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Abstract�This article deals with the minimum variance
estimation of a Gaussian process constrained by bounds.
A special truncated Gaussian probability is shown to
be fairly well adapted to this �ltering scheme as its
set is linearly closed with respect to convolution and
multiplication operations.
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I. INTRODUCTION.

In some dynamic system estimation issues, the state,
or some component of the state, may be assumed to be
constrained by bounds. In this article, we address the
problem of state estimation when one component of the
state is constrained to be positive. This work follows the
previous exact results obtained in the static case, which
is in the parameter estimation case [8].
Some previous works in the dynamic case are dis-

cussed here. In [11], [4] and [6], the authors use �rst an
unconstrained Kalman �lter (or extended Kalman �lter)
and then, at each step, if the unconstrained estimator
is outside the feasible region, it is projected to the
boundary of the feasible region without any change in
the covariance matrix of the Kalman �lter (except in [6]).
In [14], the author suggests introducing a nonlinearity in
the system to represent the constraint. Note that if the
indicator function is chosen to stand for the nonlinear
function, this approach is close to the one used in [11]. In
[7], a smoothing approach is used to prune the negative
values. It may be seen as an extension of the approach
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used in [11]. In [10], the author extends the pseudo-
measurement approach, used in the equality constraint
case [13], to the inequality case. Recall that the pseudo-
measurement approach may lead to singularity of the
�ltering covariance matrix. Often, this singularity has to
be arti�cially regularized in the nonlinear case [3]. In
[15], the authors compute a maximum likelihood esti-
mator under constraints using the Lagrangian multiplier
tool. Note that it seems that the authors did not observe
that this approach is close to the pseudo-measurement
approach [13]. Finally, in [9], the authors employ online
optimization using a moving horizon approximation and
in [2], the author uses classical normalized truncated
Gaussian probability density functions (pdf) which are
approximated by random sampling. The main drawback
of these two last approaches lies in their heavy compu-
tational costs.
Here, we suggest the use of a new pdf named Mirrored

Gaussian pdf (MGP). It is shown that the MGP set is
linearly closed with respect to convolution and multipli-
cation operations. The Gaussian pdf properties are then
exploited to derive a �ltering algorithm based on Kalman
�ltering or extended Kalman �ltering (EKF) nearby the
so-called Gaussian sum �lter (GSF) [12]. As it is the
case for GSF, one observes an increase in the number
of MGP devoted to represent the optimal solution. This
exponential growth can be reduced using the same kind
of heuristics as those used in [12] and [1].
Let us consider a linear dynamic system xt 2 Rn

whose evolution is involved in the classical linear equa-
tions:

xt = Fxt�1 + wt (1a)
yt = Hxt + vt (1b)

where wt and vt are independent white noises and where
yt stands for the output. If the noise wt pdf is Gaussian
with variance Q = E

�
wtw

T
t

�
, the transition pdf of the

state can be written

p (xtjxt�1) = � (xt � Fxt�1; Q) (2)
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where � stands for the Gaussian pdf

� (x;Q) , 1p
(2�)n jQj

exp

�
�1
2
xTQ�1x

�
Suppose now that one wants to make sure that the �rst
component of xt, say [xt]1, remains positive for all xt�1
such that [xt�1]1 > 0. The �rst idea would be to consider
the truncated Gaussian pdf de�ned by

p (xtjxt�1) = � (xt�1) I[[xt]1�0]� (xt � Fxt�1; Q)

where I[x>0] stands for the indicator function of the
set fx > 0g and where � (xt�1) is a scaling factor,
depending obviously on the Gaussian pdf mean Fxt�1.
Unfortunately, the expression of � (xt�1) is a little com-
plicated and does not allow simple �ltering computation,
except for the static case (parameter estimation [8]).
A better choice is accepting a minor distortion of the
Gaussian pdf near zero (see Figure 1). This may be
achieved by de�ning the MGP as follows:

~� (x; �x; P ) , I[[x]1�0] (� (x� �x; P ) + � (x+ �x; P ))
(3)

It is easy to show that this pdf is really a normalized pdf
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Fig. 1. Example of the distorsion induced by the truncation.

