
HAL Id: hal-02907067
https://laas.hal.science/hal-02907067

Submitted on 30 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Approximation within Constraint Programming
to Solve the Parallel Machine Scheduling Problem with

Additional Unit Resources
Arthur Godet, Xavier Lorca, Emmanuel Hébrard, Gilles Simonin

To cite this version:
Arthur Godet, Xavier Lorca, Emmanuel Hébrard, Gilles Simonin. Using Approximation within Con-
straint Programming to Solve the Parallel Machine Scheduling Problem with Additional Unit Re-
sources. Thirty-Fourth AAAI Conferance on Artificial Intelligence (AAAI’20), Feb 2020, New-York,
United States. pp.1512-1519, �10.1609/aaai.v34i02.5510�. �hal-02907067�

https://laas.hal.science/hal-02907067
https://hal.archives-ouvertes.fr

Using Approximation within Constraint Programming to Solve the Parallel
Machine Scheduling Problem with Additional Unit Resources

Arthur Godet,1 Xavier Lorca,2 Emmanuel Hebrard,3 Gilles Simonin1

1 IMT Atlantique, LS2N - UMR CNRS 6004, 44307, Nantes, France
2 Centre Génie Industriel, IMT Mines Albi, France

3 CNRS, LAAS-CNRS, Université de Toulouse
arthur.godet@imt-atlantique.fr, xavier.lorca@mines-albi.fr, hebrard@laas.fr, gilles.simonin@imt-atlantique.fr

Abstract

In this paper, we consider the Parallel Machine Scheduling
Problem with Additional Unit Resources, which consists in
scheduling a set of n jobs on m parallel unrelated machines
and subject to exactly one of r unit resources. This problem
arises from the download of acquisitions from satellites to
ground stations. We first introduce two baseline constraint
models for this problem. Then, we build on an approxima-
tion algorithm for this problem, and we discuss about the
efficiency of designing an improved constraint model based
on these approximation results. In particular, we introduce
new constraints that restrict search to executions of the ap-
proximation algorithm. Finally, we report experimental data
demonstrating that this model significantly outperforms the
two reference models.

Introduction
Scheduling problems have long been studied for their im-
portance and relevance to real-life applications, especially
in but not limited to manufacturing. In the Parallel Ma-
chines Scheduling problem, as many jobs as machines can
be processed simultaneously. There are several variants of
this problem (Allahverdi 2015). Among them, those involv-
ing additional resources are of particular interest and their
complexity and approximability was the focus of significant
research (Blazewicz, Lenstra, and Kan 1983).

The Parallel Machine Scheduling Problem with Addi-
tional Unit Resources (PMSPAUR) is a scheduling prob-
lem with n jobs to be processed on m parallel machines
and each job is subject to exactly one of r disjunctive re-
sources. This problem is a generalisation of P ||Cmax which
is strongly NP-hard (Blazewicz, Lenstra, and Kan 1983;
Garey and Johnson 1978). A survey by Edis, Oguz, and
Ozkarahan reports known approximation bounds for several
variants of parallel machines scheduling problem, including
a generalization of PMSPAUR (2013). However, the best ap-
proximation algorithm for this problem was proposed more
recently in (Hebrard et al. 2016). This problem has several
real-life applications. One of them is the problem of plan-
ning the download of acquisitions made by agile observa-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion satellites (Pralet et al. 2014; Hebrard et al. 2016). These
satellites rotate around the Earth and make acquisitions of
data that are saved in memory banks inside the satellites. A
memory bank can be seen as a hard drive, and so only one
picture can be read at a time from a memory bank. When
making an acquisition, the satellite uses r different optic fre-
quencies, and so generates r different files. There are exactly
r memory banks, storing the different files. The pictures
can be transmitted to ground stations only at certain periods
of time, called download windows, because of the rotation
around the Earth. Moreover, when the satellite is well posi-
tioned and so can transfer data to ground stations, m com-
munication channels are open, but only files from distinct
memory banks can be transferred in parallel. The objective
is to minimise the total completion time, called makespan.
Indeed, the objective is to know whether it is possible to
download all the files during a given download window or
not. This problem is generally part of a bigger one, as de-
scribed by Pralet et al. (2014).

The main contribution of this paper is to show how in-
sights from approximation algorithms for PMSPAUR (He-
brard et al. 2016) can be leveraged to design an exact con-
straint programming (CP) model for this problem. In par-
ticular, decision variables stand for potential executions of
a greedy approximation algorithm, which are in turn chan-
neled to a more conventional constraint model for schedul-
ing problems. Moreover, although the goal is to emulate the
approximation algorithm, this is achieved declaratively, by
adding dedicated constraints and dominance relations to the
model. Experimental results clearly show that our method
outperforms other state-of-the-art CP approaches.

The rest of the paper is organised as follows. The next sec-
tion precisely describes the studied problem and recalls the
necessary background. The following section gives a base-
line CP model of PMSPAUR. Then, we show how to use ap-
proximation results into the CP model, and we demonstrate
that finding an optimal schedule can be achieved by find-
ing the right sequence in which processing the jobs through
a specific algorithm. The following section details the CP
model built on these results. And finally, the last section, we
discuss the results of the three models on our instances.

