
HAL Id: hal-02908925
https://laas.hal.science/hal-02908925

Submitted on 29 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneously Learning Corrections and Error Models
for Geometry-based Visual Odometry Methods

Andrea de Maio, Simon Lacroix

To cite this version:
Andrea de Maio, Simon Lacroix. Simultaneously Learning Corrections and Error Models for
Geometry-based Visual Odometry Methods. IEEE Robotics and Automation Letters, 2020, 5 (4),
pp.6536 - 6543. �10.1109/LRA.2020.3015695�. �hal-02908925�

https://laas.hal.science/hal-02908925
https://hal.archives-ouvertes.fr

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020 1

Simultaneously Learning Corrections and Error
Models for Geometry-based Visual Odometry

Methods
Andrea De Maio1 and Simon Lacroix1

Abstract—This paper fosters the idea that deep learning
methods can be used to complement classical visual odometry
pipelines to improve their accuracy and to associate uncertainty
models to their estimations. We show that the biases inherent
to the visual odometry process can be faithfully learned and
compensated for, and that a learning architecture associated with
a probabilistic loss function can jointly estimate a full covariance
matrix of the residual errors, defining an error model capturing
the heteroscedasticity of the process. Experiments on autonomous
driving image sequences assess the possibility to concurrently
improve visual odometry and estimate an error associated with
its outputs.

Index Terms—Deep Learning for Visual Perception, Visual-
Based Navigation, Localization

I. INTRODUCTION

V ISUAL odometry (VO) is a motion estimation process
successfully applied in a wide range of contexts such as

autonomous cars or planetary exploration rovers [1]. Seminal
works largely resorted to stereovision. By tracking point
features in images, 3D points correspondences are used to
recover the motion between two stereoscopic acquisitions. The
integration of elementary motions yields an estimate of the
robot pose over its course. Continuous work on VO led to
a well established processes pipeline, composed of feature
extraction, matching, motion estimation, and finally optimiza-
tion. This scheme has been extended to single camera setups,
in which case motions are estimated up to a scale factor,
retrieved e.g. by fusing inertial information. Direct methods for
VO have also recently been proposed. They bypass the feature
extraction process and optimize a photometric error [2]. These
methods overcome the limits of sparse feature-based methods
in poorly textured environments or in presence of low quality
images (blurred), and they have proven to be on average more
accurate.

The advent of convolutional neural networks (CNN)
sprouted alternate solutions to VO. The full estimation process
can be achieved by deep-learning architectures in an end-
to-end fashion (see e.g. [3], [4], and especially [5] – note

Manuscript received: February, 24, 2020; Revised June, 04, 2020; Accepted
July, 20, 2020.

This paper was recommended for publication by Editor C. Cadena upon
evaluation of the Associate Editor and Reviewers’ comments.

1Andrea De Maio and Simon Lacroix are with LAAS-CNRS, Université
de Toulouse, CNRS 7, Avenue du Colonel Roche, 31031 Toulouse, France
andrea.de-maio@laas.fr

these work consider the monocular version of the problem,
leaving the scale estimation untackled). In such approaches,

Sparse
Visual

Odometry

Conv layer 1

(correction)

(uncertainty)

D-DICE

errors

estimate

Conv layer 2
Conv layer 3
Conv layer 4
Conv layer 5

corrected
estimate

Fig. 1: D-DICE produces corrections to classic visual odom-
etry methods in a probabilistic framework. The system gen-
erates full covariance matrices that can be used to minimize
errors in pose-graph optimization.

the system has to learn the various information necessary to
perform vision-based egomotion estimation, which can be a
daunting task for a CNN. This paper builds upon existing
work that exploits a CNN to predict corrections to classic
stereo VO methods [6], aiming at improving their precision.
We argue that complementing classical localization processes
with learning-based methods can return better results than
delegating the full pose estimation process to a CNN. On
the one hand, classical localization processes do not output
totally erroneous poses, as a learning approach could when

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

confronted with features unseen in the training set. On the
other hand, classical processes can be monitored by some
explicit indicators (e.g. number of tracked points in VO,
inliers, etc.), so as to detect erroneous cases. Our developments
consider that visual odometry estimation errors do not have
zero mean, as assessed in e.g. [7], [8], and provide corrections
that improve the precision of VO. Furthermore, at the same
time, they produce a full error model for each computed
motion estimation (in form of a Gaussian model), akin to [9].
This is a significant achievement, as it is generally complex
to derive precise error models for geometrical VO methods.

II. PROBLEM STATEMENT AND RELATED WORK

Consider a robot moving in a three dimensional envi-
ronment. Let xi ∈ R6 be its pose (3 translations and 3
orientations) at time i in a given reference frame. The actual
motion (ground truth) between time instants i and i + 1 is
represented by a homogeneous transformation matrix iTi+1.

