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In this paper, we limit ourselves to the most commonly models used, say the Output Error (OE) model and Auto Regressive Moving Average with exogenous input (ARMAX). In both cases, we treat the case multi-input, single-output (MISO). Our aim is to give the parameters of the model under lattice form, in reference to its numerical robustness allowing to deal with great state space dimension (A 2f). This calculation is achieved considering time varying predictor of the output based on the predictor derived at the previous step. It leads to an hereditary algorithm introduced in previous works [1].

I. INTRODUCTION.

The paper concerns the problem of linear system identi¿cation. The stochastic linear identi¿cation is an issue that has been fully investigated for many years and many algorithms have been designed to this purpose (see [START_REF] Ljung | cation: Theory For The User[END_REF] for bibliography), the most recent being the subspace identi¿cation method [START_REF] Van Overchee | Subspace Identi cation of LInear Systems: Theory, Implementation and Applications[END_REF]. In some previous work [START_REF] Monin | Exact ARMA lattice predictors from autocorrelations functions[END_REF] [1], we had derived some new realization and identi¿cation algorithms based on a hereditary computation in the single output AutoRegressive Moving Average (ARMA) case. We extend here these algorithms when the system has exogenous non-stationary multi-input. The main difference lies in the fact that the lattice parameters, involved in the computation of the system parameters, are no more stationary, as it was the case in [START_REF] Monin | ARMA lattice identi cation: A new hereditary algorithm[END_REF].

A. Problem setting.

The aim of linear identi¿cation is to ¿t some linear stochastic realization to an experimental set measurement of the input/output of some unknown system. We restrict ourselves here to the set of AutoRegressive Moving Average with exogenous input (ARMAX) models:

| @ [ d | . [ [ e x . [ f y . y (1) 
where | stands for the (measured) output, ix > n @ 4===qj stands for the (measured) inputs, y stands for a white noise with unknown variance and id > l @ 4===qj ^ie > l @ 3===q 4> n @ 4===sj ^if > l @ 4===qj stands for the set of unknown parameters to be identi¿ed. Note that, for convenience, we ¿x the same order q for the AR, the MA and the X part.

Referring to the Gaussian case, the accuracy of the model derived is commonly measured through the one-step-aheadprediction error of the output, that is:

M @ 4 w [ | e | (2) 
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where e | stands for the predictor of the output. If one may assume that the zeros of the MA part are all inside the unit circle, the output predictor e | is [START_REF] Ljung | cation: Theory For The User[END_REF]:

e | @ [ d e | . [ [ e x . [ n h | (3) where h | @ | e |
is the prediction error and n @ d f . Note that it is assumed that the whole data record over the interval ` 4> w`is available. Obviously, in practice, only data over the interval ^4> w`are known. The common way to get round this dif¿culty is to use windowed data. Most often, one just assumes that the past data, for w ? 4, is zero. This is equivalent to consider that the initial condition, in a state space representation, is zero, which is not true in most cases. The main drawback of this assumption is that, for short experiments, it is more dif¿cult to ¿t data to the model with non-zero initial conditions. The true model for ¿nite data record would be:

;w @ 4===q> | @ { . [ d | . [ [ e x . [ f y . y
where i{ > w @ 4===qj stands for the q initial conditions of the system. For w A q, 1 is then fully de¿ned. To represent the initial condition effect, it is convenient to introduce an extra virtual impulsive input x de¿ned by x @ 4 and x @ 3> ;w 9 @ 4. The complete model is then:

| @ [ d | . [ [ e x . [ f y . y
with, e @ { > ;l @ 3===q 4. With this modi¿ed model, all data must be assumed zero ;w ? 4.

B. Computing the parameters via hereditary projection.

Recall that the criterion 2 is not quadratic with respect to the parameters, as it is the case for ARX models (f @ 3> l @ 4===q). Indeed, if one develops the dependence of the criterion with respect to the parameters d for instance, the AR part appearing in 3 involves an in¿nite development, which is not explicitly tractable. Many approximating algorithms have been developed to compute the model parameters as the so-called Extended Least Square [START_REF] Benveniste | AR and ARMA algorithms of levinson type: An innovation approach[END_REF] [6] [START_REF] Ljung | cation: Theory For The User[END_REF] or Gauss-Newton algorithms [START_REF] Shynk | Adaptive IRR ltering[END_REF] [6] [START_REF] Michaut | Méthodes Adaptatives Pour Le Signal[END_REF]. In none of these approaches, transient behavior is optimized. In this paper, we deal with a time varying approach preserving a transient convergence similar to that of [START_REF] Monin | ARMA lattice identi cation: A new hereditary algorithm[END_REF]. Let us denote e | > @ 4===w 4 the optimal predictor that minimizes the criterion M . The parameters have been obtained from the knowledge of the data record i| > x > @ 4===w 4> n @ 3===sj. At time w, the new predictor trajectory is computed as follows:

