with two implementations of Dsatur-based branch-and-bound
by Furini et al., one denoted Dsatur and using Brélaz’ original heuristic, and one denoted
Segundo using an improved version (Segundo, 2012). Finally, we compare with an integer
programming formulation in CPLEX. The model we use for CPLEX is the trivial one using
binary color variables (one for each vertex and each color), and one binary inequality per
edge. However, observe that CPLEX actually computes maximal cliques in its preprocessing,
so providing it with clique inequalities is useless. Moreover, we initialize the upper bound

4. Sources available at: https://bitbucket.org/gkatsi/minicsp.
5. Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.
6. Available here: http://homepages.laas.fr/ehebrard/2ndDimacs.tgz

23

Hebrard & Katsirelos

gc-cdcl Color6 Dsatur Segundo CPLEX

Opt. χup χlow Opt. χup χlow Opt. χup χlow Opt. χup χlow Opt. χup χlow

DSJ 14 0.07 76.05 32.50 0.07 78.01 28.93 0.00 78.50 3.07 0.00 78.57 3.07 0.07 85.91 29.90
FullIns 14 1.00 6.79 6.79 0.21 6.79 5.14 0.00 6.79 4.86 0.00 6.79 4.86 0.81 6.90 6.38
Insertions 11 0.27 5.18 2.55 0.36 5.18 2.82 0.00 5.18 2.00 0.00 5.18 2.00 0.36 5.18 3.73
abb313GPIA 1 0.00 10.00 8.00 0.00 10.00 8.00 0.00 12.00 8.00 0.00 10.00 8.00 0.00 14.00 8.00
ash 3 1.00 4.00 4.00 1.00 4.00 4.00 0.00 5.00 3.00 0.00 4.37 3.00 1.00 4.00 4.00
flat 6 0.00 73.92 12.50 0.00 75.02 10.67 0.00 75.83 5.67 0.00 75.32 5.67 0.00 82.17 10.67
fpsol2 1 1.00 65.00 65.00 0.00 65.00 59.00 1.00 65.00 65.00 1.00 65.00 65.00 1.00 65.00 65.00
inithx 1 1.00 54.00 54.00 0.50 54.00 48.50 1.00 54.00 54.00 1.00 54.00 54.00 1.00 54.00 54.00
latin 1 0.00 118.20 90.00 0.00 132.50 90.00 0.00 130.00 0.00 0.00 128.40 0.00 0.00 159.00 90.00
le450 10 0.59 14.83 13.00 0.15 15.80 13.00 0.24 15.80 13.00 0.25 15.86 13.00 0.38 18.42 13.00
miles1000 1 1.00 42.00 42.00 0.00 42.00 40.00 1.00 42.00 42.00 1.00 42.00 42.00 1.00 42.00 42.00
mug 4 1.00 4.00 4.00 1.00 4.00 4.00 0.00 4.00 3.00 0.00 4.00 3.00 1.00 4.00 4.00
myciel 5 1.00 6.00 6.00 0.80 6.00 4.80 0.00 6.00 2.00 0.00 6.00 2.00 0.60 6.00 5.08
qg 4 0.75 58.00 57.50 0.28 63.38 57.50 0.25 62.00 57.50 0.40 58.47 57.50 0.35 70.78 57.50
queen 12 0.42 12.63 11.33 0.17 13.20 11.18 0.17 12.75 11.08 0.17 12.57 11.08 0.40 12.91 11.32
school1 2 1.00 14.00 14.00 0.50 20.00 14.00 0.00 19.00 0.00 0.00 14.00 0.00 1.00 14.00 14.00
wap0 8 0.12 46.01 41.38 0.00 48.08 40.00 0.12 48.12 41.38 0.12 48.24 41.38 0.00 51.12 40.00
will199GPIA 1 1.00 7.00 7.00 0.00 7.00 6.00 0.00 7.00 6.00 0.00 7.00 6.00 1.00 7.00 7.00

Table 1: Comparison with top-down methods – breakdown by classes of DIMACS instances

with the same method as for Color6, and also arbitrarily fix the colors of one maximal clique
in order to break symmetries. The branching selection of Color6, Dsatur and Segundo was
randomized by replacing the lexicographical tie breaking by a uniform random choice so
that we could make several runs on every instance.