(see Lemma 3 in the Appendix). Thus, let us replace the
transition pdf, Expression (2), with the following MGP

p (xtjxt�1) = ~� (xt; Fxt�1; Q)

In the same manner, assume that the �rst component
of the output yt is positive. One may de�ne again the
output pdf as a MGP as follows:

p (ytjxt) = ~� (yt;Hxt; R) (4)

II. OPTIMAL FILTERING
A. The linear case
The MGP introduced in this paper has important prop-

erties. Indeed, the MGP set is closed with convolution
and linearly closed with multiplication (see Appendix I).
Recall that the optimal �ltering goal is to compute the
so-called a posteriori pdf of the state p (xtjy0:t) where
y0:t , fy0; : : : ; ytg. Therefore, if the initial pdf of the
state is a MGP, then the a posteriori pdf is a linear
combination of MGPs.
Theorem 1: If at time t � 1 the a posteriori pdf of

the state is a weighted MGP sum with Nt�1 terms as
follows:

p (xt�1jy0:t�1) =
Nt�1X
i=1

�it�1~�
�
xt�1; x̂

i
t�1jt�1; P

i
t�1jt�1

�
(5)

then, at time t, the a posteriori pdf is again a weighted
MGP sum with 2�Nt�1 terms de�ned by

p (xtjy0:t)

=

Nt�1X
i=1

�i;1t
~�
�
xt; x̂

i;1
tjt ; P

i
tjt

�
+

Nt�1X
i=1

�i;2t
~�
�
xt; x̂

i;2
tjt ; P

i
tjt

�
where

x̂itjt�1 = Fx̂it�1jt�1 (6a)

P itjt�1 = FP it�1jt�1F
T +Q (6b)

x̂i;1tjt = x̂itjt�1 +K
i
t

�
yt �Hx̂itjt�1

�
(7a)

x̂i;2tjt = �x̂itjt�1 +K
i
t

�
yt +Hx̂

i
tjt�1

�
(7b)

�itjt�1 = HP itjt�1H
T +R (8a)

Ki
t = P itjt�1H

T
�
�itjt�1

��1
(8b)

P itjt = P itjt�1 � P
i
tjt�1H

T
�
�itjt�1

��1
HP itjt�1(8c)

~�i;1t = �it�1I[[yt]1>0]�
�
yt �Hx̂itjt�1;�

i
tjt�1

�
(9a)

~�i;2t = �it�1I[[yt]1>0]�
�
yt +Hx̂

i
tjt�1;�

i
tjt�1

�
(9b)

�i;1t =
~�i;1tPNt�1

i=1

�
~�i;1t + ~�i;2t

�
�i;2t =

~�i;2tPNt�1
i=1

�
~�i;1t + ~�i;2t

�
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Proof: The so-called Chapman-Kolmogorov theo-
rem applied to Equation (5) leads to

p (xtjy0:t�1) =

Z
Rn
p (xtjxt�1) p (xt�1jy0:t�1) dxt�1

=

Nt�1X
i=1

�it�1

Z
Rn
~� (xt; Fxt�1; Q)

�~�
�
xt�1; x̂

i
t�1jt�1; P

i
t�1jt�1

�
dxt�1

Corollary 5 allows one to rewrite this expression as
follows:

p (xtjy0:t�1) =
Nt�1X
i=1

�it�1~�
�
xt; x̂

i
tjt�1; P

i
tjt�1

�
where

x̂itjt�1 = Fx̂it�1jt�1

P itjt�1 = FP it�1jt�1F
T +Q

The correction is then obtained by using the Bayes rule,
that is, omitting the scaling term:

p (xtjy0:t) / p (ytjxt) p (xtjy0:t�1)

=

Nt�1X
i=1

�it�1~� (yt;Hxt; R) ~�
�
xt; x̂

i
tjt�1; P

i
tjt�1

�
Lemma 4 then leads to the result.
Clearly, the number of MGP needed for the repre-

sentation of the �ltering solution grows exponentially
with time, as it is the case in Gaussian sum �ltering
([12] [1]). Note that the MGP number increase is due
to the correction step while the Gaussian number pdf
increase is due to the prediction step when using the
GSF technique.
As in the GSF case, one has to use approximations

to reduce the increase in MGP number. The simplest
technique consists of maintaining only the Nmax MGP
with greatest weights �it and pruning the other MGPs,
Nmax being the number of MGP well-matched with the
computational power allocated to the application.