; @ 4===w> e | @ [ d e | .
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That means that the whole trajectory from 4 to w is recomputed at each step. In such a time varying scheme, the criterion is quadratic with respect to id > e j (but not with respect to id > e > @ 4===w 4j previously computed). Therefore, the optimal parameters can be computed using classical projection formula. On the other hand, it leads to a hereditary algorithm. That means that the memory needed for computation is linearly growing with time due to the updating of the overall least-square criterion as data accumulate. In other words, the non-linearity complexity is handled via hereditary computation.

II. GENERAL LEVINSON FORMULA.

Let us note the experimental mean of a process K 5 U de¿ned over the interval ^4> w`as H ^K `@ S K . De¿nition 1: The projection of a process [ 5 U > @ 4===w over the process \ 5 U > @ 4===w, is the process ] / S m\ `@ N \ where

N H ^[ \ `+H ^\ \ `, .
It is clear that this projection yields the process that minimizes the mean square error H ^n[ ] n `.

Let us de¿ne ] 5 U

as:

] @ ^x > ===> x > e | > h | `> @ 4===w (4) 
Assume that ; ? 4, ] @ 3. The linear predictor e | is then computed using the projection of de¿nition 1:

e | @ S ^| m] > ===> ] ` (5) 
Suppose that ; ? 4, [ @ \ @ 3. One then has: Proposition 2: S ^[ m\ `@ S ^[ m\ Às it appears in 5, the linear predictor is computed as a linear projection over the space spanned by i] > ===> ] j. The Levinson formulae are devoted to recursively compute an orthogonal basis of this space according to the inner product de¿ned by k[ m\ l / H ^[ \ `. Let us de¿ne the family iY > ===> Y j (called backward residuals) to be the orthonormalized basis of the space spanned by i] > ===> ] j. According to this de¿nition, one has:

H ^Y +Y , `@ 3> ;l 9 @ m H^Y +Y , `@ L> ;l @ 3===q 4

where L stands for the identity matrix. One has: Proposition 3: Backward and forward normalized residuals obey the following relations:

; @ 4===w> ; A A ? A A = Y @ + O , ] Y @ k +L V +V , l +Y V Z ,> ;l @ 4===q 4 (6) 
; @ 4===w>

; A ? A = Z @ +O , ] Z @ L V +V , +Z +V , Y ,> ;l @ 4===q 4
where:

O @ H ^] +] , ` (7) 
V @ H ^Y +Z , `> ;l @ 3===q 5 [START_REF] Michaut | Méthodes Adaptatives Pour Le Signal[END_REF] Moreover, thanks to the orthonormality property of the residuals, the one-step-ahead predictor has the following expression:

e | @ [ h P Y > ; @ 4===w (9) 
where h stands for the vector of U de¿ned by: h @ 4, ;l 9 @ n> h @ 3 and:

P @ H ^] +Y , ` (10) 
See appendix VIII for proof.

III. HEREDITARY ALGORITHM.

Suppose that, at previous step (w 4), the whole sequences iY > l @ 3===q 4> @ 4===w 4j (backward residual trajectories) are available. One then computes the matrices iP > l @ 3===q 4j and O de¿ned by 10 and 7 performing a summation over the interval ^4> w`. Note that although this calculus seems implicit, it can be performed using the orthogonality property of the innovation process H ^+| e | ,Y `@ 3. One may then compute the matrices iV > l @ 3===q 4j using recursively equations 18 and 25 of appendix VIII. It remains then to update the residual trajectories. Here is the hereditary part of the algorithm:

For @ 4===w, do:

e | @ S h P Y ] @ x === x e | +| e | , Z @ +O , ] For l @ 4===q 4, Z @ L V +V , +Z +V , Y , For l @ q 4===4> Y @ k +L V +V , l +Y V Z , Y @ + O , ]
Obviously, during the ¿rst steps of the algorithm, the covariance matrices, such as V , are singular since all data prior to @ 4 are assumed to be zero. Therefore, the coef¿cients related to these data are undetermined. In fact, only one new non-zero coef¿cient is derived at each step. That means that one needs at least q +s . 6, steps to assure the regularity of all matrices. There are two ways to solve this problem.

