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ARMAX Identi!cation Via Hereditary Algorithm
André Monin

Abstract—In this paper, we limit ourselves to the most com-
monly models used, say the Output Error (OE) model and Auto
Regressive Moving Average with exogenous input (ARMAX). In
both cases, we treat the case multi-input, single-output (MISO).
Our aim is to give the parameters of the model under lattice form,
in reference to its numerical robustness allowing to deal with
great state space dimension (! !"). This calculation is achieved
considering time varying predictor of the output based on the
predictor derived at the previous step. It leads to an hereditary
algorithm introduced in previous works [1].
Index Terms—Linear identi!cation, lattice.

I. INTRODUCTION.
The paper concerns the problem of linear system identi!-

cation. The stochastic linear identi!cation is an issue that has
been fully investigated for many years and many algorithms
have been designed to this purpose (see [2] for bibliography),
the most recent being the subspace identi!cation method [3].
In some previous work [4] [1], we had derived some new
realization and identi!cation algorithms based on a hereditary
computation in the single output AutoRegressive Moving
Average (ARMA) case. We extend here these algorithms when
the system has exogenous non-stationary multi-input. The
main difference lies in the fact that the lattice parameters,
involved in the computation of the system parameters, are no
more stationary, as it was the case in [1].

A. Problem setting.
The aim of linear identi!cation is to !t some linear sto-

chastic realization to an experimental set measurement of the
input/output of some unknown system. We restrict ourselves
here to the set of AutoRegressive Moving Average with
exogenous input (ARMAX) models:
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where ! stands for the (measured) output, !$ ' ( ! #)))*"
stands for the (measured) inputs, & stands for a white noise
with unknown variance and !" ' + ! #)))*"#!# ' + ! $)))*$
#' ( ! #)))," # !% ' + ! #)))*" stands for the set of unknown
parameters to be identi!ed. Note that, for convenience, we
!x the same order * for the AR, the MA and the X part.
Referring to the Gaussian case, the accuracy of the model
derived is commonly measured through the one-step-ahead-
prediction error of the output, that is:
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where #! stands for the predictor of the output. If one
may assume that the zeros of the MA part are all inside the
unit circle, the output predictor #! is [2]:
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where $! ! ! $ #! is the prediction error and ( !
" $ % .
Note that it is assumed that the whole data record over

the interval %$%' .% is available. Obviously, in practice, only
data over the interval &#' .% are known. The common way
to get round this dif!culty is to use windowed data. Most
often, one just assumes that the past data, for . / #, is
zero. This is equivalent to consider that the initial condition,
in a state space representation, is zero, which is not true in
most cases. The main drawback of this assumption is that, for
short experiments, it is more dif!cult to !t data to the model
with non-zero initial conditions. The true model for !nite data
record would be:
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where !0 ' . ! #)))*" stands for the * initial conditions of the
system. For . 1 *, 1 is then fully de!ned. To represent the
initial condition effect, it is convenient to introduce an extra
virtual impulsive input $ de!ned by $ ! # and $ ! $'&. '!
#. The complete model is then:
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with, # ! 0 '&+ ! $)))* $ #. With this modi!ed model,
all data must be assumed zero &. / #.

B. Computing the parameters via hereditary projection.
Recall that the criterion 2 is not quadratic with respect to

the parameters, as it is the case for ARX models (% ! $' + !
#)))*). Indeed, if one develops the dependence of the criterion
with respect to the parameters " for instance, the AR part
appearing in 3 involves an in!nite development, which is not
explicitly tractable. Many approximating algorithms have been
developed to compute the model parameters as the so-called
Extended Least Square [5] [6] [2] or Gauss-Newton algorithms
[7] [6] [8]. In none of these approaches, transient behavior is
optimized. In this paper, we deal with a time varying approach
preserving a transient convergence similar to that of [1]. Let us
denote #! ' 2 ! #))).$# the optimal predictor that minimizes
the criterion - . The parameters have been obtained from the
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knowledge of the data record !! ' $ ' 2 ! #))).$#' ( ! $))),".
At time ., the new predictor trajectory is computed as follows:

&2 ! #))).' #! !
!

" #! "
!!

# $

That means that the whole trajectory from # to . is re-
computed at each step. In such a time varying scheme, the
criterion is quadratic with respect to !" ' # " (but not with
respect to !" ' # ' 2 ! #))). $ #" previously computed).
Therefore, the optimal parameters can be computed using
classical projection formula. On the other hand, it leads to
a hereditary algorithm. That means that the memory needed
for computation is linearly growing with time due to the up-
dating of the overall least-square criterion as data accumulate.
In other words, the non-linearity complexity is handled via
hereditary computation.