B. Computing the estimator

If at step t, the a posteriori pdf is

p (xtjy0:t) =
NtX
i=1

�it~�
�
xt; x̂

i
tjt; P

i
tjt

�
Then the minimum variance estimator of the constrained
component of the state [x]1 has the following expression

(see Appendix I, Proposition 8)

�
x̂tjt
�
1
=

NtX
i=1

�it

�
2
h
P itjt

i1
1
�

�h
x̂itjt

i
1
;
h
P itjt

i1
1

�
+erf

�h
x̂itjt

i
1
=
h
P itjt

i1
1

�h
x̂itjt

i
1

�
where [�x]1 stands for the �rst component of �x and [P ]

1
1

stands for the variance of the �rst component of the
covariance matrix P . It is based on the so-called erf
function de�ned by

erf (x) =
2p
�

Z x

0
exp

�
��2

�
d�

Note that if
h
x̂itjt

i
1
is far from the bound (zero),

then the erf function is quite near unity and

�

�h
x̂itjt

i
1
;
h
P itjt

i1
1

�
is near zero. Therefore,

�
x̂tjt
�
1
is

almost equal to the mean of the unconstrained �lter, sayPNt

i=1 �
i
t

h
x̂itjt

i
1
.

On the other hand, it is easy to check that
the other component means

�
x̂tjt
�
k;k 6=1 are equal toPNt

i=1 �
i
t

h
x̂itjt

i
k
, the same values that in the uncon-

strained case.

C. The nonlinear case
Suppose now that the dynamic system is nonlinear:

xt = f (xt�1) + wt

yt = h (xt) + vt

In this case, a very popular approximation is based on
the linear approximation of functions f and h and leads
to the so-called EKF. In our case, such an approximation
is still relevant provided by the function h to be an odd
function.
Theorem 2: If the function h is an odd function and

if at time t � 1 the a posteriori pdf of the state is a
weighted MGP sum with Nt�1 terms, Expression (5),
then at time t the a posteriori pdf can be approximated
by a weighted MGP sum with 2 � Nt�1 terms de�ned
by

p (xtjy0:t) '
Nt�1X
i=1

�i;1t
~�
�
xt; x̂

i;1
tjt ; P

i
tjt

�
+

Nt�1X
i=1

�i;2t
~�
�
xt; x̂

i;2
tjt ; P

i
tjt

�
where all the terms of this expression are obtained by
replacing in Theorem 1 Kalman �lters by EKFs.

Proof: The proof is almost the same as those of
Theorem 1 using Lemma 6 and Corollary 7. Just replace
Fx̂it�1jt�1 with f

�
x̂it�1jt�1

�
in Expression (6a), F with
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the Jacobian of f evaluated at x̂it�1jt�1 in Expression

(6b), Hx̂itjt�1 with h
�
x̂itjt�1

�
in Expressions (7) and

(9) and �nally H with the Jacobian of h evaluated at
x̂itjt�1 in Expression (8).

III. SIMULATION RESULTS
To illustrate the relevance of such a �ltering approach,

let us consider the stereovision issue in a very simple
case, that is, a mono-dimensional stereovision system.
Recall that the classical range estimation of a salient
point is achieved via disparity measurement, that is, the
difference between the pixel location corresponding to
the salient point on the two camera image planes. This
disparity dt is then related to the range rt as follows:

dt =
bf

rt

where b stands for the distance between the two cameras
and f is the focal distance of the lens. If f is expressed in
pixel units, considering the measurement error equal to
one pixel, the measurement may be modeled as follows:

yt =
bf

rt
+ vt

where f = N=2, N is the total number of pixels, and
where vt is a Gaussian white noise with variance equal
to unity. Recall that if the measurement yt < 0, the value
is changed in yt = 0.
Let us consider that the salient point speed (st) moves

according to a �rst order dynamic system. The range (rt)
evolution may be represented by the following equations:

rt = rt�1 + st�1�t

st = kst�1 + wt

where k = 0:95 refers to a friction factor and wt is
Gaussian white noise with variance Q. �t stands for the
sampling period.
We then apply Theorem 2 to achieve the �ltering of xt

(it is clear that the output function is an odd function).
The growth of the MGP number is treated by pruning
MGPs with lowest weights and the total number of
MGPs is �xed to Nmax = 23 = 8. The distance between
cameras is �xed at b = 0:2m and the pixel number at
N = 640. The true initial range is equal to r0 = 2m
and the initial pdf is de�ned by p (r0) = ~� (r0; �r0; P0)
with �r0 = c=y0 and

p
P0 = 60m. The measurement

frequency is 1Hz (�t = 1 s). The standard deviation of
wt is set to 10�

p
�t.

