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Abstract: This paper derives an identification solution of the optimal linear predictor of
ARMA type, as a time varying lattice of arbitrarily fixed dimension, for a process whose output
signal only is known. The projection technique introduced here leads to an hereditary algorithm
which is the adaptive extension to raw data of previous results of the authors on lattice realiza-
tion from given autocorrelation functions ([1]). It produces a minimum phase linear model of
the signal whose n-th order “whiteness” of the associated innovation has the following restrict-
ed meaning: orthogonality to an n-dimensional subspace memory of the past in a suitable Hil-

bert sequence space. The metric of that sequence space leads to a least-squares
Identification algorithm which possesses a “certainty equivalence principle” with respect to the
corresponding Realization algorithm (i.e., sample correlation products replace true correlation
terms). Due to the detailed state-space time-varying computations, this is possible here while
avoiding the well known “side errors” from missing correlation products which usually occur
in a blunt replacement of the output autocorrelation by averaged sample products. Application
examples show the superiority of the hereditary algorithm over classical recursive and non-re-
cursive algorithms, in terms of accuracy, adaptativity and order reduction capabilities.

1. Introduction.

The ARMA stochastic identification problem has been extensively investigated for many
years and numerous algorithms have been proposed. Because of its numerical robustness, lin-
ear identification under lattice form is of special interest. Moreover, it is often desirable to ob-
tain o recursive algorithms on account of their ability to cope with adaptive filtering situations.
Recall that the aim of ARMA identification is to fit a linear stochastic realization to an experi-
mental set of measurements of the output (possibly of the input/output

) of some unknown system. For synthesis results on this subject, the reader
is referred to our closely related paper [1], on optimal rational approximations, which is the
“realization” counterpart of the present “identification” algorithm.

The common approach consists in deriving a one-step-ahead predictor of the output
and then evaluating the prediction performance through the experimental mean square error, i.
e., in the stationary case, , in order to optimize the predictor pa-
rameters. This kind of formulation is useful to avoid the gaussian hypothesis under which the
searched solution coincides with the maximum likelihood predictor.

Many different techniques have been proposed to achieve this goal and principally differ
according to the class of predictors chosen as well as approximations made. One may first dis-
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tinguish them according to the existence or not of feedback in the dynamic of the filter and then
bring out two main classes of systems:

1.1. Transversal filters or Finite Impulse Response (FIR) filters.

The one-step-ahead predictor is represented as a moving average (MA) over the past out-
put and takes the following canonical form:

(1.1)

It is the most popular class of predictors because the computation of the optimal parameters

can be straightfully achieved as a linear quadratic optimum in a one-step recursive form.

Noting and substituting to , it leads to an autoregressive (AR) model of

the output. Many algorithms have been developed according to this formulation, particularly
under various lattice forms ([2]-[10] for instance). Unfortunately, it is well known that if the
observation signals is corrupted by noise , which is most often the case in practice, such

models are biased [11].

1.2. Rational filters or Infinite Impulse Response (IIR) filters.

The one-step-ahead predictor is represented as an ARMA over the past output and takes
the following canonical forms:

(1.2)

This type of model is well known to be the most efficient linear form, with respect to the num-
ber of parameters, as it may represent IIR systems with only a finite set of parameters. Substi-
tuting  to  leads to an ARMA model:

(1.3)

whose general predictor is again of the type (1.2). This is why the general ARMA model is
closed under additive measurement noises.
Computation of the optimal parameters is however a more difficult task since the criterium is
no longer quadratic with respect to the parameters. Moreover, the non-linearity involved is not
explicitly tractable.

1.2.1 Finitely Recursive algorithms:

Many algorithms have been developed using essentially two kinds of approximations:
• The Extended Least Square (ELS) algorithm ignores the dependance of and

with respect to the parameters when performing the minimization of the crite-

rium [12] [13]. The minimum is then achieved via classical linear regression algo-

rithms or gradient type algorithms (Recursive Extended Least Square algorithm [14] for
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instance).

