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Exact Arma Lattice Predictors

From Autocorrelation Functions.

André MONIN, Gérard SALUT.

Laboratoire d’Automatique et d’Analyse des Systèmes.
Centre National de la Recherche Scientifique.

7 Avenue du Colonel Roche  31077 TOULOUSE Cédex. FRANCE

Abstract: This paper derives an optimal linear -predictor of ARMA type in lattice form of
arbitrarily fixed dimension for a process whose autocorrelation function is known. The algo-
rithm preserves exact optimality at each step, as opposed to asymptotic convergence of more
usual algorithms, at the expense of hereditary computation. Only the discrete time case is ex-
amined. It is shown how the unnormalized (respectively normalized) lattice form may be re-
duced to only 4n-2 parameters (respectively 2n+1) for a n-th order projection on the past. The
normalization algorithm for the forward and backward residuals uses only scalar square root
computations. Some examples are given which show the accuracy of this technique compared
to those using the classical ARMA form for the predictor.

Keywords: Linear filtering, linear predictor, reduced filters, lattice form.

1. Introduction.

1.1. Objectives.

The paper concerns the problem of computing the exact minimum variance ARMA pre-
dictor of n-th order, as a time varying lattice, from the autocorrelation function. Approximate
procedures have been proposed in the past [1], [2], [3], [4], [5] to achieve the same goal, namely
by trivially imbedding the past innovations into a 2-channel standard lattice problem. However,
it has been shown by [1], as well as noticed in [5], that this is equivalent to the extended least-
squares approximation [6], therefore with the same pitfalls (computed transient coefficients are
not the true projection coefficients, and do not guarantee convergence to the optimal, in the gen-
eral case. For the same reason, the predictor is always biased in the short- term transient.). More
recent papers have used stochastic gradient approximations of higher order [7], [8], [9], [10].
Except the fact that they use data records while we use autocorrelations, the problem is indeed
similar to ours. However, the aim is to asymptotically determine the stationary optimal predic-
tor parameters, not to obtain the optimal time-varying parameters. The techniques developed
are essentially based on extensions of the well-known stochastic gradient search. They are re-
cursive but do not look for the optimum at each step. Moreover, some convergence problem
may occur when, for example, the dimension of the unknown system is greater that the model
[11]. It is obviously the case when the system is not finite dimensional, which is the case in the
low-pass filter treated an illustration in 5.

To derive the exact ARMA lattice predictor, thus avoiding such pitfalls, is a more difficult
task since the feedback parameters of the lattice lead to a non-linear implicit dependence or,
equivalently, a growing memory for the computation of the time-varying optimal predictor pa-
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rameters. This is equivalent to the exact stochastic gradient (i.e. an infinite order approxima-
tion). This difficulty was clearly identified in [1], [2] but was never fully investigated, to the
author’s knowledge. We examine here this problem for a known autocorrelation function.

Our results, in this respect, are too-fold:
- A general algorithm gives the exact (hereditary) computation of the optimal n-th order

ARMA predictor, in time-varying lattice form with zero initial state, for an arbitrary autocor-
relation function. The linear dependence in the vector process (infinite Hankel rank) is
being exploited to obtain the minimum number of parameters.

- In the finite Hankel rank case, the computations are shown to be finitely recursive, and
completely solve the so-called realization problem under lattice form.

1.2. Contents.

Let , be a discrete-time scalar sequence of (mean square random
variables) with zero mean. Assume that the only data available is the autocorrelation function
of , not necessarily with a finite Hankel rank. One can derive, as in [12], the reduced optimal
n-th order non-stationary linear predictor of (in the minimum variance sense),
under its observable canonical state-space form or, equivalently, its input-output ARMA form:

(1.1)

The optimal parameters are obtained by minimizing the prediction variance error
( ) with no stationary assumption but explicit state-dimension constraint on
the predictor, as shown in [12]. Otherwise, the state variable has to be reconstructed for the
whole time horizon, at each step, leading to an infinite-dimensional state-space as in ARMA
identification [1].

In such a predictor, computing the values of requires the inversion of a

dimensional system at each step. Despite the possibility of recursive inversion, as in
[1], the canonical state-space form is generally not tractable for higher dimensions. It is in fact
well known that numerical computations are very sensitive with respect to the coefficients of
the characteristic polynomial.