A vision-based motion estimator uses raw image data Ii ∈
Rn to obtain an estimate iT̂i+1. In the VO case, the raw data
Ii is a pair of monocular or stereoscopic images captured at
two different time instants i, i + 1 (i.e. 2 or 4 images). The
error ei of VO is:

ei = iTi+1 · iT̂−1i+1 (1)

We can create a dataset D = {Ii, ei|∀i ∈ [1, d]}, where d is
the size of the dataset. The literature provides two different ap-
proaches to leveraging this type of dataset. The two approaches
enhance a classic VO process with learning to either estimate
(i) a motion correction to apply to iT̂−1i+1, thus improving its
accuracy [6], or (ii) an error model associated with iT̂−1i+1

[9], thus allowing its fusion with any other motion or pose
estimation process. Alternatively, with the same semantic,
substituting errors with actual motion transforms, it is possible
to directly learn the motion estimate and associated error [5].

A. Directly learning VO and an error model

The work in [5] introduces an end-to-end, sequence-to-
sequence probabilistic visual odometry (ESP-VO) based on
a recurrent CNN. ESP-VO outputs both a motion estimate
iT̂−1i+1 and an associated error. The learned error model is a
diagonal covariance matrix, hence not accounting for possible
correlations between the different motion dimensions. It is
unclear how the probabilistic loss is mixed to the mean squared
error of the Euclidean distance between the ground truth and
the estimated motions. Finally, the authors make use of a
hand-tuned scaling factor to balance rotation and translation.
The article presents significant results obtained on a large
variety of datasets, with comparisons to state-of-the-art VO
schemes. The results show that ESP-VO is a serious alternative
to classic schemes, all the more since it also provides variances
associated with the estimations. Yet, they are analysed over
whole trajectories, which inherit from the random walk effect
of motion integration, and as such do not provide thorough
statistical insights – e.g. on the satisfaction of the gaussianity
of the error model or on the evaluation of the mean log-
likelihood.

B. Learning corrections to VO

The work presenting DPC-Net [6] learns an estimate of
ei, which is further applied to the VO estimate iT̂−1i+1 to
improve its precision. The authors introduce an innovative pose
regression loss based on the SE(3) geodesic distance modelled
with a vector in Lie algebra coordinates. Instead of resorting to
a scalar weighting parameter to generate a linear combination
of the translation and rotation errors, the proposed distance
function naturally balances these two types of errors. The loss
takes the following form:

L(ξ) = 1

2
g(ξ)TΣ−1g(ξ) (2)

where ξ ∈ R6 is a vector of Lie algebra coordinates
estimated by the network, g(ξ) computes the equivalent of (1)
in the Lie vector space, and Σ is an empirical average covari-
ance of the estimator pre-computed over the training dataset.
Such covariance matrix cannot be used as an uncertainty
measure but only as a balancing factor between rotation and
translation terms. The paper provides statistically significant
results showing that DPC-Net improves a classic feature-based
approach, up to the precision of a dense VO approach. In
particular, it alleviates biases (e.g. due to calibration errors)
and environmental factors. The system interlace low rate
corrections with estimates produced by the underlying VO,
which processes all the images, using a pose-graph relaxation
approach.

C. Learning an error model of VO

Inferring an error model for VO comes to learn the parame-
ters of a predefined distribution to couple VO with uncertainty
measures. The work in [9] introduces DICE (Deep Inference
for Covariance Estimation), which learns the covariance matrix
of a VO process as a maximum-likelihood for Gaussian
distributions. Nevertheless, it considers the distribution over
measurement errors as a zero-mean Gaussian N (0,Σ). Such
model is acceptable for unbiased estimators, which unfortu-
nately it is often not the case of VO. Yet, the authors show
that their variance estimates are highly correlated with the VO
errors, especially in case of difficult environmental conditions,
such as large occlusions.

III. SIMULTANEOUSLY LEARNING CORRECTIONS AND
UNCERTAINTIES

To jointly estimate a correction to the VO process and
a full error model after having applied the correction, we
initially enhance the network output of [9] adding a vector
µi ∈ R6 to the output layer to account for biases in the
estimator. Such vector is incorporated in the negative log-
likelihood loss that is derived as follows. Given a dataset D
of size d, where the observations {e1, . . . , ed}T of VO errors
are assumed to be independently drawn from a multivariate
Gaussian distribution, we can estimate the parameters of the
Gaussian as

argmax
µ1:d,Σ1:d

d∑
i=1

p(ei|µi,Σi) (3)

DE MAIO et al.: SIMULTANEOUSLY LEARNING CORRECTIONS AND ERROR MODELS FOR GEOMETRY-BASED VISUAL ODOMETRY METHODS 3

This is equivalent to minimize the negative log-likelihood

argmin
µ1:d,Σ1:d

d∑
i=1

− log (p(ei|µi,Σi)) (4)

= argmin
µ1:d,Σ1:d

d∑
i=1

log |Σi|+ (ei − µi)
TΣ−1i (ei − µi) (5)

≈ argmin
fµ1:d

,fΣ1:d

d∑
i=1

log |fΣ(Ii)| +

(ei − fµ(Ii))
TfΣ(Ii)

−1(ei − fµ(Ii)) (6)

We split the output of the network in two parts: the mean
vector fµ(Ii) and the covariance matrix fΣ(Ii), where f(Ii)
represents the full output given a pair of stereo images.

A. Retrieving a valid covariance matrix

To enforce a positive definite covariance matrix we tested
two different matrix decompositions.