Background and Notation
In the remainder of the paper, we write [i, j] for the set of
integers {i, i+ 1, . . . , j} and [i] as a shortcut for [1, i].

Approximation
Considering a NP-hard minimisation problem P , an ap-
proximation algorithm is a polytime/space algorithm that of-
fers a guarantee on the retrieved solution quality. Basically,
it ensures that the computed result is never larger than a cer-
tain value times a trivial lower bound, defining ρ > 1 the ra-
tio of the approximation algorithm. Note the same algorithm
can have several distinct ratios on different parameters. An
example of this is given by Lemmas 2 and 3.

The Parallel Machines Scheduling Problem with
Additional Unit Resources
We consider a set T = {1, . . . , n} of jobs of fixed dura-
tion pi (i ∈ T) to be processed on m parallel machines.
Moreover, every job requires exactly one among r resources
R1, . . . , Rr. We denote res(i) the resource of the job i. To
simplify the notations we write Rj for the set of jobs requir-
ing the resource Rj , i.e., Rj ≡ {i | res(i) = Rj}.

A schedule is a mapping σ : T 7→ N from jobs to starting
times. Let si be the starting time of job i, obviously we have
si = σ(i). We denote ei = si + pi the completion time of
job i, and σ is said feasible if and only if at any time t ∈ N:

|{i | si ≤ t ≤ ei}| ≤ m (1)
|{i | i ∈ Rj , si ≤ t ≤ ei}| ≤ 1 ∀j ∈ [r] (2)

Equation (1) ensures that no more than m jobs can be si-
multaneously processed and equation (2) that no two differ-
ent jobs requiring the same resource can be simultaneously
processed. We consider the problem of finding a feasible
schedule σ with minimum makespan Cmax = max{ei | i ∈
T }−min{si | i ∈ T }. Given a set of jobs T and a schedule
σ, we denote1 eTmin the earliest idle time of any parallel ma-
chine, eTmax the earliest time at which all parallel machines
are idle, and eTRj

the latest usage time of resource Rj :

eTmin = min{t | t ∈ N ∧ |{i | si ≤ t ≤ ei}| < m}
eTmax = min{t | t ∈ N ∧ |{i | si ≤ t ≤ ei}| = 0}
eTRj

= max{ei | i ∈ Rj}

Finally, we denote LT =
∑
i∈T

pi the sum of the processing

times of all the jobs, and LT (Rj) the sum of the processing
times of the jobs in T requiring resource j:

LT (Rj) =
∑
i∈Rj

pi

Existing Constraint programming approach
To solve scheduling problems in Constraint Programming,
it is common to use task variables to model the problem.

1In the following, the schedule σ is always clear from the con-
text, so we do not include it in the subscript.

A task variable generally has an integer variable to repre-
sent the starting time of the task, as well as an integer vari-
able for the ending time. The processing time of the task
is either an integer variable or an integer constant. A task
variable also has a height, which can either be an integer
variable or an integer constant, and corresponding to the
consumption of resources of the task. These task variables
are used within the CUMULATIVE (Aggoun and Beldiceanu
1992) constraints. For DISJUNCTIVE constraints, the task
variables have necessarily a height of 1. In the following,
we use DISJUNCTIVE constraints as described in (Fahimi,
Ouellet, and Quimper 2018). For CUMULATIVE constraints,
we use the edge-finding algorithm from (Vilı́m 2009), the
time-tabling algorithm from (Ouellet and Quimper 2013)
and the not-first/not-last and overload-checking algorithms
from (Fahimi, Ouellet, and Quimper 2018).

For all i ∈ [n], let Ti be a task variable, which starts at si
lasts pi and ends at ei. The variables { Ti, i ∈ [n]} are all of
height 1. For all i ∈ [n], the domain of si is [0, LT −pi], and
since the duration pi is constant, ei is functionally dependent
on si. Moreover, we have an integer variable Cmax with do-
main

[
max

(
LT
m ,max

j
LT (Rj)

)
, LT

]
standing for the time

needed to execute a schedule, to be minimised. Then, the
constraints are:

DISJUNCTIVE({Ti, i ∈ Rj}), ∀j ∈ [r] (3)
CUMULATIVE({Ti, i ∈ [n]},m) (4)

Cmax = max
i∈[n]

(ei) (5)

The DISJUNCTIVE constraint (3) ensures that no more
than one job from a resource can be processed at any time.
The CUMULATIVE constraint (4) ensures that no more than
m jobs can be processed concurrently, that is that we do
not exceed the machines capacity. Finally, the MAX con-
straint (5) is here to link the makespan Cmax with the start-
ing variables of the jobs. Notice that although this model
does not specify on which machine each job is processed,
given a solution, it is possible to compute a valid assignment
of jobs to machines in polynomial time.