Unfortunately, we could not compare our method to the method of Schaafsma et al.
(Minicolor) directly. Indeed, its implementation, provided by the authors, is difficult to
use in the type of extensive experiments of the type we performed. Firstly, the algorithm is
restricted to instances with at most 32 colors. Secondly, it solves the satisfiability problem
χ(G) ≤ K and uses a file converter. Finally, the changes made to MiniSat’s code do not
seem to be robust and we experienced several occurrences of assertion failures.

The results in Tables 1 and 2 correspond to 10 random runs on every instance of the
DIMACS data set. They are averaged over runs and over instances from the same class,
whose cardinality is given in the first column (denoted “#”). The same results on individual
instances (averaged over the 10 runs) are shown in Appendix A.

We show the ratio of instances for which a proof of optimality was found (‘Opt.’), as
well as the average upper bound (χup) and lower bound (χlow), for every method. The best
results for each criterion are highlighted using colors, and bold font when the result is not
matched by any other method in the table. Table 1 focuses on top-down methods. gc-cdcl
is better on all but two classes of instances: Insertions and queen. Moreover, it finds the
same coloring as the other methods in the Insertions class for which the CPLEX model
is best, and computes strictly more proofs of optimality than other solvers in the queen

classes, although Segundo finds better colorings. Finally, on 8 classes it is strictly better
than the second best solver (considering at least one criterion).

Table 2 focuses on the two bottom-up methods. Here again there are far more classes
where gc-cdcl↑ is better than classes (such as Insertions again) where the opposite is

24

Constraint and Satisfiability Reasoning for Graph Coloring

gc-cdcl↑ Color6↑

Opt. χup χlow Opt. χup χlow

DSJ 14 0.07 78.69 33.99 0.07 86.93 35.88
FullIns 14 1.00 6.79 6.79 0.21 7.29 5.43
Insertions 11 0.27 5.18 3.82 0.36 5.36 4.09
abb313GPIA 1 0.00 11.00 9.00 0.00 14.00 9.00
ash 3 1.00 4.00 4.00 1.00 4.00 4.00
flat 6 0.00 77.52 14.00 0.00 82.17 16.90
fpsol2 1 1.00 65.00 65.00 0.00 65.00 59.00
inithx 1 1.00 54.00 54.00 0.00 54.00 43.50
latin 1 0.00 126.90 90.00 0.00 159.00 90.00
le450 10 0.60 15.20 13.00 0.28 19.50 13.00
miles1000 1 1.00 42.00 42.00 0.00 45.00 40.00
mug 4 1.00 4.00 4.00 1.00 4.00 4.00
myciel 5 1.00 6.00 6.00 0.80 6.00 5.60
qg 4 0.75 58.00 57.50 0.38 70.75 57.50
queen 12 0.42 13.36 11.33 0.21 15.98 11.33
school1 2 1.00 15.50 15.50 1.00 14.00 14.00
wap0 8 0.12 46.12 41.38 0.00 51.12 40.00
will199GPIA 1 1.00 7.00 7.00 0.00 10.00 6.00

Table 2: Comparison with bottom-up methods – breakdown by classes of DIMACS instances

0 0.1 0.2 0.3 0.4 0.5

100

101

102

103

104

105

106

107

Proof ratio

C
P

U
ti

m
e

(m
s)

gc-cdcl

Color6

Dsatur

Segundo

CPLEX

gc-cdcl↑
Color6↑

(a) Cumulative ratio of optimality proofs over time

0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

106

107

Normalized Upper bound

C
P

U
ti

m
e

(m
s)

gc-cdcl

Color6

Dsatur

Segundo

CPLEX

(b) Cumulative normalized upper bound over time

Figure 4: Comparison with the state of the art – anytime results on the DIMACS data set

true. Moreover, although gc-cdcl↑ finds better lower bounds than gc-cdcl on two large
classes (DSJ and flat), this does not translate to a higher proof ratio.