1) LDL: The first one is the LDL matrix decomposition
as in [9], to which the reader can refer to for a complete
description. The predicted covariance matrix fΣi

(Ii) is gen-
erated through a vector αi = [li,di]

T, with li ∈ R(n2

2 −
n
2) and

di ∈ Rn. We have then

Σi ≈ fΣ(Ii) = L(li)D(di)L(li)
T (7)

where li and di are the vectors containing the elements of
the respective L and D matrices. The LDL decomposition
is unique and exists as long as the diagonal of D is strictly
positive. This can be enforced using the exponential function
exp(di) on the main diagonal. By doing so, the computation
of its log-determinant, i.e. the first term of (6), can be reduced
to sum(di), that is the sum of the elements in the vector di.
In the second term fΣ(Ii)

−1 is replaced by the LDL product.
2) LL: Alternatively, it is possible to resort to the classical

Cholesky decomposition. In this case fΣ(Ii) is replaced
by the LL∗ product, where L is a lower triangular matrix
and L∗ is its conjugate transpose. We consider LLT as no
complex number is involved in our work. The L matrix can be
generated through a vector li ∈ R(n2

2 +n
2). This decomposition

also has nice properties around its log-determinant, as it is easy
to prove log |LLT| = 2

∑
i log(Lii).

We tested both decompositions and did not experience rel-
evant changes in the network accuracy. Although the presence
of the exponential term in the LDL can alter the numerical
stability of the loss function, clamping its value mitigates this
problem. Therefore, we decided to pursue training using the
first method in order to introduce fewer variables that could
affect the comparisons in the results (Sec.IV-C).

B. Optimization problem

We incorporate the LDL formulation for the covariance
matrix in the negative log-likelihood. Replacing fµ(Ii) with
the estimated mean output vector µ̂i we finally obtain

L(I1:d) = argmin
µ̂1:d,α1:d

d∑
i=1

sum(di) +

(ei − µ̂i)
T(L(li)D(exp(di))L(li)

T)−1(ei − µ̂i)

(8)

Formulating the problem as in (8), the second term of the
loss function loosely recalls the formulation of the Lie algebra
loss in (2). The covariance matrix in this case is learned in
relation to the input, capturing the heteroscedastic uncertainty
of each sample. The learned covariance matrix acts as in [10],
weighing position and orientation errors. The main difference
resides in the nature of the learned uncertainty, homoscedastic
vs heteroscedastic: through back-propagation with respect to
the input data, [11], we aim to learn a heteroscedastic er-
ror. Assuming that errors can be drawn from a distribution
N (µi,Σi), µi matches the expected value for the predicted
distribution. This corresponds to the desired correction in our
case. At the same time, we estimate a covariance matrix Σi,
returning an uncertainty measure relative to each particular
input and pose after the predicted correction. Inverting Eq.1,
corrections are applied as

iTi+1 ≈ iTV O
ˆi+1
· ˆi+1Tcorr

i+1 (9)

that is the composition of the pose estimate produced by VO
and the estimated correction produced by the neural network.

IV. EXPERIMENTS

A. Setup

1) Dataset: We carry out experiments using the KITTI
dataset, which provides various sequences of rectified images
acquired while driving in urban areas [12]. Depth images are
generated using a semi global block matching algorithm to
generate and filtered using a weighted least squares filter. We
train the network splitting train and validation trajectories in
different configurations: for all results shown here we trained
using sequences 04 to 10 (which share the same calibration
parameters), excluding one for testing and one for validation
purposes. Most of our experiments are validated using four
sequences (05, 06, 09, 10).

For the initial motion estimates, we use the open-source VO
implementation libviso2 [13]. It is a feature-based approach,
that uses a Kalman Filter in combination with a RANSAC
scheme to produce SE(3) estimates using rectified stereoscopic
pairs. The estimated corrections, and relative uncertainties, are
expressed in camera frame (z axis pointing forward), and the
Tait-Bryan angles are defined w.r.t. this reference frame (i.e.
yaw encodes rotations around the optical axis z).

2) Evaluation metrics: To evaluate the precision of the
motion estimates, we make use of the absolute trajectory error
(ATE) metric [14], [12]. It is defined as

ATErot =
1

N

N∑
i=1

||eRi ||2

ATEtrans =
1

N

N∑
i=1

||eti||2
(10)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

where eti is the difference between the estimated position and
the ground truth, and eRi is the rotation angle, in angle-axis
representation, of the product RiR̂

T
i . ATE comes with the

advantage of returning a single scalar to evaluate rotation and
translation errors, making it easy to compare them among
multiple estimators. At the same time, its main disadvantage
lies in the lack of robustness to isolated poor estimations and
their relative position in the trajectory [14], [12], [15]. We
use ATE for early architectural choices (section IV-B), but in
order to provide a more informative analysis, we use relative
error statistics. The idea of relative error is to select segments
of predefined lengths of the trajectory and compute the error
on all the aligned sub-trajectories. This way, it is possible
to obtain statistics on the tracking error (mean and standard
deviation) and evaluate it for short or long-term accuracy [6],
[14]. In our evaluations, we select sub-trajectories of 10, 20,
30, 40 and 50 % of the full trajectory length.