To explore the search space, a search heuristic is applied
to select variables and values on which branching along a
depth-first exploration strategy of a binary tree. In CP, there
exist generic search heuristics as domOverWDeg (Bousse-
mart et al. 2004). In scheduling problems, it is natural to
try to schedule tasks as early as possible. The search called
smallest represents this idea. It selects the variable si with
the smallest lower bound among the uninstantiated ones and
branches by instantiating this variable to its lower bound.
On the other hand, Godard, Laborie, and Nuijten present in
2005 a search heuristic called SetTimes (Godard, Laborie,
and Nuijten 2005) which consists in selecting, as for small-
est, the variable si with the smallest lower bound among
the uninstantiated ones, but, when backtracking, SetTimes
would not try to branch on this variable again until the other
constraints, that are CUMULATIVE and DISJUNCTIVE con-
straints here, increase the variable’s lower bound.

Using approximation results
In this section, we recall some results from (Hebrard et al.
2016) and extend them in order to be used in a CP solver.
Algorithm 1 shows the basic procedure EnQueue. It simply

Algorithm 1: EnQueue
Data: schedule : σ,job : i
Result: Schedule σ with job i enqueued
σ(i)← max(eTmin, e

T
res(i))

return σ

inserts the job i given as argument at the “back” of the sched-
ule, at the earliest possible time. More precisely, it sched-
ules it at time t equals to the maximum between the earliest
idle time of any machine eTmin and the maximum usage time
eTres(i) of res(i). Applying the procedure on a sequence of
the jobs gives a feasible schedule, as stated by Lemma 2 in
(Hebrard et al. 2016). Moreover, we get from Corollary 1 of
the same paper that calling EnQueue on any sequence of
jobs is a (2 − 1

m)-approximation algorithm, for m parallel
machines.

In the remainder of this section, we prove that there exists
a sequence of operations σ ← EnQueue(σ, i) that yields an
optimal schedule, and hence can be the basis for a complete
algorithm. Moreover, we show how to cut branches in the
corresponding search tree.

Getting an optimal schedule via a sequence of
EnQueue operations
Definition 1. A schedule is left-shifted if no job can possibly
be processed earlier without violating a resource constraint.
Definition 2. A schedule is persistent if every pair of jobs
sharing a resource and immediately consecutive are pro-
cessed on the same machine.
Definition 3. A schedule is dense if there is no t1 < t2 such
that a machine is idle during [t1, t2[and in process at t2.
Lemma 1. There exists a left-shifted persistent dense opti-
mal schedule.

Proof. The fact that there exists an optimal left-shifted
schedule is trivial.

Consider a left-shifted optimal schedule with two jobs i1
and i2 requiring the same resource such that ei1 = si2 but
processed on two distinct machines, Mx and My , respec-
tively. Then we can reassign i2 and all the trailing jobs on
My to Mx, and all the jobs subsequent to i1 on Mx to My .
Clearly, this operation changes no start time and cannot vi-
olate a resource constraint if it did not before the operation.
The solution obtained is therefore equivalent and the opera-
tion can be repeated until there is no such occurrence. There-
fore, there exists a left-shifted persistent optimal schedule.

Now, suppose that, in such a left-shifted persistent sched-
ule, a machine M is idle in an interval [t1, t2[and in process
at time t2. Since the job starting at time t2 on this machine
is left-shifted, then there must exist a job ending at time t2
on some other machine. However, this would contradict the
fact that this schedule is persistent.

Theorem 1. There exists a sequence of operations
σ ← EnQueue(σ, i) that lead to an optimal schedule.

Proof. Let σ be a left-shifted persistent dense optimal
schedule, and order the jobs by their start times in σ in in-
creasing order, and let rename them accordingly.

We show by induction on the rank of the jobs in the order-
ing, that the corresponding sequence of calls to EnQueue
produces σ (up to machine symmetries). This is trivially true
for a single job. Suppose this is true until job i, and call σi
the schedule restricted to jobs 1 to i.

If the start time of i + 1 is the earliest idle time t of any
machine in σi, then there is no job requiring res(i + 1) in
process after t. If there was such a job, since its start time is
less than or equal to t, i+ 1 could not start at t in σ. There-
fore, EnQueue inserts that job on a machine with earliest
idle time in σi yielding the same start time as in σ.

If the start time of i+1 is not the earliest idle time t of any
machine in σi, then, since σ is dense, no job i′ > i may be
processed on the first-ending machine in σ. Therefore, since
the schedule is left-shifted, all jobs subsequent to i must re-
quire one the resources used at time t (of which there are
at most m − 1). Since σ is persistent it has only one possi-
ble configuration: all the jobs of each resource are processed
by a single machine. Since EnQueue does insert job i + 1
following the previous job requiring the same resource, job
i+ 1 will have the same starting time as in σ.

Therefore, there exists a sequence of calls to EnQueue
that produces an optimal schedule.

The search tree that explores the permutations of jobs to
EnQueue is thus guaranteed to contain an optimal solution.