Table 3 shows results aggregated across all instances. We report the average ratio of
instances proven optimal (‘optimal’) in the first column. Then in the second to the fifth
columns, we report the geometric (‘avg (G)’) and arithmetic averages (‘avg’) for both the
lower and upper bounds. Finally, we report the mean normalized gap to the best upper
bound, and to the best lower bound. Let b (resp. w) be the value found by best (resp.
worst) method. In the case of the lower bound, b will be the maximum, while it will be the

25

Hebrard & Katsirelos

method
Optimal χup χlow gap (ub) gap (lb)

avg avg (G) avg avg (G) avg avg avg

gc-cdcl↑ 0.51515 15.335 30.575 11.508 18.989 0.1380 0.0821
gc-cdcl 0.51414 15.023 29.721 10.671 18.505 0.0766 0.2666
CPLEX 0.42727 16.111 33.410 10.787 17.940 0.3327 0.2177
Color6↑ 0.28081 17.028 34.170 11.413 18.911 0.4879 0.1776
Color6 0.25354 15.550 30.881 9.854 17.351 0.1710 0.4876
Segundo 0.10202 15.370 30.573 5.721 12.091 0.1474 0.6880
Dsatur 0.09495 15.605 30.899 5.721 12.091 0.1820 0.6880

Table 3: Comparison with the state of the art – global results

minimum for the upper bound. The normalized gap g(x) of the outcome x is:

g(x) =

{
0 if b = w
(b− x)/(b− w) otherwise

A mean normalized gap of 0 (resp. 1) therefore indicates that the method systematically
has the best (resp. worst) outcome.

Figure 4 gives an anytime view of these aggregated results. The left plot (Figure 4a)
shows the ratio of instances for which optimality is proven within a given amount of CPU
time. The right plot (Firgure 4b) shows the evolution of the upper bound normalized to
[0, 1] with respect to best and worst upper bounds found by any top-down method. We can
see that when given less than a second, Color6 seems to start up more quickly and finds
better colorings and close more instances than gc-cdcl. It is not clear if this result can be
attributed to the fact that gc-cdcl computes χlow and χup at start up, while these values
are given as arguments to Color6. In any case, given more time, gc-cdcl clearly dominates
all other methods on this data set.

Overall, the variants of gc-cdcl are best for all criteria. CPLEX is third best for the
number of optimality proofs. Although it requires a lot of memory, and is very poor in
terms of solution quality, CPLEX often gives good lower bounds. This is not so surprising
since the linear relaxation is quite potent on this formulation. For instance at the root node,
since we fix the variables of a maximal clique, the lower bound from the linear relaxation
can only be higher than that of clique-based methods. It should be noted, however, that in
many cases it was not able to improve on the initial bounds provided to the model, even
when memory was not an issue. Color6↑ is second best for the lower bound, but notice
that the much larger mean normalized gap to the best lower bound than gc-cdcl↑ indicates
that it is better mostly when both methods are far better than the worst method since the
marginal gain is smaller. We observe that Dsatur (and in particular the improved version
Segundo), even though extremely simple, is still a very good method to actually find small
colorings and is a close second best for the upper bound.

Finally, we performed further experiments on the RCBII data introduced in (Segundo,
2012) and containing random instances ranging from 60 to 140 vertices and edge density

26

Constraint and Satisfiability Reasoning for Graph Coloring

gc-cdcl Color6 Dsatur Segundo CPLEX

Opt. χup χlow Opt. χup χlow Opt. χup χlow Opt. χup χlow Opt. χup χlow

|V |=60 471 1.00 11.99 11.99 0.88 12.14 11.65 0.00 11.99 9.70 0.00 11.99 9.70 0.97 11.99 11.96
|V |=70 417 0.76 14.10 13.07 0.85 14.30 13.53 0.00 14.07 11.05 0.00 14.07 11.05 0.67 14.11 13.75
|V |=75 410 0.55 14.79 12.70 0.85 14.90 14.00 0.00 14.66 11.33 0.00 14.66 11.33 0.50 14.88 14.15
|V |=80 422 0.38 15.62 12.71 0.95 15.54 15.28 0.00 15.45 11.87 0.00 15.45 11.87 0.41 15.79 14.67
|V |=85 60 0.26 31.24 27.25 0.65 31.63 29.35 0.00 31.00 26.40 0.00 31.02 26.40 0.82 31.07 30.72
|V |=90 90 0.16 25.41 20.63 0.63 25.73 22.97 0.00 25.04 20.32 0.00 25.03 20.32 0.61 25.26 24.18
|V |=95 15 0.00 28.49 21.13 0.27 28.53 22.60 0.00 28.07 21.13 0.00 28.00 21.13 0.27 28.67 25.80
|V |=100 15 0.00 29.98 21.33 0.07 29.87 21.87 0.00 29.60 21.47 0.00 29.60 21.47 0.07 30.60 26.27
|V |=105 15 0.00 31.11 22.40 0.20 30.87 23.60 0.00 30.87 22.60 0.00 30.80 22.60 0.07 31.87 27.00
|V |=110 15 0.00 32.08 22.67 0.07 32.53 23.13 0.00 32.20 22.67 0.00 31.93 22.67 0.00 33.67 27.00
|V |=120 15 0.00 34.53 23.13 0.00 34.93 23.13 0.00 34.53 21.20 0.00 34.73 21.20 0.00 37.27 28.40
|V |=130 15 0.00 37.39 23.87 0.00 38.00 23.87 0.00 37.93 12.60 0.00 38.13 12.60 0.00 43.20 27.93
|V |=140 5 0.00 50.60 35.40 0.00 51.40 35.40 0.00 51.20 0.00 0.00 51.20 0.00 0.00 56.40 39.80