3) Network structures: We initially compared the results
produced using the architectures presented in DPC-Net [6] and
DICE [9]. The first trial has been to adapt the loss defined in
Eq. 8 to DPC-Net. We noticed that the mean output vector was
still rather constant throughout entire trajectories, regardless of
the dataset, and the same behavior was experienced using the
loss defined in Eq. 2. Similar tests were conducted with DICE.
We experienced problems in reducing the average mean error
along all the six dimensions at the same time, and an increase
in its standard deviation. Alleging these issues as being caused
by the shallow architecture of DICE, we modified its network
structure, first removing the max pool layers to preserve spatial
information [16], and achieving dimension reduction by setting
the stride to 2 in early layers. We also increased the number of
convolutional filters to tackle the estimation of both corrections
and error models, adding dropout after each layer to prevent
over-fitting. For the rest of the paper, we refer to this network
as Deeper-DICE (D-DICE, Table I).

The convolutional layers are followed by two fully con-
nected layer, respectively composed of 256 and 27 output
units. In the six-dimensional case, we need 21 values for the
LDL decomposition and 6 for the mean vector. We trained
the network using both monocular images and stereo images.
Additionally, we explored if pairing monocular images to
their corresponding disparity maps could be beneficial to
the training process, even if the disparities were produced
separately from VO.

We used the Adam optimizer with a learning rate of 1e-
04 and halted the learning when test and train loss started
diverging. All the experiments have been carried out using an
Nvidia GeForce RTX 2080 Ti with a batch size of 32.

Layer Kernel size Stride Number of channels
conv1 5x5 2 64
conv2 5x5 2 128
conv3 3x3 2 256
conv4 3x3 2 512
conv5 3x3 1 1024

TABLE I: D-DICE convolutional architecture.

4) Influence of input data: We tested the proposed archi-
tecture and loss using three different types of input data:
monocular images, monocular images with associated dis-
parity images, and stereo image pairs. Table II shows the
ATEs on two sequences for the three input data: the stereo
setup outperforms the two others in both sequences. Ideally,
one would expect the best results with monocular images
associated with disparity images: indeed, with such data the
network does not have to infer depth information. However,
with respect to monocular images, this input data does not
improve the ATE metric as much as stereo pairs. It is likely that
efficiently exploiting disparity images would require a specific
convolutional architecture, as their nature differs significantly
from intensity images.

Throughout the remainder of the paper, we will provide
results with D-DICE obtained using stereo images, as for
DPC-Net.

ATE Seq. D-DICE
(mono)

D-DICE
(mono+disp)

D-DICE
(stereo)

Trans. 05 21.54 19.73 10.23
(m) 10 12.15 8.56 7.20
Rot. 05 5.81 5.30 2.62

(deg) 10 3.01 2.47 2.28

TABLE II: Mean Absolute Trajectory Error (ATE) on two
validation sets for three different input data types.

B. Qualitative Evaluation

To validate the choice of the proposed architecture and loss,
we discuss preliminary results obtained exploring different
possibilities in this regard.

1) Loss comparison: To show the impact of dynamically
estimating a covariance matrix for each transform, we adapt
the loss in Eq. 2 to our proposed architecture. Table III
compares the ATEs obtained with this loss and the one we
proposed in Eq. 8. As we are going to showcase in further
results, the negative log-likelihood loss generally outperforms
the loss associated with DPC-Net. At the same time, we
experience a more stable improvement in translation than in
rotation. This is especially true in sequences 09 and 10, where
VO presents smaller errors (see figure 3). We associate this
behavior to the need for tailored large uncertainties to poor
estimations, as opposed to sequences where the necessity of
corrections is lower due to a better tracking by VO. Besides,
our loss yields the prediction of an error model, which can be
used to further reduce trajectory errors, as shown in section
IV-C2.

ATE Estimator 05 06 09 10

Translation D-DICE + Lie 20.22 5.51 19.51 11.60
(m) D-DICE + NLL 10.23 4.65 16.50 7.20

Rotation D-DICE + Lie 4.19 1.85 2.30 1.77
(deg) D-DICE + NLL 2.62 0.84 2.79 2.28

TABLE III: Comparison of ATEs obtained with the Lie loss
and the negative log-likelihood.

DE MAIO et al.: SIMULTANEOUSLY LEARNING CORRECTIONS AND ERROR MODELS FOR GEOMETRY-BASED VISUAL ODOMETRY METHODS 5

-0.008

-0.006

-0.004

-0.002

	0

	0.002

	0.004

	0.006

	500 	1000 	1500 	2000 	2500

xy
z(
m
)

frames

	(x)
	(y)
	(z)

Correction
Correction
Correction

(a) DPC-Net.
Translation corrections.

-0.02

	0

	0.02

	0.04

	0.06

	0.08

	500 	1000 	1500 	2000 	2500

rp
y(
de

g)

frames

	(roll)
	(pitch)
	(yaw)

Correction
Correction
Correction

(b) DPC-Net.
Rotation corrections.