Remark 1. Moreover, from the proof of Theorem 1, we can
observe that it is sufficient to explore only the orderings con-
sistent with the chronological order in the resulting sched-
ule. Notice that this might not be the case when the resource
required by the next job i is in use at time t and there is
another job i′ with i′ > i that might be inserted to start at
time t. In that case, inserting first i and then i′ or the reverse
yields the same schedule.

Algorithm 2 explores only chronological-compatible or-
derings of EnQueue operations. At each choice point, it
computes a set I of jobs that can possibly start at eTmin. If
this set is not empty, it is sufficient to branch on the possi-
ble permutations of EnQueue operations restricted to these
jobs, by Remark 1. Otherwise, by the same argument, it is
sufficient to branch on the jobs whose resource finishes first.

Additional rules to cut branches in the search tree
In the subsequent paragraphs, we propose rules to reduce the
size of the search space by cutting branches that are domi-
nated. We assume that jobs are indexed by their order on the
branch we consider. Therefore, when inserting i, previous
jobs are already allocated to machines and have a fixed start
time, whereas following jobs are not scheduled yet.

Let recall another algorithm presented in (Hebrard et al.
2016) that will be of use here: MaxLoad (see Algorithm 3).

Algorithm 2: Search
Data: jobs : T ,schedule : σ,int : ub
Result: Minimum makespan of a completion of σ to T
Cmax ← max{eRT

j
| 1 ≤ j ≤ r}

if ub ≤ Cmax then return ub
if T = ∅ then return Cmax

I ← {i ∈ T , eTres(i) ≤ e
T
min}

if I 6= ∅ then
return mini∈I{Search(T \{i}, EnQueue(σ, i))}

else
J ← (argminj e

T
Rj
∩ T)

return mini∈J {Search(T \{i}, EnQueue(σ, i))}

Algorithm 3: MaxLoad
Data: (jobs : T)
Result: A schedule with an approximation guarantee
σ ← ∅
while T 6= ∅ do

let Rj be a resource with maximum load LT (Rj)
pick any job i ∈ T such that i ∈ Rj

T ← T \ {i}
σ ← EnQueue(σ, i)

return σ

Theorem 2. MaxLoad finds the optimal completion of any
sequence of jobs if there are no more than m resources re-
quired by the remaining jobs.

Proof. First, assume that the set of resources in use in the
interval [eTmin, e

T
max[is disjoint from the resources required

by the remaining jobs. In this case we can view the problem
as a generalisation where each parallel machine Mz has a
release date eMz .

We prove that MAXLOAD is optimal in this case by in-
duction on the number of machines m. For m = 1 this is
trivial. Now suppose that this is true for m machines and
consider the case for m + 1 machines. MAXLOAD picks
the resource Rj that maximises LT (Rj) and will eventu-
ally process every job requiring Rj on the machine Mx with
earliest release time. If one of these jobs is the last com-
pleted job, then the solution is optimal, so we assume that
the last completed job is on another machine My and re-
quires Rj′ . The other choices made by the algorithm are
completely independent of those on machine Mx and there-
fore we know that the other tasks are optimally scheduled
on the m other machines. In particular, there is no resource
except for Rj whose jobs we can swap for jobs requiring
Rj′ in order to improve the schedule. However swapping
the jobs of Rj with those of Rj′ does not help either since
LT (Rj) ≥ LT (Rj′) and the release date of My is larger
than or equal to that of Mx.

Now, suppose that there exist resources in use during
[eTmin, e

T
max[required by at least one remaining job. We can

transform the instance as follows: for every machine Mz

which is idle at time eMz , there is a unique resource in
use in the interval [eTmin, e

T
max[(Lemma 2 in (Hebrard et

al. 2016)). If this resource is required by some remaining
job, we create a job of length eMz

− eTmin requiring that re-
source and we set the release time of this machine to eTmin.
Otherwise, we simply set the release time of this machine to
eMz

. This new instance corresponds to the previous case and
is thus optimally solved by MAXLOAD. Moreover, observe
that the completion is such that every job requiring a given
resource is processed by the same machine, and therefore the
permutation of jobs on each machine does not matter. There-
fore, this solution is also optimal for the original case.

Let LT (Rj) denote the sum of the processing times of the
jobs in T that do not require resource Rj .

Lemma 2. Let j be such that LT (Rj) is maximum. If
LT (Rj) ≥ 2LT (Rj)/m then the minimum makespan of any
schedule of T is LT (Rj).

Proof. Trivially, LT (Rj) is a lower bound, therefore we
only need to prove that the condition of the lemma entails
that there is a solution with that makespan.

By Theorem 3 in (Hebrard et al. 2016) MAXLOAD is a
(2 − 2

m+1)-approximation algorithm. Moreover, the proof
of this theorem shows that for any instance with set of jobs
T , either:

1. one resource is in use at all times in the optimal schedule;

2. or the makespan σ found by MAXLOAD is at most(
2− 2

m+1

) ∑
i∈T pi

m .

