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This article deals with the minimum variance estimation of a Gaussian process constrained by bounds. A special truncated Gaussian probability is shown to be fairly well adapted to this ltering scheme as its set is linearly closed with respect to convolution and multiplication operations.

used in [START_REF] Simon | Kalman ltering with inequality constraints for turbofan engine health estimation[END_REF]. In [START_REF] Richards | Constrained Kalman ltering using pseudomeasurements[END_REF], the author extends the pseudomeasurement approach, used in the equality constraint case [START_REF] Tahk | Target tracking subject to kinematic constraints[END_REF], to the inequality case. Recall that the pseudomeasurement approach may lead to singularity of the ltering covariance matrix. Often, this singularity has to be arti cially regularized in the nonlinear case [START_REF] Geeter | A smoothly constrained Kalman lter[END_REF]. In [START_REF] Ungarala | Constrained extended Kalman lter for nonlinear state estimation[END_REF], the authors compute a maximum likelihood estimator under constraints using the Lagrangian multiplier tool. Note that it seems that the authors did not observe that this approach is close to the pseudo-measurement approach [START_REF] Tahk | Target tracking subject to kinematic constraints[END_REF]. Finally, in [START_REF] Rao | Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations[END_REF], the authors employ online optimization using a moving horizon approximation and in [START_REF] Brankart | Optimal nonlinear ltering and smoothing assuming truncated Gaussian probability distributions in a reduced dimension space of adaptive size[END_REF], the author uses classical normalized truncated Gaussian probability density functions (pdf) which are approximated by random sampling. The main drawback of these two last approaches lies in their heavy computational costs.

Here, we suggest the use of a new pdf named Mirrored Gaussian pdf (MGP). It is shown that the MGP set is linearly closed with respect to convolution and multiplication operations. The Gaussian pdf properties are then exploited to derive a ltering algorithm based on Kalman ltering or extended Kalman ltering (EKF) nearby the so-called Gaussian sum lter (GSF) [START_REF] Sorenson | Recursive Bayesian estimation using Gaussian sums[END_REF]. As it is the case for GSF, one observes an increase in the number of MGP devoted to represent the optimal solution. This exponential growth can be reduced using the same kind of heuristics as those used in [START_REF] Sorenson | Recursive Bayesian estimation using Gaussian sums[END_REF] and [START_REF] Alspach | Nonlinear Bayesian estimation using Gaussian sum approximation[END_REF].

Let us consider a linear dynamic system x t 2 R n whose evolution is involved in the classical linear equations:

x t = F x t 1 + w t (1a) y t = Hx t + v t (1b)
where w t and v t are independent white noises and where y t stands for the output. If the noise w t pdf is Gaussian with variance Q = E w t w T t , the transition pdf of the state can be written

p (x t jx t 1 ) = (x t F x t 1 ; Q) (2)
where stands for the Gaussian pdf

(x; Q) , 1 p (2 ) n jQj exp 1 2 x T Q 1 x
Suppose now that one wants to make sure that the rst component of x t , say [x t ] 1 , remains positive for all x t 1 such that [x t 1 ] 1 > 0. The rst idea would be to consider the truncated Gaussian pdf de ned by

p (x t jx t 1 ) = (x t 1 ) I [[xt] 1 0] (x t F x t 1 ; Q)
where I [x>0] stands for the indicator function of the set fx > 0g and where (x t 1 ) is a scaling factor, depending obviously on the Gaussian pdf mean F x t 1 .

Unfortunately, the expression of (x t 1 ) is a little complicated and does not allow simple ltering computation, except for the static case (parameter estimation [START_REF] Monin | Minimum variance estimation of parameters constrained by bounds[END_REF]).

A better choice is accepting a minor distortion of the Gaussian pdf near zero (see Figure 1). This may be achieved by de ning the MGP as follows:

~ (x; x; P ) , I [[x] 1 0] ( (x x; P ) + (x + x; P )) (3) 
It is easy to show that this pdf is really a normalized pdf (see Lemma 3 in the Appendix). Thus, let us replace the transition pdf, Expression (2), with the following MGP p (x t jx t 1 ) = ~ (x t ; F x t 1 ; Q)

In the same manner, assume that the rst component of the output y t is positive. One may de ne again the output pdf as a MGP as follows:

p (y t jx t ) = ~ (y t ; Hx t ; R) (4) 

II. OPTIMAL FILTERING

A. The linear case

The MGP introduced in this paper has important properties. Indeed, the MGP set is closed with convolution and linearly closed with multiplication (see Appendix I). Recall that the optimal ltering goal is to compute the so-called a posteriori pdf of the state p (x t jy 0:t ) where y 0:t , fy 0 ; : : : ; y t g. Therefore, if the initial pdf of the state is a MGP, then the a posteriori pdf is a linear combination of MGPs.