• The innovation approach or prediction error methods leads to a prefiltered state vector

which takes into account the implicit dependance ne-

glected above. The optimal parameters are generally computed using local search meth-

ods such as stochastic gradient or Gauss-Newton algorithms[11] [12] [14] [15].

(Recursive Maximum Likelihood algorithm [14] for instance).

1.2.2 Hereditary algorithms:

In none of these approaches transient behavior is optimized. We are concerned in this pa-
per with a time varying approach of IIR identification preserving a transient convergence sim-
ilar to that of [1] for known auto correlations, which has proved to be useful in terms of
convergence rate as well as final accuracy. The price to be paid by such algorithms is their he-
reditary nature (growing memory) in terms of time , due to updating of the overall least-square
criterium as data accumulate. We shall deal in the sequel with:

• Global hereditary criterium (stationary case):

(1.4)

• Locally limited memory criterium (adaptive case):

(1.5)

We develop the stationary case and will just underline the difference in the second case. We
deal here with ARMA problems where the AR and MA orders are chosen equal for conve-
nience. (Extension to the general case is easily obtained using representations such as in [12]).

Problem setting:
Suppose that the predictor which minimizes the criterium is avail-

able. Its parameters have been obtained from the knowledge of the data se-
quence . We will write it . When, at time , the new data is available,
the n-th order linear predictor of  is computed as the projection:

, (1.6)

In this time varying situation, the criterium is quadratic with respect to the pa-

rameters since it only depends on the past values of the previously computed param-

eters, that is . On the other hand, it will lead to an hereditary computation. Note
that although the representations (1.2) and (1.6) are different, they are asymptotically equiva-
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y• ŷ•–( )2[ ]
1
t
--- yτ ŷτ–( )2

τ 1=

t

∑=

ET
t
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lent in the steady state. Let us define the projection in that context.

The sequence space:
Let be the Hilbert space spanned by sequences of length of random vector real-

izations of (with finite variance). The quadratic norm of a sequence
of  is defined as:

(1.7)

where  is the euclidean norm of real vectors.

Orthogonal projections:
The projection at time of an element of over another element is defined as the

linear transformation which minimizes the norm . The projector is
the optimal matrix of appropriate dimension. Minimizing the criterium with respect to
leads to the following well known projection equation:

(1.8)

When the process is not degenerated (non-singular autocorrelation), the orthogonal projec-
tion takes the following form:

(1.9)

Notations:
We will write for the above projection and

for the extended inner product of sequences of . Although this notation may seems a bit
heavy, it is necessary because of the non stationarity of the extended inner product. It means
precisely the projection of the trajectory over the trajectory , the optimization
being made over the interval .

With this definition, the optimal predictor of (1.6) can be rewritten as:

(1.10)

Note that the above formulation is not complete as and are not defined for .
For instance, the projection of cannot be computed from the formula (1.10) as are not
yet defined. Remember, however, that an unknown variable is equivalent to a degenerate ran-
dom variable (infinite variance) so that the linear projection of any other variable over it is zero.
In other words, the projection over an unknown variable is the same as the projection over zero.
With this adding, the projector is then well defined and leads to consider the usual windowed
case, that is . A useful consequence of this assumption is:

(1.11)

This is a direct consequence of the definition of the projector (1.9).

2. The Levinson formulas for ARMA process.

Our aim now is to recursively compute an orthogonal basis, according to the inner prod-
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t n–
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uct , of the space over which the projection is made.
This is commonly achieved using the classical Gram-Schmidt procedure. Note that strict appli-
cation of this procedure, which run in a 2n-dimensional space , would lead to a rather in-
volved computation [10]. It is convenient in our case to work with a 2-channel structure in order
to preserve the recursive structure of the set with respect to time [12] [1]. In fact, we orthogo-
nalize this set by 2-dimensional block corresponding to one step backward. The derived basis
is therefore not really orthogonal (which would lead to a diagonal covariance matrix) but only
block orthogonal (a 2-dimensional block diagonal covariance matrix). The space is here
decomposed as . It is defined below.