Now suppose that the condition of the lemma holds and
consider the schedule where every job requiring resource
Rj is processed on the same machine, and all the remain-
ing jobs on the m − 1 other machines. The makespan of
this solution is thus the maximum between LT (Rj) and the
makespan Cmax of the optimal solution of the sub-instance
containing every job in T that do not require Rj and only
m − 1 parallel machines. By Theorem 3 in (Hebrard et al.
2016), the optimal makespan Cmax for this instance is ei-
ther LT (Rj′) for some j′, or at most (2 − 2

m)
LT (Rj)
m−1 =

2LT (Rj)/m. Since LT (Rj) ≥ LT (Rj′), we have in both
cases max(LT (Rj), Cmax) = LT (Rj).

Lemma 3. Let j be such that LT (Rj) is maximum. If
LT (Rj) ≥ ((m − 2)pmax + LT (Rj))/(m − 1) then the
minimum makespan is LT (Rj), with pmax the duration of
the longest job not requiring Rj .

Proof. The proof is exactly the same as that of Lemma 2,
except that it uses Theorem 2 instead of Theorem 3 in (He-
brard et al. 2016), where case 2 is: Cmax ≤

∑
i∈T pi

m +(
1− 1

m

)
pmax

Model using approximation results
The model we present in this section leverages the previ-
ous results in order to improve on the baseline constraint
programming model. In particular, we add variables stand-
ing for the ordering of operations EnQueue, and constraints
emulating their behavior and channelling with the original
variables. Backtrack search will then find a sequence of op-
erations EnQueue (σ, i) that yields an optimal schedule, the
existence of which is assured by Theorem 1. To that extent,
we use integer variables standing for a permutation:
∀k ∈ [n], ok is an integer variable of domain [n]

Variable ok taking value i indicates that job i is enqueued
kth. We also add to the model the following constraints:

(i) ALLDIFFERENT({ok, k ∈ [n]})
(ii) ENQUEUECSTR({ok, k ∈ [n]}, {si, i ∈ [n]})

(iii) APPROXCSTR({ok, k ∈ [n]}, {si, i ∈ [n]})
The ALLDIFFERENT constraint (Régin 1994) assures that

{ok, k ∈ [n]} is a permutation of [n]. The ENQUEUECSTR
constraint ensures the channeling between the ordering vari-
ables and the variables standing for start time. The domi-
nance relation it enforces is correct by Theorem 1. The con-
straint APPROXCSTR enforce the stopping conditions corre-
sponding to Lemmas 2 and 3.

ENQUEUECSTR

Definition 4. The constraint ENQUEUECSTR ensures that
start times are consistent with a sequence of EnQueue op-
erations given by the ordering variables.

ENQUEUECSTR({ok, k ∈ [n]}, {si, i ∈ [n]})

⇐⇒ ∀k ∈ [n], sok = max
(
e
{ol|l<k}
min , e

{ol|l<k}
res(ok)

)
The propagation of this constraint is decomposed in two

separate part: the forward channeling from the ordering to
the start time, and the backward channeling from start time
to the ordering. We do not try to enforce generalized arc-
consistency on this constraint. Instead, we focus on the vari-
able ok such that for all l < k, ol is instantiated. This is
sufficient to emulate Algorithm 2, while being efficient.

Notice that ENQUEUECSTR is related to the SetTimes
heuristic. However, whereas the latter prevents assignments
that do not yield different orderings, the former also forbids
assignments that do not yield dense schedules.

Forward Channeling
The forward channeling consists in iterating over the vari-
ables {ok, k ∈ [n]} in lexicographic order while they are
instantiated, and setting the start time sok according to Def-
inition 4. Moreover, the following proposition makes it pos-
sible to implement forward channeling very efficiently, if we
make the three following assumptions:

1. The model has no further constraints.
2. We branch on the variables {ok | k ∈ [n]} only.
3. The propagator for forward channeling has a strictly lower

priority than constraints (3) and (4)

M1 7

M2 3 6

M3 4 2

Figure 1: EnQueue procedure result

Proposition 1. If every variable in {ok | k ≤ f} is instan-
tiated, and the solver has reached a fix point with respect to
constraints (3) and (4), then the smallest value in the domain
of sof is max

(
e
{ok|k<f}
min , e

{ok|k<f}
res(of)

)
.

Proof. Suppose that the variables {ok | k ≤ f} are all in-
stantiated. Observe that the variables {sok | k < f} are all
instantiated as well. As a result, very weak hypothesis on the
propagators for constraint (4) are sufficient to ensure that the
minimum value in the domain of sof is larger than or equal
to t1 = e

{ok|k<f}
min , since the resource is fully used until this

time. By Lemma (2) in (Hebrard et al. 2016), if a resource
Rj is used later than t1, then it is in use in the whole inter-
val [t1, t2] with t2 = e

{ok|k<f}
Rj

. Therefore, again weak hy-
pothesis on the propagators for constraint (3) are sufficient
to ensure that no value smaller than t2 are in the domain of
sof .