Theorem 1: If at time t 1 the a posteriori pdf of the state is a weighted MGP sum with N t 1 terms as follows:

p (x t 1 jy 0:t 1 ) = Nt 1 X i=1 i t 1 ~ x t 1 ; xi t 1jt 1 ; P i t 1jt 1
(5) then, at time t, the a posteriori pdf is again a weighted MGP sum with 2 N t 1 terms de ned by

p (x t jy 0:t ) = Nt 1 X i=1 i;1 t ~ x t ; xi;1 tjt ; P i tjt + Nt 1 X i=1 i;2 t ~ x t ; xi;2 tjt ; P i tjt where xi tjt 1 = F xi t 1jt 1 (6a) 
P i tjt 1 = F P i t 1jt 1 F T + Q (6b) xi;1 tjt = xi tjt 1 + K i t y t H xi tjt 1 (7a) xi;2 tjt = xi tjt 1 + K i t y t + H xi tjt 1 (7b) i tjt 1 = HP i tjt 1 H T + R (8a) 
K i t = P i tjt 1 H T i tjt 1 1 (8b) 
P i tjt = P i tjt 1 P i tjt 1 H T i tjt 1 1 HP i tjt 1 (8c) ~ i;1 t = i t 1 I [[yt] 1 >0] y t H xi tjt 1 ; i tjt 1 (9a) ~ i;2 t = i t 1 I [[yt] 1 >0] y t + H xi tjt 1 ; i tjt 1 (9b) i;1 t = ~ i;1 t P Nt 1 i=1 ~ i;1 t + ~ i;2 t i;2 t = ~ i;2 t P Nt 1 i=1 ~ i;1 t + ~ i;2 t
Proof: The so-called Chapman-Kolmogorov theorem applied to Equation (5) leads to

p (x t jy 0:t 1 ) = Z R n p (x t jx t 1 ) p (x t 1 jy 0:t 1 ) dx t 1 = Nt 1 X i=1 i t 1 Z R n ~ (x t ; F x t 1 ; Q) ~ x t 1 ; xi t 1jt 1 ; P i t 1jt 1 dx t 1
Corollary 5 allows one to rewrite this expression as follows:

p (x t jy 0:t 1 ) = Nt 1 X i=1 i t 1 ~ x t ; xi tjt 1 ; P i tjt 1
where

xi tjt 1 = F xi t 1jt 1 P i tjt 1 = F P i t 1jt 1 F T + Q
The correction is then obtained by using the Bayes rule, that is, omitting the scaling term:

p (x t jy 0:t ) / p (y t jx t ) p (x t jy 0:t 1 ) = Nt 1 X i=1 i t 1 ~ (y t ; Hx t ; R) ~ x t ; xi tjt 1 ; P i tjt 1
Lemma 4 then leads to the result.

Clearly, the number of MGP needed for the representation of the ltering solution grows exponentially with time, as it is the case in Gaussian sum ltering ( [START_REF] Sorenson | Recursive Bayesian estimation using Gaussian sums[END_REF] [START_REF] Alspach | Nonlinear Bayesian estimation using Gaussian sum approximation[END_REF]). Note that the MGP number increase is due to the correction step while the Gaussian number pdf increase is due to the prediction step when using the GSF technique.

As in the GSF case, one has to use approximations to reduce the increase in MGP number. The simplest technique consists of maintaining only the N max MGP with greatest weights i t and pruning the other MGPs, N max being the number of MGP well-matched with the computational power allocated to the application.

B. Computing the estimator

If at step t, the a posteriori pdf is , the same values that in the unconstrained case.

p (x t jy 0:t ) = Nt X i=1 i t ~

C. The nonlinear case

Suppose now that the dynamic system is nonlinear:

x t = f (x t 1 ) + w t y t = h (x t ) + v t
In this case, a very popular approximation is based on the linear approximation of functions f and h and leads to the so-called EKF. In our case, such an approximation is still relevant provided by the function h to be an odd function.

Theorem 2: If the function h is an odd function and if at time t 1 the a posteriori pdf of the state is a weighted MGP sum with N t 1 terms, Expression (5), then at time t the a posteriori pdf can be approximated by a weighted MGP sum with 2 N t 1 terms de ned by p (x t jy 0:t ) ' in Expressions ( 7) and ( 9) and nally H with the Jacobian of h evaluated at xi tjt 1 in Expression [START_REF] Monin | Minimum variance estimation of parameters constrained by bounds[END_REF].

III. SIMULATION RESULTS

To illustrate the relevance of such a ltering approach, let us consider the stereovision issue in a very simple case, that is, a mono-dimensional stereovision system. Recall that the classical range estimation of a salient point is achieved via disparity measurement, that is, the difference between the pixel location corresponding to the salient point on the two camera image planes. This disparity d t is then related to the range r t as follows:

d t = bf r t
where b stands for the distance between the two cameras and f is the focal distance of the lens. If f is expressed in pixel units, considering the measurement error equal to one pixel, the measurement may be modeled as follows:

y t = bf r t + v t
where f = N=2, N is the total number of pixels, and where v t is a Gaussian white noise with variance equal to unity. Recall that if the measurement y t < 0, the value is changed in y t = 0. Let us consider that the salient point speed (s t ) moves according to a rst order dynamic system. The range (r t ) evolution may be represented by the following equations:

r t = r t 1 + s t 1 t s t = ks t 1 + w t
where k = 0:95 refers to a friction factor and w t is Gaussian white noise with variance Q. t stands for the sampling period.