-0.02

-0.015

-0.01

-0.005

	0

	0.005

	0.01

	0.015

	0 	500 	1000 	1500 	2000 	2500 	3000

xy
z(
m
)

frames

	(x)
	(y)
	(z)

Correction
Correction
Correction

(c) D-DICE.
Translation corrections.

-0.1

-0.05

	0

	0.05

	0.1

	500 	1000 	1500 	2000 	2500

rp
y(
de

g)

frames

	(roll)
	(pitch)
	(yaw)

Correction
Correction
Correction

(d) D-DICE.
Rotation corrections.

Fig. 2: Estimated translation and rotation corrections using DPC-Net and D-DICE over time.

2) Architecture comparison: Selecting an appropriate ar-
chitecture was driven by a few factors. A first issue was
represented by the significantly higher incidence of numerical
instability when pairing it with a NLL loss, particularly in the
matrix inversion and in the exponential. We also noticed that
the DPC-Net system (architecture + loss) tends to output rather
constant corrections throughout a whole sequence, certainly
compensating biases. This behavior was less prominent when
training D-DICE with the same loss. The two systems behave
quite differently, as can be seen in Fig. 2, with D-DICE
exhibiting more data-dependent corrections. The architectures
of DICE and D-DICE are thoroughly compared in Section
IV-C2.

C. Quantitative Evaluation

We evaluate D-DICE performances in two schemes. First,
we make use of the estimated mean vector as corrections for
each image pair (Sec. IV-C1). This approach does not use
the uncertainty model and ensures a fair comparison with
DPC-Net systems producing corrections outside a probabilistic
context. With respect to uncertainty models (Sec. IV-C2),
we test the Gaussian assumption and compare log-likelihood
values. Additionally, we use the covariance information to
further reduce trajectory errors. In a first step, we correct the
trajectory as in Eq. 9. Subsequently, we solve a pose-graph
optimization problem, weighting errors on the inverse of the
covariance matrix and manually adding a ground-truth loop
closure.

1) Trajectory correction: We evaluate the accuracy of the
correction produced by D-DICE with respect to the chosen
baseline VO solution (Fig. 3). We also compare to DPC-Net,
trained on the same data split as D-DICE. In these com-
parisons, both systems estimate transforms with consecutive
stereo pairs, and the uncertainty estimates provided by D-
DICE are not used. D-DICE outperforms DPC-Net in all the
selected sequences (Table IV). While both systems constantly
improve libviso2, we noticed a larger improvement in the
translation errors especially on the y-axis (upwards) – the
vertical drift is one of the most prominent weaknesses of
this VO implementation using the KITTI dataset. For more
in-depth results, we show mean relative segment errors with
associated standard deviations in Table V.

2) Uncertainty estimation: Since we assume a Gaussian
error model ∼ N (µ,Σ), we can measure its relevance by
checking the fraction of samples that do not respect the
following inequality:

ATE Estimator 05 06 09 10

Sparse VO 25.90 7.75 52.78 11.79
Translation (m) DPC-Net 11.04 5.83 23.26 11.67

D-DICE 10.23 4.65 16.49 7.20
Sparse VO 7.73 3.77 6.92 5.19

Rotation (deg) DPC-Net 2.10 2.25 4.18 4.19
D-DICE 2.62 0.84 2.79 2.28

TABLE IV: Mean Absolute Trajectory Error (ATE) before and
after applying corrections to libviso2 VO

µi − nσi ≤ ei ≤ µi + nσi (11)

where ei is the error along the dimension i after correction,
and µi, σi are respectively the mean and standard deviation
predicted for the input associated with e on the i-th dimen-
sion. The parameter n is the number of considered standard
deviations. We test against the three-sigma interval (n = 3)
that, in case of samples drawn from a normal distribution,
should cover approximately 99.7% of the samples.
Statistics for a pair of KITTI sequences using D-DICE are
displayed in Table VI. On average, more than 99% of samples
falls within the three-sigma interval.

A common way of evaluating uncertainties is to inspect
the mean log-likelihood value. Even though it is not possible
to use it alone as a measure of fitness, it can be used to
compare different distribution parameters. The log-likelihood
directly describes how well the estimated distributions capture
the errors in the dataset and is easily obtained as it is the
function minimized by our neural network. Table VII shows
benchmarks for the predicted distributions obtained by DICE
and D-DICE with different losses. While it is true that a higher
log-likelihood does not systematically translate into a reduced
trajectory error, we found this trend generally confirmed in
our experiments.