Table 4: Comparison with top-down methods – breakdown by classes of RCBII instances

ranging from 0.1 to 0.9. We show the results in table 4. The results are averaged over
instances with same number of vertices. Here again, we keep only the instances that at
least one solver could not solve to optimality (there are 1965 of them). The same results
on individual instances (averaged over the 10 runs) are shown in Appendix B.

The results of gc-cdcl are not as impressive on this data set. However, interestingly,
it is robust with respect to the different criteria. For instance, CPLEX almost always finds
the highest lower bounds but upper bounds are not as good and actually really poor for
the largest instances. The two Dsatur variants find the best upper bounds but poor lower
bounds and cannot solve any instance to optimality. Finally, Color6 can compute far more
proofs than other techniques, although the upper bounds it finds are generally the worst,
except on large instances. The results of gc-cdcl, on the other hand, are not impressive,
but relatively good on all criteria. Moreover, we observe that it is the only method that can
close the class of smallest instances, and it finds the best colorings on the largest instances.

Notice that the largest classes (≥ 100 vertices) have much fewer instances, and those all
have a high density (≥ 0.7). Higher densities tend to favour our approach since the Zykov
search tree is shallower.

7.2 Factor Analysis

Next, we analyse the impact of the new bounds, of the marginal cost pruning, and of learning
using six variants of gc-cdcl. Let P denote pruning, L the usage of clause learning, M
the Mycielskian-based lower bound and O the partition-based vertex ordering used to find
maximal cliques. Then, X \ S stands for the solver X where the options in S are turned
off. The results reported in Table 5 and Figure 5 show the impact of each factor.

There is an almost perfect correlation between turning off a feature, and moving down
the ranking for any criterion. In particular, clause learning has clearly a very high impact as
turning it off systematically and significantly degrades the performances on every criterion.
Moreover, using the partition-based vertex ordering also has a very significant impact for
such a simple technique. Finally the Mycielskian-based lower bound also helps. However,

27

Hebrard & Katsirelos

0 0.1 0.2 0.3 0.4 0.5

100

101

102

103

104

105

106

107

Proof ratio

C
P

U
ti

m
e

(m
s)

gc-cdcl

gc-cdcl\P
gc-cdcl\P,M

gc-cdcl\P,M,O

gc-cdcl\P,M,O,L

(a) Top-down methods

0 0.1 0.2 0.3 0.4 0.5

100

101

102

103

104

105

106

107

Proof ratio

C
P

U
ti

m
e

(m
s)

gc-cdcl↑
gc-cdcl↑ \P

gc-cdcl↑ \P,M
gc-cdcl↑ \P,M,O

gc-cdcl↑ \P,M,O,L

(b) Bottom-up methods

Figure 5: Factor analysis – ratio of optimality proofs over time on the DIMACS data set

method
Optimal χup χlow gap (ub) gap (lb)

avg avg (G) avg avg (G) avg avg avg

gc-cdcl↑ 0.51515 15.335 30.575 11.508 18.989 0.1380 0.0821
gc-cdcl 0.51414 15.023 29.721 10.671 18.505 0.0766 0.2666

gc-cdcl↑ \P 0.51414 15.335 30.575 11.491 18.972 0.1380 0.0857
gc-cdcl\P 0.51010 15.043 29.723 10.668 18.503 0.0776 0.2676

gc-cdcl↑ \P,M,O 0.49798 15.185 30.381 11.316 18.915 0.1261 0.1335
gc-cdcl↑ \P,M 0.49495 15.335 30.575 11.423 18.866 0.1380 0.0953
gc-cdcl\P,M 0.49192 15.044 29.727 10.388 18.384 0.0783 0.2915

gc-cdcl\P,M,O 0.46263 15.209 30.084 10.280 18.339 0.1027 0.3283
gc-cdcl↑ \P,M,O,L 0.35556 15.516 30.666 11.053 18.747 0.1560 0.1545
gc-cdcl\P,M,O,L 0.35253 15.265 30.114 10.029 18.212 0.1065 0.3597