Recall that the optimization of  leads to the orthogonality equations as:

(1.2)

Clearly, that equations (1.2) represent the projection of on the random variables

and with as inner product. We write this projection:

(1.3)

The purpose of this paper is to exhibit an orthogonal basis of the linear space spanned by
the random variables in order to simplify the projection formula and to im-
prove its numerical accuracy. This orthogonal basis induces a lattice type filter but without the
independent modular structure, which is well known to be impossible in the ARMA case. Note
that this problem has been studied in [1], [2] in the context of the ARMA identification, but
with the extended least squares approximate.
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The main contribution here is as follows:
- We first exhibit the optimal n-th order predictor (reduced dimension) under the unnor-

malized lattice form using 4n-2 parameters ( -dimensional state-space) and a complete algo-
rithm is provided which uses hereditary computation on the autocorrelation function .

- We then introduce the normalized form using 2n+1 parameters with its algorithm at-
tached. The problem of extracting square roots of the normalization matrices is solved using
only scalar square root computation because of its particular form.

- We also show that such a projection technique (i.e. onto a linear functional of the past
with internal memory constraint) yields an associated innovation whose “whiteness” has the
same restricted meaning: orthogonality to an n-dimensional sub-space of the past. It yields a
linear model of with “n-th order white noise”, whose approximation properties are illustrated
through applications.

The applications concern the most useful case, and deal with autocorrelation function of
infinite Hankel rank (low-pass and fractional order filters), one of which is well known for its
sensitivity problems. By converting the role of and , it must be noticed that the algorithm
gives the exact n-th order best -approximate with minimum phase, an open problem in the
literature on optimum systems approximations [13].

2.  The orthogonalisation formulas.

Let with inner and outer products written as usual and
.

The linear projection of a vector X of on the linear product space spanned by vec-
tors of is obtained by solving the following dimensional linear system
as:

(2.1)

where  are  matrices. The projection takes then the following form:

(2.2)

The orthogonal projection of a vector X of on a scalar random variable of
leads to:

, i.e. . (2.3)

In the same way, one may compute the orthogonal projection of a scalar of on a

vector  of . One finds:

(2.4)

We now recall some properties that will be used further to reduce the number of param-
eters of the predictor in lattice form.
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Proposition 1. Let X and Y be vectors of . Write and . If

 and , then .❏

Proposition 2. Let be orthogonal vectors of , that is ,

. Then the projection of a vector X of on the space spanned by

 is: .❏

3.  Unormalized lattice form.

Recall that our purpose is to compute the n-th order linear predictor as a projection of
the observation signal on the n-th order memory of the past as in (1.3). This will be achieved
in two steps. First we exhibit an orthogonal basis of the past using the
Levinson formulas. We then reduce the dimension of the involved system using the degeneracy
property of the projection space (clearly, is only n-dimensional). We then
show how the computation of the predictor’s parameters is achieved knowing the autocorrela-
tion function of .

3.1.  Forward and backward residuals formulas.

Define , where denotes the innovation in the sense of (1.1)-(1.3). It

is clear from (2.4) that the projection of on the 2n scalars can be equiva-

lently computed as the projection of  on the n vectors . That is:

(3.1)

The aim of this paragraph is to recall an orthogonalisation of the space spanned by

 [1], using the Graham-Shmidt procedure. Let:

(3.2)
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(3.3)

be the forward ones.
We have then the following properties:

Property 1. is orthogonal, that is .

Property 2. is orthogonal.

Property 3. .

Property 4. .

One can then rewrite the relations (3.2) and (3.3) as follows:

      and (3.4)

According to the last equation of system (3.3), the first component of is equal to
while the second one is equal to zero. In fact, a straightforward calculation leads to:

. (3.5)

But, according to (1.2), one has:

. (3.6)

On the other hand:

, (3.7)

since . (3.8)

From the definition of the projection, the linear predictor becomes:

(3.9)

The implicit aspect of this formula can be eliminated by using the orthogonality of the
innovation with the past . It leads to an explicit expression of the predictor,
gi-ven the statistics of the observation signal:
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(3.10)

Remark: As was noticed by Benveniste in [2], the vector is degenerated because it only de-
pends on the scalar sequence . If we examine the relations (3.4), it appears at first that the
lattice predictor needs 2n matrices as parameters, that is 8n parameters. In fact, because
of the degeneracy of vector , the system can be reduced to only 4n-2 parameters as will be
shown in the next section.