One may use pseudo-inverse procedure when one needs to inverse a singular matrix.

One may also compute previously the rank of matrices by analyzing the algorithm. For example, one has to compute the inverse of the square root of O . It is clear that, if the input-output sequence is not singular, the rank of O 5 U is equal to w, since w 9 +s . 6,. Moreover, one has to compute the inverse of the square root of the matrices D @ +L +V , V ,. If u denotes the rank of V > the rank of D is obviously s . 6 u. Because only one parameter is derived at each step, one needs to wait +s . 6,+l . 4, steps to assure that V has a rank equal to s . 6. More precisely, one has:

-If w 9 +s . 6,+l 4, . 4 or w A +s . 6,l, then un+D , @ s . 6 -If w 5 ^+s . 6,+l 4, . 4> +s . 6,l`, then un+D , @ +s . 6,l w . 4 -If w 5 ^+s . 6,l . 4> +s . 6,+l . 4,`, then un+D , @ w +s . 6,l where un+D, stands for the rank of the matrix D. Note that these procedures do not harm the optimality of the algorithm since it just provides a particular set of parameters among all possible solutions.

IV. COMPUTING THE TRANSFER FUNCTION COEFFICIENTS

For some purposes, it could be convenient to deal with the transfer function related to the linear system involved under lattice form. To achieve this goal, it is necessary to take into account that the lattice parameters are not stationary, since the inputs are not, in general, a perfect white noise process. Indeed, some parameters are resulting from the projection of the inputs over their own past. First note that, at time w, the state of the linear one-step-ahead predictor can be reduced to the sets:

iY > ===> Y j @ i] > ===> ] j
thanks to formula 6. According to 3, if one sets all components of the state to zero except one term to transfer as the output of the ¿lter. More precisely, if one sets: ] @ 3 == 3 4 3 === 3 ] @ 3> ;m 9 @ l one obtains d for m @ s.5, g for m @ s.6, e for m @ n (m 9 @ 3) and { , the l-th component of the initial condition, for m @ 3. The algorithm is then structured as follows:

For l @ 4===q, do Y @ + O , ] where ] is initialized as described above.

For l @ 4===q, do Z @ t Y For n @ 4===q 4 do for @ 4===q 4 do:

-Y @ k +L V +V , l +Y V Z , -Z @ L +V , V +Z +V , Y , @ S h P Y
where stands for the parameter to be computed, that is d , e or { , depending on the value of m.

V. EXTENSIONS TO MORE GENERAL LINEAR SYSTEMS.

In the introduction, we stated that, for convenience, we ¿xed the same order q for the numerators and denominator of the transfer function. In fact, there is no trouble to deal with more general transfer functions.

A. Introduction of delays on the inputs.

If one wishes to introduce time delays on the input, one just has to replace ] de¿ned in 4 with ] @ ^x > x ===> x > e | > h | `> @ 4===w where stands for the delay ¿xed for the n-th input. Note that the ¿rst input x being the virtual impulsive input intended to represent the initial condition effect, it remains unchanged.

B. Dealing with different orders for numerators and denominator.

If one wishes to deal with different orders for numerators and denominator, ¿rst replace q with the maximum of the orders desired. The de¿nition of the predictor e | is then modi¿ed as e | @ S ^| mH ] > ===> H ] `where H is a square matrix that sets to zero the appropriate components of ] . All computations of the algorithms being linear operations, there is no dif¿culty to modify the algorithm with this change.

C. Time-varying systems.

In the case of time-varying systems, if W stands for the tracking-time constant, one just has to modify the de¿nition of the experimental mean as follows:

H ^[ `@ 4 w [ [ > ;w ? W H ^[ `@ 4 W [ [ > ;w W VI. EXPERIMENTAL RESULTS.
As the main goal of this identi¿cation algorithm is to optimize the transient (short experiments), the ¿rst test we made was proceeded in the noise free case. We have veri¿ed, in simulation, that for q-dimensional linear systems with s inputs, the parameters are obtained exactly (in fact with a precision lower that 43 ) after q+s . 6, steps, which is obviously the minimal number of steps required.