Table 5: Factor analysis – detailed results on the DIMACS data set

its impact is limited. For instance, with respect to gc-cdcl\P,M , gc-cdcl\P increases the
proof ratio by 3.7%, the mean lower bound by 0.6%, and decreases the mean upper bound
by a tiny fraction. Finally, even though the impact is very slight, pruning by contracting
vertices when the marginal cost of adding the edge is too high seems to help. In particular,
we can see in Figure 5 that the improvement is larger for lower CPU time. In other
words, this technique only slightly improve the results, but it helps achieve similar results
significantly earlier (CPU time is log scaled). This phenomenon is not usual with relatively
weak pruning mechanisms.

Finally, the results in Table 6 compare different variants of our approach.

In particular, we show the results of using color variables and channelling constraints.
The variants denoted gc-cdclcol and gc-cdclcolvsids augment the model used in gc-cdcl

with a color variable xv for every vertex v of the graph. Moreover, for every pair u,v of

28

Constraint and Satisfiability Reasoning for Graph Coloring

gc-cdcl gc-cdclcol gc-cdclcolvsids gc-cdclinc gc-cdclpru gc-cdclIS gc-cdcltr

χup χlow χup χlow χup χlow χup χlow χup χlow χup χlow χup χlow

DSJ 14 76.0 32.5 76.6 32.5 78.4 32.5 76.0 32.5 76.7 32.5 76.3 32.4 76.1 32.5
FullIns 14 6.8 6.8 6.8 6.8 6.8 6.7 6.8 6.8 6.8 6.7 6.8 6.5 6.8 6.8
Insertions 11 5.2 2.5 5.2 2.5 5.2 2.5 5.2 2.5 5.2 2.5 5.2 2.5 5.2 2.5
abb313GPIA 1 10.0 8.0 10.0 8.0 10.0 8.0 10.0 8.0 10.1 8.0 9.9 8.1 10.0 8.0
ash 3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.3 3.7 4.0 4.0
flat 6 73.9 12.5 74.3 12.5 43.3 12.5 74.0 12.5 74.9 12.5 74.3 12.5 74.0 12.5
fpsol2 1 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0
inithx 1 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0
latin 1 118.2 90.0 122.0 90.0 126.9 90.0 121.2 90.0 120.2 90.0 119.2 90.0 118.0 90.0
le450 10 14.8 13.0 15.9 13.0 15.2 13.0 14.9 13.0 15.4 13.0 15.0 13.0 14.8 13.0
miles1000 1 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0
mug 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
myciel 5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 6.0 6.0
qg 4 58.0 57.5 58.0 57.5 58.4 57.5 58.0 57.5 58.2 57.5 58.1 57.5 58.0 57.5
queen 12 12.6 11.3 12.7 11.3 12.8 11.3 12.7 11.3 12.7 11.3 12.7 11.3 12.7 11.3
school1 2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
wap0 8 46.0 41.4 45.8 41.4 46.0 41.4 45.9 41.4 46.1 41.4 46.0 41.4 46.0 41.4
will199GPIA 1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

Table 6: Variants of the method – breakdown by class of DIMACS instances

vertices we add the constraint xv 6= xu if the edge (uv) is in the graph, and otherwise we
add the constraint euv ⇐⇒ xv = xu. The former uses Dsatur as branching heuristic,
whereas the latter uses VSIDS (Moskewicz et al., 2001).

We can observe that the methods using color variables are overall not as efficient. There
are few exceptions, for instance gc-cdclcolvsids obtains extremely good results on the flat

class. However, this result cannot be attributed to VSIDS as the best upper bounds are
found almost backtrack-free. Rather this seems to be the consequence of the input order
and the pruning provided by the channelling constraints being lucky on these instances.