2.1. The unormalized form.

Definition 1 : Let us define first the 2-dimensional vectors . We

define the projection space  as:

(2.1)

 The projection of  at time  can then be rewritten as:

(2.2)

Our goal is first to find a set of 2-dimensional vectors of which

spans the same space, and such that . At time , it is equivalent, ac-

cording to (1.11), to make sure that .

Definition 2 : Backward residuals obey the following defining relations:

(2.3)

With this definition, it is clear that:

(2.4)

and the one step ahead predictor can be computed as the sum of 2-dimensional projections as:

(2.5)

These are the 2-dimensional backward residuals of the Levinson formulas. Note that the above

direct sum is related to the extended inner product of , It would be convenient to make

the residuals computation recursive in the same way as in the classical case. To this aim, let us
set the following:
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Definition 3 : Forward residuals obey the following defining relations:

(2.6)

With this definition, for all , we have the following decomposition:

(2.7)

the orthogonality being related one more time to the inner product . With this decompo-

sition, the backward residuals can be written as follows:

(2.8)

Using then that, at the previous time , we had:

(2.9)

we may rewrite (2.3), using formula (1.11), under the following recursive form:

(2.10)

Carrying this expression into (2.3) and using the orthogonality of within the space

, we find that:

(2.11)

Note that the set is degenerated since, according to (2.3), the first compo-

nent of is equal to , the first component of . Therefore, because of the orthogonality

, the second component is also orthogonal to . As a consequence, the projec-

tion of  over  being zero, one may simplify the projection term as:

(2.12)
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(2.13)

(2.14)

According to the orthogonal projection formula (1.9), if we define the projection coeffi-
cients as:

,
the systems (2.13) and (2.14) take the following form:

(2.15)

(2.16)

Remark: Note that the projection coefficients may seem to be implicitly defined as they depend

on the forward residuals which are not available at the step . But, according

to (2.16) and to the orthogonality properties (2.4), it is clear that:

(2.17)

Moreover, as  is orthogonal to , we have:

(2.18)

and the predictor parameters are well defined.

2.2. The normalized form.

The above orthogonalization implies that the magnitude of the forward residuals de-
creases quickly with . As a consequence, it is interesting, from a numerical point of view, to
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that is to define the  variables  as:
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with  as a definition.

On the other hand, the normalization of the backward residuals is not uniquely defined as
they are 2-dimensional vectors, but only up to any non singular orthogonal matrix.There is
however a natural way to achieve this normalization:

Consider the 2-dimensional normalized vectors of such that
with , the identity matrix. At time ,

it leads to make sure that which is equivalent to make sure that
. We proceed to compute the normalization matrices recursively on

the order .
Let us develop the normalized backward vectors. Equations (2.13) and (2.19) lead to:

(2.20)

Let us then compute the autocorrelation matrix of :

(2.21)

At the previous step, one has:

(2.22)

If one defines the projection coefficients as:

, (2.23)

the relation (2.21) takes the following form:

(2.24)

As a consequence, it is natural to choose the normalization matrices  such that:

(2.25)

A similar procedure, applied to the normalization coefficients of the forward residuals leads to
the relation:
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(2.27)

(2.28)

Figure 1 illustrates the involved lattice structure with and

 as definitions.

3. The algorithm.

3.1. The recursive steps.

The aim of the algorithm is to compute the parameters of the predictor, that is . As it
has been set in our problem statement, they depend on the whole trajectories
and and are not actually finitely recursive. Let us examine more precise-
ly what this means. According to (2.23), (2.18) and (2.19), the lattice parameters are defined as
follows:

(3.1)

Recall that the forward residuals obey the following recursion:
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(3.1) and (3.3). It should be noted that square roots of the matrices can be comput-

ed using the algebraic following identity:

(3.4)

The algorithm is described by Figure 2.