3.2.  Reduction of the number of parameters.

Proposition 3. , where is the second

component of .❑

Proof:  Recall that, according to (3.3), one has:

Let us examine the first component of these vectors. One has

. (3.11)

because of the orthogonality relations (1.2). Let us then check the hypothesis of Proposition 1:
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(3.17)

Applying then Proposition 1, the result follows. ■
A useful consequence of this proposition is that the backward and forward residuals of

system (3.4) need only the second component of vectors . The residuals may there-
fore be computed using only 4n-2 parameters by the following system.

   and (3.18)

Recall that according to (3.9), . It leads to the following lattice structure of com-

putation:

     and (3.19)

where the output of the predictor is computed as:

(3.20)

According to (4) and (5), the parameters  and  are determined as follows:

(3.21)

 The figure 1 illustrates the structure obtained.
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3.3. Off-line computation of parameters.

We now show how the above parameters are recursively computed, in the general case,
(i.e. infinite Hankel rank for the process ) by a growing dimension system (as in [12]). In such
a case, the algorithm needs no particular dimensional caution, but only a stationary conver-
gence test. It should be noted that, in case of singular initialization, the first steps call for a par-
ticular formula. This will be developed further.

When the process has a finite recursion model of order (hankel rank), but , it
is shown how the corresponding (reduced) predictor’s coefficients are themselves generated by
finite recursion formulas.

3.3.1  The general algorithm.

First, let us examine the quantities to be computed to derive the lattice parameters defined

in (3.21). For simplicity, we write the expectation of X. Define .

The first system of (3.19) permits us to evaluate  as:

(3.22)

As a consequence, according to the Property 1, . One then simplify the
formulas (3.21) as follows:

(3.23)

It appears then that there are two kinds of quantities to be computed: the finitely realiz-

able one, and the hereditary one as . Note also  and  are finitely realizable.

• Finitely recursive computations.

Recall that, at each step , and are assumed to be known, so are .
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The next value of  is computed from system (3.21) as follows:

(3.24)

But according to (3.22) and because of the orthogonality of the family
, one has:

(3.25)
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(3.29)

It appears then that a second hereditary quantity is to be computed, that is . A sim-
ilar computation leads to:

(3.30)

where the autocorrelation function of appears as the input of the hereditary recursion (3.29)-
(3.30). The figure 2 presents the sequence of computation.
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At the first step( ), the only relevant data is since no information on past values
of the predictor is available. As a consequence, the projection of on the past is

and only the first components of and are determined, since is singu-
lar.

At the second step ( ), one may then project on . This yields the matrix
 non-singular but not . Therefore,  and  are well defined as  is regular.

At step , and are well defined but the first components of and are de-
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termined. And so on...
Continuing this procedure, one finds that:

Proposition 4. For all , after 2i-2 iterations, one may just define:

and are well determined because the matrices are

regular. After 2i-1 iterations, one may define:

and are we l l de t e rmined s ince

 are regular but not .

From  (i.e. ), all parameters  are well determined.❏

3.3.3 Completely finite recursive computation for finite Hankel rank of y.

Suppose that the state-space model of  is a finite-dimensional one. For example:

(3.31)

where , and are independent white noises of variances and respec-
tively.

The computations of and are obviously still finitely recursive and are comput-

ed by the same formulas that in 3.3.1. The only difference lies in the computation of . It is

achieved through:

(3.32)

Computation of is finitely recursive through the matrices

as follows: since  only depends on , one has:

(3.33)
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(3.34)

(3.35)

Clearly, this recursion requires only the storage at each step of the finite dimensional ma-

trix . The parameters  are obtained with (3.21).

4. Normalized lattice form.

Recall that the variances of the forward residuals are decreasing with the orthogonaliza-

tion process. As a consequence, the values of the parameters grow and their compu-

tation degenerates. Therefore, we now replace these residuals by normalized one.
Normalization of forward residuals is quite easy. One just considers the variables which

are colinear to the previous one and have a unit variance. These quantities being scalar, there is
a unique way to achieve it, that is:

(4.1)

Recall that the backward residuals are vectors of . So, the normalization

procedure is not unique. If one looks for a matrix  of  such that:

(4.2)

are normalized ( ), the solution is undetermined. In fact, any product of a solution
with an orthogonal matrix will succeed. However, in such a special situation, there is a natural
way to make this normalization.