Finally, to study the utility of covariances in diminishing
tracking errors, we set up an error minimization problem using
a typical 3D pose-graph formulation. The optimizer seeks to
minimize the function∑

i∈D
eTi,i+1Σ

−1
i ei,i+1 + e

T
d,1Σ

−1
gt ed,1 (12)

where ei,i+1 is the error function between the nodes 〈i, i+1〉
and the corresponding constraint zi,i+1. A loop closure is man-
ually triggered adding the ground truth measurement zd,1 and
a small covariance Σgt (practically, forcing the last point of

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

Relative segment errors Estimator 05 06 09 10

Sparse VO 2.51 ± 1.88 1.30 ± 0.52 3.11 ± 1.66 1.16 ± 0.67
Translation (%) DPC-Net 1.51 ± 0.71 1.76 ± 0.97 1.64 ± 0.84 1.27 ± 0.56

D-DICE 1.01 ± 0.44 0.91 ± 0.46 1.17 ± 0.53 0.95 ± 0.41
Sparse VO 10.31 ± 10.40 9.62 ± 4.13 11.19 ± 2.73 12.35 ± 4.60

Rotation (millideg/m) DPC-Net 4.50 ± 2.47 7.50 ± 3.20 4.80 ± 1.92 7.75 ± 2.61
D-DICE 3.29 ± 1.47 3.25 ± 2.02 4.67 ± 2.36 5.82 ± 2.58

TABLE V: Relative segment errors (mean error ± standard deviation, computed on all relative segments for each sequence)
before and after applying corrections to libviso2 VO.

σ 2σ 3σ
x 85.55% 97.45% 98.64%
y 83.82% 98.00% 99.36%
z 76.27% 95.82% 99.27%
roll 77.55% 96.00% 99.18%
pitch 85.64% 97.27% 98.91%
yaw 74.27% 96.64% 99.27%
mean 80.51% 96.86% 99.10%

σ 2σ 3σ
x 87.24% 98.91% 99.63%
y 91.15% 99.42% 99.67%
z 79.49% 96.12% 98.94%
roll 75.72% 94.89% 98.69%
pitch 72.97% 95.14% 98.76%
yaw 70.57% 93.55% 98.69%
mean 79.52% 96.34% 99.07%

TABLE VI: Sequence 06 (top) and 05 (bottom). Percentages
of samples that lie in the various sigma-intervals around the
mean. Mean and standard deviations are produced by D-DICE.

Estimator 05 06 09 10 mean
DICE N (0,Σ) 41.53 44.42 41.77 42.72 42.61

D-DICE N (0,Σ) 43.15 44.24 41.77 42.14 42.82

DICE N (µ,Σ) 42.04 44.67 42.27 41.86 42.71

D-DICE N (µ,Σ) 44.08 44.67 41.66 41.60 43.00

TABLE VII: Mean log-likelihood for different network archi-
tectures and losses.

the trajectories to fit the ground truth). We use the framework
g2o to formulate and solve the problem using a Levenberg-
Marquardt optimizer [17]. The results of the inclusion of
the predicted covariances after pose-graph optimization are
summarized in Tables VIII and IX. To provide a complete
overview we show D-DICE and DICE errors obtained con-
sidering biases or zero-mean Gaussians. Additionally, we use
DPC-Net corrections with a fixed covariance. D-DICE consis-
tently shows smaller errors compared to the other methods. It
is worth to notice that without the corrections, particularly for
long trajectories, the initial problem state given by VO may
lock the optimizer in a local minimum. This mainly happens
with DICE (Seq 05, 09) but also with D-DICE when a
zero-mean normal distribution is considered (Seq 09).

Despite using only the latest left image available to VO,
DICE is able to have good results on all datasets considered.
Still, on average, D-DICE outperforms it. While it is hard to
assess the exact reason for the more accurate results, we argue
that such improvements are due to two major factors. First of

ATE Estimator 05 06 09 10

DICE N (0,Σ) 126.59† 9.78 51.80† 4.13
Trans. D-DICE N (0,Σ) 7.97 12.75 52.16† 4.02

(m) DPC-Net 5.73 8.14 4.00 4.22
DICE N (µ,Σ) 123.21† 3.87 4.96 3.63

D-DICE N (µ,Σ) 5.64 2.54 3.61 3.02
DICE N (0,Σ) 106.32† 3.42 15.00† 2.70

Rot. D-DICE N (0,Σ) 3.06 3.42 13.66† 2.63
(deg) DPC-Net 2.12 2.40 1.13 1.74

DICE N (µ,Σ) 106.46† 1.11 1.37 1.31
D-DICE N (µ,Σ) 1.37 0.77 1.52 0.87

TABLE VIII: ATE for 5 different estimators. Networks paired
with N (0,Σ) do not use bias estimation to minimize the
NLL. Values tagged with † point to cases where the optimizer
noticeably got stuck in a local minimum.

all, our network has access to a larger spectrum of information,
the stereo images, which are also available to the VO algo-
rithm. Such information can be exploited to retrieve absolute
scale for the translation part. This assumption is backed up
by experiencing an average larger standard deviation for the
translation part when using monocular images instead of stereo
pairs. Additionally, even in the monocular case, having both
left images gives the information necessary to extract the robot
motion. In this case, the derived uncertainty will not be based
only on contextual information (e.g. lack of texture, blurred
images) but also on the type/magnitude of motion. Secondly,
accounting for non-zero mean allows a further minimization
of the negative log-likelihood. D-DICE can rely on estimating
both the Gaussian parameters to minimize the same loss.