3.2. The initial steps.

As was noticed in 1., the data prior to time are assumed to be completely unknown, so
that we cannot make any projection over them. As a consequence, the coefficients related to
these variables are undetermined (or zero) and the algorithm established above doesn’t run. Re-
call that the predictor is defined by (1.10). Because we deal with the one-step-ahead predictor,
it is clear that the first estimator to be non singular is . The only variable over
which the projection can be made is indeed . So, at this step (time ), the predictor is
defined by , for and the criterium to minimize is . At
the next step (time ), being available, one might project over the set but
it is easy to check that this set is singular due to the fact that the predictor is proportional to

. In other words, it is equivalent to project over the spaces or minimizing
the criterium . We have chosen the former and therefore define

. In fact, as soon as a new observation is available, only one new pa-
rameter is determined. So, during the first steps of the algorithm ( being the system order),
one has to distinguish two kinds of projections:

• , then

•  then

Clearly, the odd steps are quite identical to the recursive steps. For the even steps, one has
to modify the general procedure. Note first that, for odd steps , one has,

. As a consequence, implies that
. The normalization matrix of the backward residuals is then singular ac-

cording to (3.4) as noticed above. So, define the unormalized backwards residuals as follows:

(3.5)

where

Definition 5 :  first component of .

Clearly we have the orthogonal decomposition:
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ŷ 1–

2,[ ]=
2n n

t 2k= ŷτ
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, a particular step is necessary. Let be the normalized re-
sidual. The last equation of (3.5) allows to compute the normalization coefficient  as:

(3.6)

Setting  and assuming that  lead to:

(3.7)

Let us note the component of  as . using the fact that:

(3.8)

the matrix  may be written:

(3.9)

So, one natural solution of equation (3.7) is:

(3.10)

Finally, we have:

(3.11)

3.3. Adaptativity.
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be essential for accuracy. However, for adaptive purposes, a limit must be imposed upon hered-
ity in order to follow-up possible drifts with time. This is achieved by imposing a finite past
time-horizon upon the hereditary past. Note this horizon length. In this case, the hereditary
part of the algorithm is modified as follows:
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with (3.13)

(3.14)

4. Asymptotic convergence.

In a previous paper [1], the authors have established a realization algorithm of the exact
ARMA lattice predictor of order , from the autocorrelation function of the process. This is
valid only when a precise model of the process exists (ideal spectra, fractional or distributed
parameters systems,...).When only experimental data are available, constructing the ARMA
lattice predictor of order from those data solves in particular the identification problem of an

-th order linear system in ARMA form, when that is the real case.
To show that, its suffices to take a note of:

4.1. The certainty equivalence property.

The lattice realization algorithm of [1], and the lattice identification algorithm of the
present paper are identical, up to the substitution:

(4.1)

Proof: It suffices to compare Figure 2 of the present paper with Figure 4 of [1] (together with
its formula 4.11,4.12 and 4.13).

4.2. Asymptotic convergence.

Proposition 1 . Whenever is an ergodic process in the sense, the hereditary

algorithm converges in probability to the unique stationary optimal predictor.

Proof: When one compares the algorithms appearing in each of the papers mentioned above,
with property 4.1 in mind, one immediately concludes by simple inspection that they both rep-
resent the same (state+parameters) hereditary transition map, with simply a different input. In-
deed, we may write, on the one hand:
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and, on the other hand:

(4.4)

for the identification algorithm with , ,  and predictor  as:

(4.5)

In both cases, and are the same maps, from which it results that the input-output maps
of both algorithms are the same. They are rational (containing only the four arithmetical oper-
ations) and continuous (all inversions are non-singular by definition). Note that the symbols ,

and have been used, instead of , and in both cases, to stress the fact that they are not
numerically identical for finite .

From [1], system (4.2) is the exact time-varying solution, for all initial states, of the op-
timal predictor. Since ergodicity implies stationarity, the asymptotic solution of (4.2) is, by def-
inition, the unique value of the stationary optimal predictor.