4.1. Backward residuals normalization.

Define .

It is clear that is then normalized. Let us examine the recursive equation of
 for . According to system (3.19), one has:
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(4.3)

where  denotes the norm of . But according to (3.22),

(4.4)

Define then

. (4.5)

One may rewrite (4.3) as follows:

(4.6)

We have the following proposition:

Proposition 5. If , , then the family

 is orthonormalized.❑

Proof: Recursively, the proposition is true for . Let us compute the covariance matrix

of . According to (4.3), one has:

(4.7)

But if  and  are normalized, according to the definition of , one has:

(4.8)

Substituting above the value of , the result follows.■

4.2. Forward residuals normalization.

One has to compute the variances of each residual. System (3.19) leads to the expression
of the normalized forward residuals as:

(4.9)

But according to (3.21) and the definition of , one has . Equation
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Equation (3.22) leads to . As a consequence, using the fact that

, one may derive:

Proposition 6. The normalized lattice form is therefore:

with . ❑

The figure 3 shows the lattice structure generated. The coefficients and denote the
normalization factors.

Remarks:
- Note that, in this case, only 2n+1 parameters are used to derive the lattice form predic-

tor. That is and . It results from the fact that the forward and backward residuals

are both computed from the same set of parameters.
- Square roots of matrices may be computed here from scalar square roots, using the fol-

lowing algebraic identity: , which derives

from a straightforward calculation.
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4.3. Computation of parameters.

4.3.1 The general algorithm.

It is clear that:

. (4.11)

According to definition (4.5) and the first remark above, the computation of parameters

requires only the quantities . As it was noticed in the unnormalized case, these

quantities are also hereditary ones and call for . In fact, suppose that

and are known, according to (4.11), their computation

is achieved by the following algorithm, with τ going from 1 to :

•  First, assuming that  is well defined, one computes:

(4.12)

•  Then, one computes:

(4.13)

4.3.2 Additional formulas for singular initialization.

As in 3.3.2, the first steps of computation of the parameters lead to a singular problem
if one chooses to initialize the predictor in the absence of a priori information on the past. For
a zero mean process, one may consider that at , one has:
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(4.14)

At the first step ( ), one can only project the observation on the first component of

. As a consequence, according to Proposition 6, one has and the second

component of is zero. But and being normalized, one has and so

. Therefore, .

At the second step ( ), is defined and . Remark that at

this step, .

At third step ( ), only is well defined but implies that the matrix

 is singular. As a consequence, because , one has .

And so on... Continuing this procedure, one find that:

Proposition 7. For all , computation of the predictor’s parameters using definition (27)
proceeds as follows:

- after iterations, are well determined, and

.

- a f t e r i t e ra t i ons , a re we l l de t e rmined , , and

.
- after 2n iterations, all parameters are well determined.q

Note that after these first singular steps, stands normalized. The figure 4 illustrates
the algorithm obtained:
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Obviously, the finite Hankel rank case leads to a finitely computation of parameters with
the normalized lattice form, as in 3.3.3 for the unnormalized lattice form.

5. Examples of applications.

As is well known the optimal linear predictor of a finite Hankel rank signal process may
be viewed as a particular ARMA model (with zero inside the unit circle), the innovation process

being a white noise input since the model and its whitening filter are inverse of one another.
Otherwise, the linear predictor in reduced dimension makes the innovation process a “pseudo-
white noise” in the sense that its orthogonalization property is limited to delays. Its variance

is defined here by the asymptotic value (in the stationary case) of . In this sense,

the ARMA predictor yields the best n-th order approximate model of the signal in the met-
ric. This will be exploited to illustrate the accuracy of the method presented here because one
can compare easily the approximation of the model with the model itself.

The algorithm being particularly designed to the prediction of a signal which can only be
represented by an infinite dimensional system, we deal here with the two following cases:

- The low-pass filter.
 - A fractional system.

5.1. Test on finite dimensional linear systems.

An obvious preliminary step before any application is to test the algorithm in a situation
analog to Kalman filtering (n-dimensional linear realization of the autocorrelation). The com-
pared impulse responses gave identical values up to the tenth significant number.