On the other hand, there exists at least one branch leading
to an optimal schedule where the value max(t1, t2) is in the
domain of sof , by Theorem 1

Therefore, in that situation we can simply set the value of
the variable sof to its minimum value.

Proposition 2. Forward channeling can be implemented to
run in O(n) time over a branch.

Proof. We can keep a reversible integer f for the smallest
value for which the variables {sol | l ≤ f} are all instanti-
ated. When the variable of+1 is instantiated, we increment
f until the invariant is satisfied, and we set the domain of
every variable along the way to its minimum value. So each
variable is explored at most once along a branch.

Example 1. Let consider the example depicted by the fol-
lowing resources: R1 with Jobs’ processing time: 7, 2, 1, 4;
R2 with Jobs’ processing time: 3; R3 with Jobs’ processing
time: 4, 2; R4 with Jobs’ processing time: 6, 3, 2; where the
jobs being ordered as they come. That is, for example job 2
with a processing time of 2 requires R1, and job 6 with a
processing time of 4 requires R3. If we have o1 = 1, o2 = 5,
o3 = 6, o4 = 7 and o5 = 8, which corresponds to the partial
schedule represented on Figure 1, the filtering algorithm of
ENQUEUECSTR will instantiate s1, s5, s6 to 0, s7 to 4 and
finally s8 to 3.

Backward Channeling
As shown in the proof of Proposition 1, the minimum in the
domain of a variable si is correctly maintained to the maxi-
mum of e{ok|k<g}

min and e{ok|k<g}
res(i) via constraint propagation.

Therefore, any assignment of the variable og is consistent for

ENQUEUECSTR. However, from Remark 1, we see that we
can restrict search to sequences of EnQueue operations that
are chronologically compatible. Therefore, if t is the mini-
mum value in the domain of any job in [n] \ {ok | k < g},
then we can prune the value i from the domain of og if the
domain of si does not contain t. Indeed, the job whose start
time can be t cannot require res(i) and therefore, enqueue-
ing this job or job i in any order yields the same schedule.

Proposition 3. The filtering algorithm for backward chan-
neling runs in O(n) time.

Proof. Computing t is done in O(n). The first encountered
job i whose start time variable’s domain contains t can be
stored, so this part is done in the size of the domain of the
current o variable.

Remark 2. Note that this dominance rule, and the associ-
ated filtering, must be called after that all other constraints
have been propagated. This can be achieved by setting a low
priority of the propagator.

Example 2. Let consider the same example as Example 1.
The next variable order to be instantiated is o6. In this
example, t is equal to 7. Despite M3 being idle at time
6, since there are jobs only from resources R1 and R4

that are not yet placed, the earliest time at which a job
can be placed is 7 for jobs of resource R1. Since t equals
7, ENQUEUECSTR’s filtering algorithm will remove values
9 and 10 from dom(o6) because none of the correspond-
ing start variables have 7 in their domains. Therefore, af-
ter the call to ENQUEUECSTR’s filtering algorithm and to
ALLDIFFERENT’s propagator, dom(o6) = {2, 3, 4}.

APPROXCSTR

The constraint APPROXCSTR detects some situations where
the approximation algorithm is exact and hence the current
branch can be pruned.

Proposition 4. Let j be such that LT (Rj) is maximum,
LT (Rj) denote the sum of the processing times of the jobs
that do not require resource Rj and finally pmax the dura-
tion of the longest job not requiring Rj .

If LT (Rj)≥ 2LT (Rj)
m or if LT (Rj)≥ (m−2)pmax+LT (Rj)

m−1
or if there are no more than m resources required by the
remaining jobs, then the current schedule can be completed
by algorithm MAXLOAD to the optimal schedule that we
can get from the current state.

Proof. This proposition is the direct application of Theo-
rem 2, Lemma 2 and Lemma 3.

Proposition 5. APPROXCSTR({ok, k ∈ [n]}, {si, i ∈ [n]})
runs inO(n×(r+m)), r being the number of unit resources.

Proof. Computing LT (Rj), LT (Rj) and pmax is done in
O(n). Looking if there are no more than m resources re-
quired by the remaining jobs is done in O(r × n). Fi-
nally, completing the current schedule into an optimal one
given the current state by algorithm MAXLOAD is done in
O(n×(r+m)): APPROXCSTR runs inO(n×(r+m)).

Experimentation
This section is decomposed into three parts. First we intro-
duce the benchmark configuration. Then, we present the six
approaches that were evaluated. Finally, we report and dis-
cuss the results obtained by these approaches. The instances
of the benchmark and the code developed for these research
can be found on GitHub (Godet 2019).