V. CONCLUSIONS

We presented an insight into the learning of errors in visual
odometry. Relying on existing state-of-the-art techniques, we
iterated on analysing what type of error and uncertainty can be
learned by deep neural networks. We concentrated our efforts
on approaches that complement classical visual odometry
pipelines in order to ease the work done by the network
and exploiting a robust and well established feature-based
processes. We demonstrated that it is possible to assimilate
the distribution over visual odometry errors to Gaussians, and
proceeded to cast the error prediction to a full maximum
likelihood for normal distributions case. Knowing that the
errors are biased, we have modelled such Gaussians as non-
zero mean distributions, showing the beneficial aspects of this

DE MAIO et al.: SIMULTANEOUSLY LEARNING CORRECTIONS AND ERROR MODELS FOR GEOMETRY-BASED VISUAL ODOMETRY METHODS 7

Relative segment errors Estimator 05 06 09 10

DICE N (0,Σ) 161.74 ± 23.24† 2.16 ± 1.28 3.89 ± 4.27† 1.23 ± 0.59
D-DICE N (0,Σ) 1.79 ± 0.97 2.40 ± 1.37 3.86 ± 4.18† 1.13 ± 0.54

Translation (%) DPC-Net 1.15 ± 0.71 1.98 ± 1.39 1.23 ± 0.53 0.89 ± 0.33
DICE N (µ,Σ) 21.60 ± 13.85 0.96 ± 0.71 1.37 ± 0.66 1.15 ± 0.46

D-DICE N (µ,Σ) 0.98 ± 0.57 0.67 ± 0.35 1.50 ± 0.70 0.92 ± 0.35
DICE N (0,Σ) 21.66 ± 13.13† 12.82 ± 5.71 15.35 ± 32.06† 9.22 ± 4.60

D-DICE N (0,Σ) 8.20 ± 5.31 12.88 ± 5.29 14.09 ± 28.83† 8.86 ± 4.41
Rotation (millideg/m) DPC-Net 4.31 ± 2.50 9.12 ± 4.35 3.24 ± 1.56 5.50 ± 3.04

DICE N (µ,Σ) 161.49 ± 21.35† 4.31 ± 2.00 3.74 ± 1.70 5.57 ± 2.59
D-DICE N (µ,Σ) 3.37 ± 2.00 2.95 ± 1.60 4.43 ± 2.08 4.17 ± 2.33

TABLE IX: Relative segment errors for 5 different estimators (mean error ± standard deviation, computed on all relative
segments for each sequence). Network paired with N (0,Σ) does not use bias estimation to minimize the NLL. Oppositely,
N (µ,Σ) results are obtained employing the loss in Eq. 8. Values tagged with † denote cases where the optimizer noticeably
got stuck in a local minimum.

220.0 441.0 661.0 882.0 1102.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE

DPC

VO only

220.0 441.0 661.0 882.0 1102.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

123.0 246.0 369.0 493.0 616.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE

DPC

VO only

123.0 246.0 369.0 493.0 616.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

170.0 341.0 511.0 682.0 852.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE

DPC

VO only

170.0 341.0 511.0 682.0 852.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)
91.0 183.0 275.0 367.0 459.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE

DPC

VO only

91.0 183.0 275.0 367.0 459.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

0 500 1000 1500 2000 2500 3000

frames

−50

−40

−30

−20

−10

0

10

z
[m

]

0 200 400 600 800 1000 1200

frames

−20

−15

−10

−5

0

5

z
[m

]

0 200 400 600 800 1000 1200 1400 1600

frames

−40

−20

0

20

40

60

80

100

z
[m

]

0 200 400 600 800 1000 1200

frames

−25

−20

−15

−10

−5

0

5

10

15

20

z
[m

]

−300 −200 −100 0 100 200 300

x [m]

−100

0

100

200

300

400

y
[m

]

−25 −20 −15 −10 −5 0 5 10

x [m]

−200

−100

0

100

200

300

400

y
[m

]

−200 −100 0 100 200 300 400

x [m]

−100

0

100

200

300

400

500

600

y
[m

]

0 100 200 300 400 500 600 700

x [m]

−50

0

50

100

150

y
[m

]

Fig. 3: Boxplots of the relative segment errors (top two rows), side view and top view of the trajectories (bottom two rows),
for KITTI sequences 05, 06, 09, 10 (left to right). D-DICE (blue) and DPC-Net (green) corrections are used to reduce
tracking errors using libviso2 as the baseline estimator (red). The ground truth trajectory is in black.

approach compared to works that rely only on the estimation
of the covariance matrix. Additionally, we have integrated
visual odometry corrections with a more precise error model,
inferred thanks to the assumption of biased distributions. To
build on this matter, it can result interesting to adopt the
same approach with dense estimators which have access to
full disparity information. Finally, we plan to explore similar
approaches with different perception processes that are yet to

be associated with precise error models, e.g. iterative closest
points algorithm based on LIDAR scans [18].