II. GENERAL LEVINSON FORMULA.
Let us note the experimental mean of a process 3 ( !

de!ned over the interval &#' .% as 4 &3 % !
%

3 .
De!nition 1: The projection of a process 5 ( ! ' 2 !

#))). over the process 6 ( ! ' 2 ! #)))., is the process 7 !
8 &5 )6 % ! 9 6 where 9 ! 4 &5 6 %'4 &6 6 %( .
It is clear that this projection yields the process that

minimizes the mean square error 4 &*5 $ 7 * %.
Let us de!ne 7 ( ! as:

7 ! &$ ' )))' $ ' #! ' $! % ' 2 ! #))). (4)

Assume that &2 / #, 7 ! $. The linear predictor #! is then
computed using the projection of de!nition 1:#! ! 8 &! )7 ' )))' 7 % (5)
Suppose that &2 / #, 5 ! 6 ! $. One then has:
Proposition 2: 8 &5 )6 % ! 8 &5 )6 %
As it appears in 5, the linear predictor is computed as a

linear projection over the space spanned by !7 ' )))' 7 ".
The Levinson formulae are devoted to recursively compute
an orthogonal basis of this space according to the inner
product de!ned by +5 )6 , ! 4 &5 6 %. Let us de!ne
the family !: ' )))' : " (called backward residuals)
to be the orthonormalized basis of the space spanned by
!7 ' )))' 7 ". According to this de!nition, one has:

4 &: ': ( % ! $'&+ '! ;

4&: ': ( % ! <'&+ ! $)))*$ #

where < stands for the identity matrix. One has:
Proposition 3: Backward and forward normalized residuals

obey the following relations:
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where:

= ! 4 &7 '7 ( % (7)
> ! 4 &: '? ( %'&+ ! $)))*$ ) (8)

Moreover, thanks to the orthonormality property of the
residuals, the one-step-ahead predictor has the following ex-
pression:

#! !
!

@ A : '&2 ! #))). (9)

where @ stands for the vector of ! de!ned by: @ ! #,
&+ '! (' @ ! $ and:

A ! 4 &7 ': ( % (10)

See appendix VIII for proof.

III. HEREDITARY ALGORITHM.
Suppose that, at previous step (.$ #), the whole sequences

!: ' + ! $)))*$#' 2 ! #))).$#" (backward residual trajec-
tories) are available. One then computes the matrices !A ' + !
$)))*$#" and = de!ned by 10 and 7 performing a summation
over the interval &#' .%. Note that although this calculus seems
implicit, it can be performed using the orthogonality property
of the innovation process 4 &'! $ #! (: % ! $. One
may then compute the matrices !> ' + ! $)))* $ #" using
recursively equations 18 and 25 of appendix VIII. It remains
then to update the residual trajectories. Here is the hereditary
part of the algorithm:
For 2 ! #)))., do:#! !

%
@ A :

7 !
,
$ ))) $ #! '! $ #! (

-
? ! '= ( 7
For + ! #)))*$ #,

? !
,
< $ > '> (

-
'? $'> ( : (

For + ! *$ #)))#'

: !*
'< $ > '> (

+
': $ > ? (

: ! ' = ( 7

Obviously, during the !rst steps of the algorithm, the co-
variance matrices, such as > , are singular since all data prior
to 2 ! # are assumed to be zero. Therefore, the coef!cients
related to these data are undetermined. In fact, only one new
non-zero coef!cient is derived at each step. That means that
one needs at least *- ',"*( steps to assure the regularity of
all matrices. There are two ways to solve this problem.

One may use pseudo-inverse procedure when one needs
to inverse a singular matrix.
One may also compute previously the rank of matrices by
analyzing the algorithm. For example, one has to compute
the inverse of the square root of = . It is clear that, if the
input-output sequence is not singular, the rank of = (
! is equal to ., since . " ',"*(. Moreover, one has
to compute the inverse of the square root of the matrices
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B ! '<$'> ( > (. If C denotes the rank of > ' the rank
of B is obviously ,"*$C. Because only one parameter
is derived at each step, one needs to wait '," *('+" #(
steps to assure that > has a rank equal to , " *. More
precisely, one has:
– If . " ', " *('+ $ #( " # or . # ', " *(+, then

C('B ( ! ," *
– If . ( &'," *('+$ #( " #' '," *(+%, then C('B ( !

'," *(+$ ." #
– If . ( &'," *(+" #' '," *('+" #(%, then C('B ( !