Benchmark presentation
Our benchmark is composed of 234 instances of the Paral-
lel Machine Scheduling Problem with Additional Unit Re-
sources, all of which have been randomly generated. The
randomness of the instance is on the processed time of the
jobs, but is also on the number of jobs in each resources.

parallel machines # Resources
2 3, 4
3 4, 5, 6
5 6, 7, 8, 10
10 12, 15, 17, 20

Table 1: Configurations #ParallelMachines - #Resources

Before generating the jobs and their processing times, we
fixed several configurations for the number of machines and
the number of resources, all of whom are summarized in Ta-
ble 1. The basic idea was to generate, for each number of
machines, instances such that the number of resources was
1.25, 1.5, 1.75 and 2.0 times higher than the number of ma-
chines. For each of this 13 configurations, we generated two
types of instances: the first one has the same number of jobs
for each resource (which is the case in our application, i.e.
planning the download of acquisitions made by agile obser-
vation satellites); the second type has a random, positive,
number of jobs for each resource. We had two other ways
to configure instances generation: the maximal number of
jobs requiring a resource, and the maximal processing time
of any job. The maximal number of jobs requiring a unit
resource could be either 5, 10 or 20. For the first type of in-
stances, each unit resource is required by exactly these num-
bers of jobs. The maximal processing time of a job could
be either 10, 100 or 1000. The generated instances have a
total number of jobs between 6 and 400 and have very dif-
ferent shapes (size, number of machines and resources, short
or large in time, etc.).

Solvers configurations
The experiments were done on an Intel core i7-8650U (up to
4.2 GHz) processor. A time limit of 30 minutes was given for
each model for each instance. The source code, the MiniZ-
inc models and the data files at .dzn format are all available
on the project repository (Godet 2019). Our experiments
compare four different models: a baseline Integer model
and the three models using approximation results, respec-
tively named Order, Order+A (using APPROXCSTR) and
Order+AM (using MaxLoad as value heuristic). All of them
were encoded and tested using Choco Solver (Prud’homme,
Fages, and Lorca 2017). The Integer model was also im-
plemented on the Chuffed lazy-clause generation solver

domOverWDeg smallest SetTimes Chuffed Order Order+A Order+AM

#Proofs / #Solutions 86 / 234 148 / 234 127 / 234 77 / 115 172 / 234 174 / 234 213 / 234

TimeToProof (ms) 48757 1933 1916 20329 1875 342 137

Objective 1.8780 1.0304 1.0617 1.5653 1.0201 1.0180 1.0000

Table 2: Results of the benchmark on the 234 generated instances

domOverWDeg smallest SetTimes Chuffed Order Order+A Order+AM

#Proofs / #Solutions 56 / 86 75 / 86 81 / 86 50 / 86 81 / 86 81 / 86 83 / 86

TimeToProof (ms) 48910 765 828 19111 737 283 120

Objective 1.01638 1.00006 1.00000 1.01258 1.00000 1.00000 1.00000

Table 3: Results of the benchmark - small instances (86 instances of size < 40)

domOverWDeg smallest SetTimes Chuffed Order Order+A Order+AM

#Proofs / #Solutions 25 / 97 58 / 97 39 / 97 16 / 35 76 / 97 76 / 97 87 / 97

TimeToProof (ms) 45765 3926 3911 30463 3791 641 204

Objective 1.3960 1.0212 1.0624 1.4768 1.0016 1.0014 1.0000

Table 4: Results of the benchmark - medium instances (97 instances of size 40 ≥ and < 120)

domOverWDeg smallest SetTimes Chuffed Order Order+A Order+AM

#Proofs / #Solutions 5 / 51 15 / 51 7 / 51 11 / 13 15 / 51 17 / 51 43 / 51

TimeToProof (ms) 59004 17490 15780 294 17166 231 199

Objective 4.2295 1.0975 1.1638 4.6521 1.0893 1.0801 1.0000

Table 5: Results of the benchmark - large instances (51 instances of size 120 ≥ and ≤ 400)

(Chuffed) with its default search heuristic (Chu et al. 2019).
Three search heuristics are used in the experiments: do-
mOverWDeg (Boussemart et al. 2004), smallest and Set-
Times as described in the section presenting the existing CP
model. As SetTimes is close to the one we use in our ap-
proaches, we expect to find similar results in terms of ef-
ficiency. The main difference between the two approaches
is that SetTimes will eventually branch on jobs that do not
have minimum earliest start time (est). Say that you have
two mutually exclusive jobs a and b, with est t and t+ 1 re-
spectively. SetTimes will schedule a first, and if failing, will
not try to schedule a first again, but it will try to schedule b
first and a second. In our model, a is the single candidate for
the next insertion, and hence if that fails we will backtrack
and the ordering b → a will not be tried. The Order and
Order+A models are using the inputOrderLB search heuris-
tic, which consists in selecting variables by order and se-
lecting the lower bound of the selected variable as instantia-
tion value. As part of our search approach, the inputOrderLB
search heuristics acts of course on variables {ok, k ∈ [n]}.
The Order+AM model uses a custom search heuristic based
on a Algorithm 3 that act on variables {ok, k ∈ [n]}.