Our �ltering algorithm (MEKF) has been compared
with the classical EKF, the algorithm including the
projection utility suggested in [11] and [6] (CEKF) and

the pseudo-measurement approach (PEKF) suggested in
[15]. Note that, for this example, the approaches in [14]
and [7] lead to the same results than the CEKF approach.
A typical example of range and speed estimations is
shown Figures 2 and 3 respectively.
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Fig. 2. Range estimation

0 10 20 30 40 50 60
50

40

30

20

10

0

10

20

30

40

s

m
/s

True speed
EKF
CEKF
PEKF
MEKF

Fig. 3. Speed estimation

Clearly, when the true range comes near zero, the EKF
range estimator diverges when it locks on a negative
value. It is then unable to go back to a positive estimate
as it uses the Jacobian of 1=r, which has the wrong
sign. In the same situation (true range near zero), the
CEKF is unable to get away from zero as the speed
estimation has the wrong sign. Finally, the PEKF range
estimator remains zero until the real range reaches a
value far from zero. On the other hand, our algorithm
seems to be always ef�cient, even near zero. Note that
when the true range is far from zero and before any
divergence, all �lters are equivalent as they come down
to the unconstrained EKF.
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IV. CONCLUSION

A new pdf devoted to perform positive variables has
been proposed here. This pdf appears to be is well-
adapted to �ltering when one component of the variable
to be estimated is assumed to be positive. A new �ltering
algorithm based on these pdfs has been proposed com-
pared with EKF in an academic example. One should
imagine an extension to constraints de�ned by several
bounds (an interval, for instance) provided to grow the
Gaussian pdf number devoted to represent the MGP.

APPENDIX I
TRUNCATED GAUSSIAN FORMULA

Lemma 3: The MGP de�ned by Expression (3) is a
normalized pdf.

Proof: One hasZ
Rn
~� (x; �x; P ) dx =

Z
R+

Z
R
: : :

Z
R
� (x� �x; P ) dx

+

Z
R+

Z
R
: : :

Z
R
� (x+ �x; P ) dx

=

Z
R+

Z
R
: : :

Z
R
� (x� �x; P ) dx

+

Z
R�

Z
R
: : :

Z
R
� (x� �x; P ) dx

=

Z
R
: : :

Z
R
� (x� �x; P ) dx = 1

using the fact that � (x; P ) = � (�x; P ).
Lemma 4: The product of two truncated Gaussian pdf

is a linear combination of truncated Gaussian pdfs:

~� (y;Hx;R) ~� (x; �; P )

= I[y1�0]� (y �H�;�) ~� (x; �+K (y �H�) ; B)
+I[y1�0]� (y +H�;�) ~� (x;��+K (y +H�) ; B)(10)

where

� = HPHT +R

K = PHT��1

B = P � PHT��1HP

Proof: Let us develop the truncated Gaussian pdf
product as follows

~� (y;Hx;R) ~� (x; �; P )

= I[y1�0]I[x1�0] (� (y �Hx;R) � (x� �; P )
+� (y +Hx;R) � (x+ �; P )

+� (y �Hx;R) � (x+ �; P )
+� (y +Hx;R) � (x� �; P )) (11)

Recall the classical Gaussian product formula usually
used to compute the Kalman �lter [5]

� (y �Hx;R) � (x� �; P )
= � (y �H�;�)� (x� (�+K (y �H�) ; B))

where

� = HPHT +R

K = PHT��1

B = P � PHT��1HP

Let us take into account the �rst two Gaussian pdf
products of Expression (11). Note that the second term
is derived from the �rst one by replacing y ! �y and
�! ��. Thus, one has

� (y �Hx;R) � (x� �; P ) + � (y +Hx;R) � (x+ �; P )
= � (y �H�;�) (� (x� (�+K (y �H�)) ; B)

+� (x+ (�+K (y �H�)) ; B)

In the same manner, taking into account the last two
components of Expression (11) leads to

� (y �Hx;R) � (x+ �; P ) + � (y +Hx;R) � (x� �; P )
= � (y +H�;�) (� (x� (�+K (y +H�)) ; B)

+� (x+ (�+K (y +H�)) ; B)

Reporting these two expressions in Equation (11) leads
to the result.
Corollary 5: The convolution of two MGP is a MGPZ