We then apply Theorem 2 to achieve the ltering of x t (it is clear that the output function is an odd function). The growth of the MGP number is treated by pruning MGPs with lowest weights and the total number of MGPs is xed to N max = 2 3 = 8. The distance between cameras is xed at b = 0:2 m and the pixel number at N = 640. The true initial range is equal to r 0 = 2 m and the initial pdf is de ned by p (r 0 ) = ~ (r 0 ; r 0 ; P 0 ) with r 0 = c=y 0 and p P 0 = 60 m. The measurement frequency is 1 Hz ( t = 1 s). The standard deviation of w t is set to 10 p t. Our ltering algorithm (MEKF) has been compared with the classical EKF, the algorithm including the projection utility suggested in [START_REF] Simon | Kalman ltering with inequality constraints for turbofan engine health estimation[END_REF] and [START_REF] Kandepu | Constrained state estimation using the unscented Kalman lter[END_REF] (CEKF) and the pseudo-measurement approach (PEKF) suggested in [START_REF] Ungarala | Constrained extended Kalman lter for nonlinear state estimation[END_REF]. Note that, for this example, the approaches in [START_REF] Tugnait | Constrained signal restoration via iterated extended Kalman ltering[END_REF] and [START_REF] Massicote | Incorporation of a positivity constraint into a Kalman-lter-based algorithm for correction of spectrometric data[END_REF] lead to the same results than the CEKF approach. A typical example of range and speed estimations is shown Figures 2 and3 respectively. Clearly, when the true range comes near zero, the EKF range estimator diverges when it locks on a negative value. It is then unable to go back to a positive estimate as it uses the Jacobian of 1=r, which has the wrong sign. In the same situation (true range near zero), the CEKF is unable to get away from zero as the speed estimation has the wrong sign. Finally, the PEKF range estimator remains zero until the real range reaches a value far from zero. On the other hand, our algorithm seems to be always ef cient, even near zero. Note that when the true range is far from zero and before any divergence, all lters are equivalent as they come down to the unconstrained EKF.

H ( ) being the Jacobian of the function h.

Proof: The development of the product is similar to that of Expression [START_REF] Simon | Kalman ltering with inequality constraints for turbofan engine health estimation[END_REF], just replacing Hx with h (x). The linearization of h (x) at the neighborhood of leads to

(y h (x) ; R) (x ; P ) ' (y h ( ) ; ( )) (x ( + K ( ) (y h ( )) ; B ( )))(14)
where , K and B are de ned by Expression [START_REF] Tahk | Target tracking subject to kinematic constraints[END_REF]. In the same manner, the second product of Expression ( 11) becomes

(y + h (x) ; R) (x + ; P ) ' (y + h ( ) ; ( )) (x ( + K ( ) (y h ( )) ; B ( ))) (15) 
after linearization of h (x) at the neighborhood of . The function h being odd, the Jacobian H ( ) is even and ( ) = ( ), K ( ) = K ( ) and B ( ) = B ( ). Equations ( 14) and ( 15) can then be combined in

(y h ( ) ; ( )) ~ (x; + K ( ) (y h ( )) ; B ( ))
The same computation is applied to the second product. 

= Z R + [x] 1 [x] 1 [ x] 1 ; [P ] 1 1 d [x] 1 + Z R + [x] 1 [x] 1 + [ x] 1 ; [P ] 1 1 d [x] 1 [x] 1 [ x] 1 ; P
+ 1 2 1 + erf [ x] 1 = q 2 [P ] 1 1 [ x] 1 1 2 1 erf [ x] 1 = q 2 [P ] 1 1 [ x] 1
which leads to the result.
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 1 Fig. 1. Example of the distorsion induced by the truncation.
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 3 Fig. 2. Range estimation
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  1 1 being the marginal pdf of [x] 1 .
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IV. CONCLUSION

A new pdf devoted to perform positive variables has been proposed here. This pdf appears to be is welladapted to ltering when one component of the variable to be estimated is assumed to be positive. A new ltering algorithm based on these pdfs has been proposed compared with EKF in an academic example. One should imagine an extension to constraints de ned by several bounds (an interval, for instance) provided to grow the Gaussian pdf number devoted to represent the MGP.

APPENDIX I TRUNCATED GAUSSIAN FORMULA

Lemma 3: The MGP de ned by Expression (3) is a normalized pdf.

Proof:

using the fact that (x; P ) = ( x; P ).

Lemma 4: The product of two truncated Gaussian pdf is a linear combination of truncated Gaussian pdfs: 

Recall the classical Gaussian product formula usually used to compute the Kalman lter [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF] (y Hx; R) (x ; P ) = (y H ; ) (x ( + K (y H ) ; B))

where

Let us take into account the rst two Gaussian pdf products of Expression [START_REF] Simon | Kalman ltering with inequality constraints for turbofan engine health estimation[END_REF]. Note that the second term is derived from the rst one by replacing y ! y and ! . Thus, one has