Results
Table 2 reports an overall of the results obtained for the 234
generated instances. Our approach obtains very good results
at doing the optimality proof for most of the instances. Our

approaches find at least one solution, whatever its quality,
for every instance, while Chuffed does not find any solution
for 119 instances. We can observe that our approaches are
generally faster to prove optimality than any other approach.
Moreover, in general, our approaches get better solutions, as
shown by the line Objective. The values of the line Objec-
tive are computed as the mean of the ratio between the re-
sult of the approach (the makespan of the returned solution)
and the best solution obtained among the seven approaches.
We observe a clear advantage of our approaches (Order, Or-
der+A and Order+AM), also with a clear improvement from
Order to Order+A and from Order+A to Order+AM. It is
interesting to note that the cutting rule allows to prove op-
timality at root node for 60 instances for Order+A and Or-
der+AM models. Analysing the results by considering the
size of the problems in terms of jobs confirms the previous
observations. Consequently, for respectively small instances
(Table 3), medium instances (Table 4) and large instances
(Table 5) observations remain the same.

Conclusion
In this paper, we presented an improved way to solve the
Parallel Machine Scheduling Problem with Additional Unit
Resources (PMSPAUR), using results from Approximation
theory. After recalling definitions and classical models, we
have proved that finding an optimal schedule for PMSPAUR

Figure 2: Number of proofs per milliseconds

can be done by searching a sequence of the jobs to apply
the EnQueue procedure on. We also proved additional rules
that allow to cut branches during the search. Finally, we pre-
sented an advanced model based on finding the sequence
of tasks on which applying EnQueue procedure and based
on these new cutting rules. We experimentally showed that
our Order approach outperforms the classical ones and is
really effective to find an optimal schedule for most of the
instances of the benchmark, even the large ones, especially
when we add the cutting rule and a specific search heuris-
tic (respectively Order+A and Order+AM). Former research
would consist in implementing this approach on other kind
of scheduling problems, and find potential other cutting rules
in the process. Former research would also consist in adapt-
ing this approach to different kind of problems, like ones
based on bin-packing constraints.

References
Aggoun, A., and Beldiceanu, N. 1992. Extending CHIP in
order to solve complex scheduling and placement problems.
In Actes de la 1ères Journées Francophones de Programma-
tion Logique (JFPL), 51.
Allahverdi, A. 2015. The third comprehensive survey on
scheduling problems with setup times/costs. European Jour-
nal of Operational Research 246(2):345–378.
Blazewicz, J.; Lenstra, J. K.; and Kan, A. H. G. R. 1983.
Scheduling subject to resource constraints: classification and
complexity. Discrete Applied Mathematics 5(1):11–24.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In
Proceedings of the 16th Eureopean Conference on Artificial
Intelligence (ECAI), 146–150.
Chu, G.; Stuckey, P. J.; Schutt, A.; Ehlers, T.; Gange, G.;
and Francis, K. 2019. Chuffed, a lazy clause generation
solver. Department of Computing and Information Systems
University of Melbourne, Australia.
Edis, E. B.; Oguz, C.; and Ozkarahan, I. 2013. Parallel ma-
chine scheduling with additional resources: Notation, clas-

sification, models and solution methods. European Journal
of Operational Research 230(3):449–463.
Fahimi, H.; Ouellet, Y.; and Quimper, C. 2018. Linear-
time filtering algorithms for the disjunctive constraint and a
quadratic filtering algorithm for the cumulative not-first not-
last. Constraints 23(3):272–293.
Garey, M. R., and Johnson, D. S. 1978. ”strong” np-
completeness results: Motivation, examples, and implica-
tions. J. ACM 25(3):499–508.
Godard, D.; Laborie, P.; and Nuijten, W. 2005. Random-
ized large neighborhood search for cumulative scheduling.
In Proceedings of the Fifteenth International Conference on
Automated Planning and Scheduling (ICAPS), 81–89.
Godet, A. 2019. Github repository of the project.
https://github.com/ArthurGodet/PMSPAUR-public.
Hebrard, E.; Huguet, M.; Jozefowiez, N.; Maillard, A.;
Pralet, C.; and Verfaillie, G. 2016. Approximation of the
parallel machine scheduling problem with additional unit re-
sources. Discrete Applied Mathematics 215:126–135.
Ouellet, P., and Quimper, C. 2013. Time-table extended-
edge-finding for the cumulative constraint. In Proceed-
ings of the 19th International Conference on Principles and
Practice of Constraint Programming (CP), 562–577.
Pralet, C.; Verfaillie, G.; Maillard, A.; Hebrard, E.; Joze-
fowiez, N.; Huguet, M.; Desmousceaux, T.; Blanc-Paques,
P.; and Jaubert, J. 2014. Satellite data download manage-
ment with uncertainty about the generated volumes. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS).
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2017.
Choco Documentation. TASC - LS2N CNRS UMR 6241,
COSLING S.A.S.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in csps. In Proceedings of the 12th National Con-
ference on Artificial Intelligence (AAAI), 362–367.
Vilı́m, P. 2009. Edge finding filtering algorithm for discrete
cumulative resources in O(kn log(n)). In Proceedings of
the 15th International Conference on Principles and Prac-
tice of Constraint Programming (CP), 802–816.