Then we show the impact of: updating the cliques incrementally for the lower bound
as described in Section 5.1 (gc-cdclinc); pruning both implied contractions and edge addi-
tions as described in Section 6.3 (gc-cdclpru); the independent set extraction preprocessing
method described in Section 6.2 (gc-cdclIS); and the transitivity-aware adaptation of unit
propagation described in Section 4.3 (gc-cdcltr).

A virtual best method would use almost all of these techniques, except the additional
pruning which seems to be systematically too costly to be useful. In particular, transisivity-
aware unit propagation significantly helps on the large latin instance and on the class le450
while almost matching the overall results of the chosen default: it solves the same number
of instances and the mean upper bound is only 0.04% higher. The other variants however,
are slightly worse than the default on average.

29

Hebrard & Katsirelos

8. Conclusion

We have presented a CP/SAT hybrid approach to graph coloring. The approach uses a new,
sophisticated, lower bound that generalizes the clique bound and is inspired by Mycielskian
graphs. We combined it with clause learning, effective primal heuristics for coloring, prun-
ing, and preprocessing, to get a solver that in both its configurations outperforms the
previous state of the art in satisfiability-based coloring, constraint programming-based col-
oring, as well as a MIP model of the problem. The main disadvantage of the approach is
that it requires one Boolean variable for each non-edge of the graph and hence cannot scale
to large sparse graphs.

Acknowledgements

The second author was partially supported by the french “Agence nationale de la
Recherche”, project DEMOGRAPH, reference ANR-16-C40-0028.

References

Aardal, K. I., Van Hoesel, S. P., Koster, A. M., Mannino, C., & Sassano, A. (2007). Models
and solution techniques for frequency assignment problems. Annals of Operations
Research, 153 (1), 79–129.

Abello, J., Pardalos, P., & Resende, M. G. C. (1999). External memory algorithms. In
Abello, J. M., & Vitter, J. S. (Eds.), In External Memory Algorithms, chap. On Max-
imum Clique Problems in Very Large Graphs, pp. 119–130. American Mathematical
Society, Boston, MA, USA.

Bessiere, C., Katsirelos, G., Narodytska, N., & Walsh, T. (2009). Circuit Complexity and
Decompositions of Global Constraints. In Proceedings of IJCAI 2009.

Brélaz, D. (1979). New Methods to Color the Vertices of a Graph. Commun. ACM, 22 (4),
251–256.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., & Markstein,
P. W. (1981). Register allocation via coloring. Comput. Lang., 6 (1), 47–57.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pp. 151–158.

Cornaz, D., & Jost, V. (2008). A one-to-one correspondence between colorings and stable
sets. Operations Research Letters, 36 (0), 673–676.

De Cat, B., Denecker, M., Bruynooghe, M., & Stuckey, P. (2015). Lazy model expansion:
Interleaving grounding with search. Journal of Artificial Intelligence Research, 52,
235–286.

Eppstein, D., Löffler, M., & Strash, D. (2013). Listing All Maximal Cliques in Large Sparse
Real-World Graphs. ACM Journal of Experimental Algorithmics, 18 (3.1–3.21).

30

Constraint and Satisfiability Reasoning for Graph Coloring

Frost, D., & Dechter, R. (1995). Look-ahead Value Ordering for Constraint Satisfaction
Problems. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI-1995), pp. 572–578.

Furini, F., Gabrel, V., & Ternier, I.-C. (2016). Lower bounding techniques for dsatur-based
branch and bound. Electronic Notes in Discrete Mathematics, 52, 149 – 156. INOC
2015 – 7th International Network Optimization Conference.

Gomes, C., Selman, B., & Kautz, H. (1998). Boosting Combinatorial Search Through Ran-
domization. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-1998), pp. 431–438.

Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1, 169––197.

Hebrard, E., & Katsirelos, G. (2018). Clause Learning and New Bounds for Graph Coloring.
In Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming (CP-2018), pp. 179–194.

Huang, J. (2007). The Effect of Restarts on the Efficiency of Clause Learning. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI-2007).

Jansen, B. M., & Pieterse, A. (2018). Optimal data reduction for graph coloring using
low-degree polynomials. CoRR, abs/1802.02050.