The figures 5 and 6 illustrate the convergence accuracy of the algorithm for a 4-dimen-
sional linear system. The module and phase of the model thus identified are plotted for the 20
first steps of computation.
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5.2. Low-pass filter.

Consider a signal resulting of the sum of a random frequency uniformly distributed in
the interval and a white noise of variance . The autocorrelation of this signal is not
realizable by a finite dimension system. Its value is obtained by the inverse Fourier transform
of the function , i.e.:

(5.1)

where  is the Kronecker discrete function.

Taking successively different dimensions of the predictor (n = 2,4 and 12 here), we ob-
tained the optimal linear reduced predictor with its gain and phase characteristics of the figures
7 and 8 (with , and , ratio signal-noise).
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By inverting the input and roles of , the resulting model of the signal (best n-th order
 approximation has characteristics represented in the figures 9 and 10).

Comparisons with the well-known Chebychev filters are made in the figures 11, 12, 13
and 14 with , and (ratio signal-noise). The module
and phases of the identified spectrum have been computed for  and .

The figures 15 and 16 show the module and phase identified during the first 20 step of the
algorithm for the 6-dimensional low-pass filter.
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Figure 7 - Module of the Optimal Low-pass Predictor in Reduced Dimension
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Figure 8 - Phase of the Optimal Low-pass Predictor in Reduced Dimension
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Module
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Figure 9 - Module of the Optimal Low-pass Filter in Reduced Dimension
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Figure 10 - Phase of the Optimal Low-pass Filter in Reduced Dimension
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Figure 11 - Comparison with Chebychev Filter. n = 6.



21

Chebychev filter
Lattice approximation
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Figure 12 - Comparison with Chebychev Filter. n = 6.
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Figure 13 - Comparison with Chebychev Filter. n = 12.
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Phase (rd)

Frequency
Figure 14 - Comparison with Chebychev Filter. n = 12.
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5.3. Fractional system.

It can be shown that the use of fractional systems in control is of great interest with regard
to the robustness of the control involved [14].

Consider an irrational impulse response of the form . It is clear that

this system can’t be realized by a finite system. The autocorrelation of the signal is the inverse
z-transform of this spectrum. A series development of the square root leads to the following

autocorrelation:  with .

The figure 17 illustrates the approximation modelling yielded with (near the
continuous time situation). The power spectrum is plotted in the “loglog” coordinates to show
the singular attenuation of by octave (or by decade) which characterizes this frac-
tional system.
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6. Conclusion.

Let us recall as a conclusion that our problem deals with the computation of the exact
time-varying ARMA predictor of order for any square-integrable signal , in the basis of its
correlation function . It is well known that such a general problem has no finite dimen-
sional solution, in term of a dynamical system with as the input. It is however an essen-
tial objective to design the optimal predictor in a recursive fashion which:

• preserves exact optimality at each step (minimum variance of predictor error)
• uses a minimum amount of new computations when the number of points of the auto-

correlation function increases.
Our paper derives an algorithm which fulfills these goals, at the expense of the hereditary

computation of the coefficients, in terms of the autocorrelation function. The hereditary aspect
of the algorithm makes it essentially different from other algorithms. It is crucial throughout
the paper and accounts for:

• exact optimality, for each , as a time-varying predictor of fixed order.

• convergence behavior, as a (unique) minimum-phase synthesis of  approximations.
The usefulness of the algorithm derived is that it yields the exact solution of best -ap-

proximation in infinite-dimensional situations such as ideal filters, distributed parameters, etc.
The lattice form involved by the orthogonalization process is of interest concerning numerical
calculus and allows to deal with greater dimensions than with classical ARMA forms.

A final point concerns the extension of these ideas when applied to raw data. This is a
quite different problem, since one has to replace theoretical minimum variance in by effec-
tive least square residuals which comes a maximum likelihood formulation (with a necessarily
gaussian assumption for the problem to make sense). Contrarily to the kind of separation prin-
ciple often invoked, the optimal result does not consist in replacing the autocorrelation terms
by the experimental average of corresponding correlation products, since this is suboptimal in
the adaptive transient. This is the object of a forthcoming paper which extends to real-time ap-
plications the approach introduced here.
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