We used for experiments some datasets coming from DAISY [START_REF] Moor | DaISy: Database for the Identi cation of Systems[END_REF]. We have compared the performances of our hereditary algorithm with the results obtained by the standard MATLAB identi¿cation toolbox functions: n4sid.m (subspace identi¿cation), armax.m and oe.m (Newton like algorithms). For the ARMAX and OE functions, we added the extra impulsive input described in I, in view to deal with an unknown initial condition An example of results got with the dataset [96-011] with q @ 7 is shown ¿gure 1. We have represented the relative output error t S +| e | , @ S | , computed over the whole dataset (W @ 49;3 samples), when the parameters are computed over only a smaller varying data length (from 43 to 833 per step of 43). In view to clarify the graphical representation, we set this error to be zero when the system derived was unstable. It appears clearly that, for this example, the output error of the hereditary algorithm has almost reached its minimum after only 483 steps. Note that this output error is no more Àuctuating for longest datasets, contrary to those obtained with standard algorithms. Moreover, all systems obtained with our algorithm are stable for a dataset of length A 63 and leads to an error 9 58(.

In view to illustrate the behavior of the algorithm, we have simulated a 9-order linear system with zeros located at i} @ 4> } @ 3=< h{s+ l@7,> } @ 3=< h{s+ 6l@;,j and poles located at is @ 3=< h{s+ l@;,> s @ 3=< h{s+ l@6,> s @ 3=8 h{s+ 46l@65,j. The input is a Gaussian white noise and signal to noise ratio is 45gE. The hereditary estimates of the ¿rst two parameters of the denominator are plotted ¿gure 2 and compared to the results obtained with the standard oe.m MATLAB identi¿cation toolbox function. It appears clearly that the algorithm that uses a classical Newton type method falls on several occasions in local minima. We have derived a new identi¿cation algorithm for ARMAX systems based on a hereditary computation. The main bene¿t of this algorithm is that it is optimal in the transient. We have shown that the introduction of an extra virtual impulsive input could be used to extract the estimation of initial conditions. Moreover, it appears that no tuning parameter is needed when the input-output is not singular. When it is not the case, for binary signals for example, the algorithm uses pseudo-inverses since the dataset remain singular, which does not harm its ef¿ciency.

VIII. PROOF OF PROPOSITION 3.

Let us de¿ne the following sets: Backward residuals:

; @ 4===w> [ @ ] [ @ ] S ^] m] > ===> ] `> ;l @ 4===q 4 (11) Forward residuals: ; @ 4===w> ] @ ] ] @ ] S ^] m] > ===> ] `> ;l @ 4===q 4
With these de¿nitions, one clearly has:

i] > ===> ] j @ i[ j === i[ j (12) i] > ===> ] j @ i] j === i] j (13) 
Using 13, the backward residuals can be rewritten as follows:

[ @ ] S ^] m] > ===> ] ` S ^] m] (14) 
But, at previous step w 4, according to 11, one had:

[ @ ] S ^] m] > ===> ] @ ] S ^] m] > ===> ] àccording to property 2: [ @ ] S ^] m] > ===> ]
Therefore, formula 14 takes the following form:

[ @ [ S ^[ m] ` (15) 
In the same way, using 12 in the expression of forward residuals, one has:

] @ ] S ^] m[ ` === S ^] m[ @ ] S ^] m[
The aim is now to construct the set of residuals iY > l @ 3===q 4j, where Y @ Q [ , such that H ^Y +Y , `@ L. Note that, using the assumption that Y @ 3> ; ? 4, this is equivalent to ensure that: 

Assumption 16 leads to:

Q +Q , @ w w . 4 +L V +V , , (19) 
Let Z @ +O , ] be the normalized form of the forward residuals. Expression 6 is a directly involves from 17 and 19. Note that, according this de¿nition, one has V @ H ^Y +Z , `. In the same way, the recursive equation of the forward residuals can be written: 

Reporting 24 in 23 leads to the result.
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  ^Y +Y , `@ w . 4 w L (16) Let us de¿ne O / H ^] +] , `> ;l @ 3===q 4 and P / H ^] +Y , `> ;l @ 3===q 4. According to 15, one has: Y @ Q +Q , The autocorrelation matrix of Y can then be written as follows: H ^Y +Y , `@ Q +Q , L +P , +O , P +Q , +Q , where D stands for the inverse of transposed matrix D. Let us de¿ne: V / +P , +O ,

  to the normalization procedure, one has H ^Z +Z , `@ L. The computation of the experimental covariance of Z leads to:L @ +O , +O , L +V , V +O , +O ,(24) which leads to: +O , +O , @ L +V , V