Jiang, H., Li, C., & Manyà, F. (2017). An Exact Algorithm for the Maximum Weight
Clique Problem in Large Graphs. In Proceedings of the 31st Conference on Artificial
Intelligence (AAAI-2017), pp. 830–838.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA,
pp. 85–103.

Katsirelos, G., & Bacchus, F. (2005). Generalized Nogoods in CSPs. In Proceedings of the
20th National Conference on Artificial Intelligence (AAAI-2005), pp. 390–396.

Lick, D. R., & White, A. T. (1970). k-degenerate graphs. Canadian Journal of Mathematics,
22, 1082–1096.

Lin, J., Cai, S., Luo, C., & Su, K. (2017). A Reduction based Method for Coloring Very
Large Graphs. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI-2017), pp. 517–523.

Lovász, L. (1979). On the shannon capacity of a graph. IEEE Transactions on Information
Theory, 25, 1–7.

Malaguti, E., Monaci, M., & Toth, P. (2011). An exact approach for the vertex coloring
problem. Discrete Optimization, 8 (2), 174 – 190.

Malaguti, E., & Toth, P. (2010). A survey on vertex coloring problems. ITOR, 17 (1), 1–34.

Marques-Silva, J. P., & Sakallah, K. A. (1999). GRASP—a search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48 (5), 506–521.

31

Hebrard & Katsirelos

Mehrotra, A., & Trick, M. A. (1995). A column generation approach for graph coloring.
INFORMS Journal on Computing, 8, 344–354.

Mehrotra, A., & Trick, M. A. (1996). A column generation approach for graph coloring.
INFORMS Journal on Computing, 8 (4), 344–354.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering
an Efficient SAT Solver. In Proceedings of the 39th Design Automation Conference
(DAC-2001), pp. 530–535.

Mycielski, J. (1955). Sur le coloriage des graphes. In Colloq. Math, Vol. 3, pp. 161–162.

Newman, N., Fréchette, A., & Leyton-Brown, K. (2017). Deep optimization for spectrum
repacking. Commun. ACM, 61 (1), 97–104.

Ohrimenko, O., Stuckey, P. J., & Codish, M. (2007). Propagation = lazy clause generation.
In Bessiere, C. (Ed.), Proceedings of the 13th International Conference on Principles
and Practice of Constraint Programming (CP-2007), Vol. 4741 of LNCS, pp. 544–558.
Springer-Verlag.

Park, T., & Lee, C. Y. (1996). Application of the graph coloring algorithm to the frequency
assignment problem. Journal of the Operations Research society of Japan, 39 (2),
258–265.

Schaafsma, B., Heule, M., & van Maaren, H. (2009). Dynamic Symmetry Breaking by
Simulating Zykov Contraction. In 12th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT-2009), pp. 223–236.

Segundo, P. S. (2012). A new dsatur-based algorithm for exact vertex coloring. Computers
& Operations Research, 39 (7), 1724 – 1733.

Stergiou, K. (2008). Heuristics for Dynamically Adapting Propagation. In Proceedings of
the 18th European Conference on Artificial Intelligence (ECAI-2008), pp. 485–489.

Tarjan, R. E., & van Leeuwen, J. (1984). Worst-case analysis of set union algorithms.
Journal of the ACM, 31 (2), 245–281.

Trick, M. A. (Ed.). (2002). Computational Symposium on Graph Coloring and its General-
izations (COLOR-2002).

Van Gelder, A. (2008). Another Look at Graph Coloring via Propositional Satisfiability.
Discrete Appl. Math., 156 (2), 230–243.

Van Hentenryck, P., Ågren, M., Flener, P., & Pearson, J. (2003). Tractable Symmetry
Breaking for CSPs with Interchangeable Values. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-2003), pp. 277–282.

Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex
coloring problems on very large sparse networks. INFORMS J. on Computing, 27 (1),
164–177.

Walsh, T. (2000). SAT v CSP. In Principles and Practice of Constraint Programming - CP
2000, 6th International Conference, Singapore, September 18-21, 2000, Proceedings,
pp. 441–456.

32

Constraint and Satisfiability Reasoning for Graph Coloring

Zhou, Z., Li, C.-M., Huang, C., & Xu, R. (2014). An exact algorithm with learning for the
graph coloring problem. Computers & Operations Research, 51, 282–301.

Zykov, A. A. (1949). On some properties of linear complexes. Mat. Sb. (N.S.), 24(66)(2),
163–188.

33