.$ '," *(+

where C('B( stands for the rank of the matrix B.
Note that these procedures do not harm the optimality of the

algorithm since it just provides a particular set of parameters
among all possible solutions.

IV. COMPUTING THE TRANSFER FUNCTION COEFFICIENTS

For some purposes, it could be convenient to deal with the
transfer function related to the linear system involved under
lattice form. To achieve this goal, it is necessary to take into
account that the lattice parameters are not stationary, since
the inputs are not, in general, a perfect white noise process.
Indeed, some parameters are resulting from the projection of
the inputs over their own past. First note that, at time ., the
state of the linear one-step-ahead predictor can be reduced to
the sets:

!: ' )))' : " ! !7 ' )))' 7 "
thanks to formula 6. According to 3, if one sets all components
of the state to zero except one term to be equal to one, the
parameters of the transfer function can be computed as the
output of the !lter. More precisely, if one sets:

7 ! $ )) $ # $ ))) $

7 ! $'&; '! +

one obtains " for ; ! ,"), D for ; ! ,"*, # for ; !
( (; '! $) and 0 , the +-th component of the initial condition,
for ; ! $. The algorithm is then structured as follows:

For + ! #)))*, do : ! ' = ( 7 where
7 is initialized as described above.
For + ! #)))*, do ? !

.
:

For ( ! #)))*$ # do for 2 ! #)))*$ # do:
– : !

*
'< $ > '> (

+
': $

> ? (

– ? !
,
< $ '> ( >

-
'? $

'> ( : (

E !
%

@ A : where E stands for the para-
meter to be computed, that is " , # or 0 , depending
on the value of ;.

V. EXTENSIONS TO MORE GENERAL LINEAR SYSTEMS.
In the introduction, we stated that, for convenience, we !xed

the same order * for the numerators and denominator of the
transfer function. In fact, there is no trouble to deal with more
general transfer functions.

A. Introduction of delays on the inputs.
If one wishes to introduce time delays on the input,

one just has to replace 7 de!ned in 4 with 7 !
&$ ' $ )))' $ ' #! ' $! % ' 2 ! #))). where F
stands for the delay !xed for the (-th input. Note that the
!rst input $ being the virtual impulsive input intended to
represent the initial condition effect, it remains unchanged.

B. Dealing with different orders for numerators and denomi-
nator.
If one wishes to deal with different orders for numerators

and denominator, !rst replace * with the maximum of the
orders desired. The de!nition of the predictor #! is then
modi!ed as #! ! 8 &! )4 7 ' )))' 4 7 % where 4 is
a square matrix that sets to zero the appropriate components
of 7 . All computations of the algorithms being linear
operations, there is no dif!culty to modify the algorithm with
this change.

C. Time-varying systems.
In the case of time-varying systems, if G stands for the

tracking-time constant, one just has to modify the de!nition
of the experimental mean as follows:

4 &5 % !
#

.

!
5 '&. / G

4 &5 % !
#

G

!
5 '&. . G

VI. EXPERIMENTAL RESULTS.
As the main goal of this identi!cation algorithm is to

optimize the transient (short experiments), the !rst test we
made was proceeded in the noise free case. We have veri!ed,
in simulation, that for *-dimensional linear systems with ,
inputs, the parameters are obtained exactly (in fact with a
precision lower that #$ ) after *', " *( steps, which is
obviously the minimal number of steps required.
We used for experiments some datasets coming from

DAISY [9]. We have compared the performances of our
hereditary algorithm with the results obtained by the stan-
dard MATLAB identi!cation toolbox functions: n4sid.m
(subspace identi!cation), armax.m and oe.m (Newton like
algorithms). For the ARMAX and OE functions, we added the
extra impulsive input described in I, in view to deal with an
unknown initial condition An example of results got with the
dataset [96-011] with * ! + is shown !gure 1. We have repre-
sented the relative output error

.%
'! $ #! ( H

%
! ,

computed over the whole dataset (G ! #,-$ samples), when
the parameters are computed over only a smaller varying data
length (from #$ to .$$ per step of #$). In view to clarify
the graphical representation, we set this error to be zero when
the system derived was unstable. It appears clearly that, for
this example, the output error of the hereditary algorithm has
almost reached its minimum after only #.$ steps. Note that
this output error is no more "uctuating for longest datasets,
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contrary to those obtained with standard algorithms. Moreover,
all systems obtained with our algorithm are stable for a dataset
of length # *$ and leads to an error " )./.
In view to illustrate the behavior of the algorithm, we have

simulated a ,-order linear system with zeros located at !I !
#' I ! $)0 123'/+JH+(' I ! $)0 123'/*+JH-(" and poles
located at !, ! $)0 123'/+JH-(' , ! $)0 123'/+JH*(' , !
$). 123'/#*+JH*)(". The input is a Gaussian white noise and
signal to noise ratio is #)DK. The hereditary estimates of the
!rst two parameters of the denominator are plotted !gure 2
and compared to the results obtained with the standard oe.m
MATLAB identi!cation toolbox function. It appears clearly
that the algorithm that uses a classical Newton type method
falls on several occasions in local minima.
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Fig. 1. Heat ow density through a two layer wall dataset
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Fig. 2. Time-varying parameter estimates