Rn
~� (y;Hx;R) ~� (x; �; P ) dx = ~� (y;H�;�)

with
� = HPHT +R

Proof: The integration of Expres-
sion (10) leads directly to the result,
each MGP ~� (x; �+K (y �H�) ; B) and
~� (x;��+K (y +H�) ; B) being normalized.
Lemma 6: If h is an odd function, the product of

MGP ~� (y; h (x) ; R) ~� (x; �; P ) can be approximated as
follows

~� (y; h (x) ; R) ~� (x; �; P )

' I[y1>0]� (y � h (�) ;� (�))
�~� (x; �+K (�) (y � h (�)) ; B (�))
+I[y1�0]� (y + h (�) ;� (�))
�~� (x;��+K (�) (y + h (�)) ; B (�)) (12)

where

� (�) = H (�)PH (�)T +R (13a)
K (�) = PH (�)T ��1 (13b)
B (�) = P � PH (�)T ��1H (�)P (13c)
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H (�) being the Jacobian of the function h.
Proof: The development of the product is similar

to that of Expression (11), just replacing Hx with h (x).
The linearization of h (x) at the neighborhood of � leads
to

� (y � h (x) ; R) � (x� �; P )
' � (y � h (�) ;� (�))

�� (x� (�+K (�) (y � h (�)) ; B (�)))(14)

where �, K and B are de�ned by Expression (13). In
the same manner, the second product of Expression (11)
becomes

� (y + h (x) ; R) � (x+ �; P )

' � (y + h (��) ;� (��))
�� (x� (��+K (��) (y � h (��)) ; B (��)))(15)

after linearization of h (x) at the neighborhood of ��.
The function h being odd, the Jacobian H (�) is even
and � (��) = � (�), K (��) = K (�) and B (�) =
B (��). Equations (14) and (15) can then be combined
in

� (y � h (�) ;� (�)) ~� (x; �+K (�) (y � h (�)) ; B (�))

The same computation is applied to the second product.

Corollary 7: If h is an odd function, one hasZ
Rn
~� (y; h (x) ; R) ~� (x; �; P ) dx ' ~� (y; h (�) ;� (�))

with
� (�) = H (�)PH (�)T +R

where H is the Jacobian of h.
Proof: The integration of Expression (12) leads

directly to the result.
Proposition 8: The mean [x̂]1 of the constrained state

[x]1 with pdf ~� (x; �x; P ) has the following expression

[x̂]1 = 2 [P ]
1
1 �
�
[�x]1 ; [P ]

1
1

�
+ erf

�
[�x]1 =

q
2 [P ]11

�
[�x]1

Proof: The expectation of [x]1 is de�ned by

[x̂]1 ,
Z
R+
[x]1

Z
R
: : :

Z
R
� (x� �x; P ) dx

+

Z
R+
[x]1

Z
R
: : :

Z
R
� (x+ �x; P ) dx

=

Z
R+
[x]1 �

�
[x]1 � [�x]1 ; [P ]

1
1

�
d [x]1

+

Z
R+
[x]1 �

�
[x]1 + [�x]1 ; [P ]

1
1

�
d [x]1

�
�
[x]1 � [�x]1 ; P 11

�
being the marginal pdf of [x]1. Re-

call thatZ 1

0
x� (x� �x; P ) dx = 1p

2�P

Z 1

0
x exp

�
�1
2
(x� �x)2 =P

�
Noting that

x exp

�
�1
2
(x� �x)2 =P

�
= �x exp

�
�1
2
(x� �x)2 =P

�
�P d

dx

�
exp

�
�1
2
(x� �x)2 =P

��
an integration by part leads toZ 1

0
x� (x� �x; P ) dx

=
1p
2�P

�x

Z 1

0
exp

�
�1
2
(x� �x)2 =P

�
dx

� Pp
2�P

�
exp

�
�1
2
(x� �x)2 =P

��1
0

= P� (�x; P ) +
1p
2�P

�x

Z 1

0
exp

�
�1
2
(x� �x)2 =P

�
dx

= P� (�x; P ) +
1

2

�
1 + erf

�
�x=
p
2P
��
�x

Therefore

[x̂]1 = 2 [P ]11 �
�
[�x]1 ; [P ]

1
1

�
+
1

2

�
1 + erf

�
[�x]1 =

q
2 [P ]11

��
[�x]1

�1
2

�
1� erf

�
[�x]1 =

q
2 [P ]11

��
[�x]1

which leads to the result.
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