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

220.0 441.0 661.0 882.0 1102.0

Distance traveled (m)

0

1

2

3

4

5
T

ra
n

sl
at

io
n

er
ro

r
(%

)
D-DICE (predicted covariance + corrections)

DPC (fixed covariance + corrections)

DICE (predicted covariance + corrections)

D-DICE (covariance only)

DICE (covariance only)

220.0 441.0 661.0 882.0 1102.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

123.0 246.0 369.0 493.0 616.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE (predicted covariance + corrections)

DPC (fixed covariance + corrections)

DICE (predicted covariance + corrections)

D-DICE (covariance only)

DICE (covariance only)

123.0 246.0 369.0 493.0 616.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

170.0 341.0 511.0 682.0 852.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE (predicted covariance + corrections)

DPC (fixed covariance + corrections)

DICE (predicted covariance + corrections)

D-DICE (covariance only)

DICE (covariance only)

170.0 341.0 511.0 682.0 852.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

91.0 183.0 275.0 367.0 459.0

Distance traveled (m)

0

1

2

3

4

5

T
ra

n
sl

at
io

n
er

ro
r

(%
)

D-DICE (predicted covariance + corrections)

DPC (fixed covariance + corrections)

DICE (predicted covariance + corrections)

D-DICE (covariance only)

DICE (covariance only)

91.0 183.0 275.0 367.0 459.0

Distance traveled (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
ot

at
io

n
er

ro
r

(d
eg

/
m

)

0 500 1000 1500 2000 2500 3000

frames

−150

−100

−50

0

50

100

150

z
[m

]

0 200 400 600 800 1000 1200

frames

−15

−10

−5

0

5

10

15

20

25
z

[m
]

0 200 400 600 800 1000 1200 1400 1600

frames

−40

−20

0

20

40

60

80

100

z
[m

]

0 200 400 600 800 1000 1200

frames

−20

−15

−10

−5

0

5

10

15

z
[m

]

−300 −200 −100 0 100 200 300

x [m]

−100

0

100

200

300

400

y
[m

]

−35 −30 −25 −20 −15 −10 −5 0 5 10

x [m]

−200

−100

0

100

200

300

400

y
[m

]

−200 −100 0 100 200 300 400

x [m]

−100

0

100

200

300

400

500

600

y
[m

]

0 100 200 300 400 500 600 700

x [m]

−50

0

50

100

150

y
[m

]

Fig. 4: Results after pose-graph minimization. Boxplots of the relative segment errors (top two rows), side view and top view of
the trajectories (bottom two rows), for KITTI sequences 05, 06, 09, 10 (left to right). D-DICE (blue), DPC-Net (green)
and DICE (red) use corrections and uncertainty data (fixed variances for DPC-Net). Cyan and yellow are used for D-DICE
and DICE versions that only learned error models. The ground truth trajectory is in black.

REFERENCES

[1] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[2] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 3,
pp. 611–625, 2018.

[3] K. R. Konda and R. Memisevic, “Learning visual odometry with a
convolutional network.,” in VISAPP (1), pp. 486–490, 2015.

[4] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular vi-
sual odometry through unsupervised deep learning,” arXiv preprint
arXiv:1709.06841, 2017.

[5] S. Wang, R. Clark, H. Wen, and N. Trigoni, “End-to-end, sequence-to-
sequence probabilistic visual odometry through deep neural networks,”
The International Journal of Robotics Research, vol. 37, no. 4-5,
pp. 513–542, 2018.

[6] V. Peretroukhin and J. Kelly, “Dpc-net: Deep pose correction for visual
localization,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 2424–2431, 2017.

[7] G. Dubbelman, P. Hansen, and B. Browning, “Bias compensation
in visual odometry,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2828–2835, IEEE, 2012.

[8] V. Peretroukhin, J. Kelly, and T. D. Barfoot, “Optimizing camera
perspective for stereo visual odometry,” in 2014 Canadian Conference
on Computer and Robot Vision, pp. 1–7, IEEE, 2014.

[9] K. Liu, K. Ok, W. Vega-Brown, and N. Roy, “Deep inference for covari-
ance estimation: Learning gaussian noise models for state estimation,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1436–1443, IEEE, 2018.

[10] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose
regression with deep learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5974–5983, 2017.

[11] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?,” in Advances in neural information
processing systems, pp. 5574–5584, 2017.

[12] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3354–3361, IEEE, 2012.

[13] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo
image sequences with ransac-based outlier rejection scheme,” in 2010
ieee intelligent vehicles symposium, pp. 486–492, IEEE, 2010.

[14] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), 2018.

[15] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, “On measuring the accuracy of slam algorithms,”
Autonomous Robots, vol. 27, no. 4, p. 387, 2009.

[16] A. Handa, M. Bloesch, V. Pătrăucean, S. Stent, J. McCormac, and
A. Davison, “gvnn: Neural network library for geometric computer vi-
sion,” in European Conference on Computer Vision, pp. 67–82, Springer,
2016.

[17] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation, pp. 3607–3613,
IEEE, 2011.

[18] F. Pomerleau, F. Colas, R. Siegwart, et al., “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends R©
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

	Introduction
	Problem statement and related work
	Directly learning VO and an error model
	Learning corrections to VO
	Learning an error model of VO

	Simultaneously learning corrections and uncertainties
	Retrieving a valid covariance matrix
	LDL
	LL

	Optimization problem

	Experiments
	Setup
	Dataset
	Evaluation metrics
	Network structures
	Influence of input data

	Qualitative Evaluation
	Loss comparison
	Architecture comparison

	Quantitative Evaluation
	Trajectory correction
	Uncertainty estimation

	Conclusions
	References