VII. CONCLUSION.

We have derived a new identi!cation algorithm for ARMAX
systems based on a hereditary computation. The main bene!t
of this algorithm is that it is optimal in the transient. We have
shown that the introduction of an extra virtual impulsive input
could be used to extract the estimation of initial conditions.
Moreover, it appears that no tuning parameter is needed when
the input-output is not singular. When it is not the case, for
binary signals for example, the algorithm uses pseudo-inverses
since the dataset remain singular, which does not harm its
ef!ciency.

VIII. PROOF OF PROPOSITION 3.

Let us de!ne the following sets:
Backward residuals: &2 ! #))).'/

5 ! 7
5 ! 7 $ 8 &7 )7 ' )))' 7 %'&+ ! #)))*$ #

(11)
Forward residuals: &2 ! #))).'/

7 ! 7
7 ! 7 $ 8 &7 )7 ' )))' 7 %'&+ ! #)))*$ #

With these de!nitions, one clearly has:

!7 ' )))' 7 " ! !5 " 0 ))) 0 !5 "(12)
!7 ' )))' 7 " ! !7 " 0 ))) 0 !7 " (13)

Using 13, the backward residuals can be rewritten as fol-
lows:

5 ! 7 $8 &7 )7 ' )))' 7 %$8 &7 )7 %
(14)

But, at previous step .$ #, according to 11, one had:

5 ! 7 $ 8 &7 )7 ' )))' 7 %

! 7 $ 8 &7 )7 ' )))' 7 %

according to property 2:

5 ! 7 $ 8 &7 )7 ' )))' 7 %

Therefore, formula 14 takes the following form:

5 ! 5 $ 8 &5 )7 % (15)

In the same way, using 12 in the expression of forward
residuals, one has:

7 ! 7 $ 8 &7 )5 %$ )))$ 8 &7 )5 %

! 7 $ 8 &7 )5 %

The aim is now to construct the set of residuals
!: ' + ! $)))* $ #", where : ! L 5 , such that
4 &: ': ( % ! <. Note that, using the assumption
that : ! $'&2 / #, this is equivalent to ensure that:

4 &: ': ( % !
." #

.
< (16)
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Let us de!ne = ! 4 &7 '7 ( %'&+ ! $)))*$ # and A !
4 &7 ': ( %'&+ ! $)))* $ #. According to 15, one
has:

: ! L 'L (
*
: $ 0

A
1

%'= ( 7
+
(17)

The autocorrelation matrix of : can then be written as
follows:

4 &: ': ( % ! L 'L (

- ,
< $ 'A ( '= ( A

-
'L ( 'L (

where B stands for the inverse of transposed matrix B. Let
us de!ne:

> ! 'A ( '= ( (18)

Assumption 16 leads to:

L 'L ( !

2
.

." #
'< $ > '> ( (

3
(19)

Let ? ! '= ( 7 be the normalized form of the
forward residuals. Expression 6 is a directly involves from 17
and 19. Note that, according this de!nition, one has > !
4 &: '? ( %. In the same way, the recursive equation
of the forward residuals can be written:

? ! '= ( '= ( &? $4 &? '5 ( %

-'4 &5 '5 ( %( %5 (20)

Introducing the normalized backward residuals, one has:

4 &? '5 ( % ! 4 &? ': ( %'L (
(21)

and:

4 &5 '5 ( % ! 'L ( 'L ( (22)

Reporting both 21 and 22 in 20 leads to:

4 &? '5 ( %'4 &5 '5 ( %(

! '> ( L

Consequently, formula 20 becomes:

? ! '= ( '= (
*
? $ '> ( :

+
(23)

Moreover, according to the normalization procedure, one has
4 &? '? ( % ! <. The computation of the experimental
covariance of ? leads to:

< ! '= ( '= (
,
< $ '> ( >

-
'= ( '= (

(24)
which leads to:

'= ( '= ( !
,
< $ '> ( >

-
(25)

Reporting 24 in 23 leads to the result.
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