System (4.4)-(4.5) is identical to system (4.2)-(4.3), except for its input signal
instead of . One has to prove that the asymptotic output of (4.4)-(4.5)

tends to the asymptotic output of (4.2)-(4.3) in a suitable topology.
Let us choose the -ergodic topology for the input, i. e.:

     iff .

Let be the common input-output map of both algorithms. By continuity of , we have
the following diagram:

As -erg convergence implies convergence in probability, the proof is completed.

5. Examples and comparisons.

As was announced in the abstract, the algorithm proposed here is shown to be more ac-
curate than classical solutions, in term of spectral resolution, especially in the transient phase.

5.1. Spectral resolution.
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To illustrate this property, we have first chosen a simple 4-dimensional linear stochastic
system whose poles and zeros are represented in Figure 7 (a). The module of the corresponding
transfer function (square root of the spectral density) is represented from 0 to the half of the
sampling frequency in Figure 7 (b).
Figure 4 shows the transient spectrum obtained with finitely recursive algorithms such as the
“Extended Least Square” and “Recursive Maximum Likelihood” algorithms [14]-[15]. It ap-
pears clearly that these algorithms do not separate the two distinct poles of the system, even
after 2000 iterations. Note that, for such low-order examples as above, the lattice character of
our algorithm is of little concern. The differences mainly lie in frequency resolution.
In Figure 9, we exhibit the power spectra obtained with the classical Gauss-Newton Block Data
algorithm (GNBD) [14], from the MATLAB identification tool-box, compared with the one ob-
tained using the Hereditary Least Square algorithm (HLS). We have run the GNBD algorithm
for successive data sequences of length 50, 150, 200... Although the GNBD algorithm converg-
es to the real power spectrum of the signal (after a number of steps greater than 750), it clearly
appears that the hereditary algorithm detects the two poles much faster (after 150 steps only).
In order to underline this fact, we represent in Figure 6 all the power spectra (more precisely,
their square roots) obtained after 150 iterations with all the methods we tested.

As is well known, it is the more difficult to distinguish two resonance modes as they ar
nearer to each other. We therefore have chosen, as a second example, the linear stochastic sys-
tem described in Figure 7 through its pole/zero representation.
We see in Figure 9 that the GNBD algorithm does not separate the two frequencies for a data
length lower than 2000, which is not the case with our algorithm which early detects them.
(Note that the frequency scale has been expanded to make sure a better reading).

Concerning the finitely recursive algorithms (ELS and RML), it appears clearly in Figure
9 that they do not distinguish between the two frequencies. The lack of resolution on the part
of ELS and RML algorithms is due to the approximations which are inherent to the usual fi-
nitely recursive algorithms, whose consequence is to skip higher interval correlation terms.

5.2. Adaptativity.

The signal to be identified consists of four frequencies with a drift along time which con-
tains information. This is the case in the SONAR passive estimation, the drift being due to the
Doppler effect. A simulation is presented in Figure 10 and shows the accuracy of our algorithm
to match the emitted spectrum. The dotted line represents the spectrum to be identified and the
continuous line the results of our HLS algorithm.

Due to the superior transient capabilities of the HLS algorithm, a local time-horizon of
500 appears to be sufficient to follow-up the drift while preserving accuracy on modes which
are closed to each other. It should be noticed, in the above example, that the lattice approach is
necessary from a numerical point of view.

5.3. Order reduction.

Finally, we exhibit the performance of our algorithm when order reduction is required.
As is well known, a good test for spectral parameters identification is to choose a signal spec-
trum with abrupt slopes. This implies higher order whose low order approximations are diffi-
cult to get in an optimal way [1]. We simulated a low-pass filter of dimension 20 (synthesized
with the algorithm of [1]) and use it to generate the signal to be identified with a 4-dimensional
system. The results appear in Figure 11, Figure 12 and Figure 13 and confirm again the accu-
racy of the hereditary algorithm.
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6. Conclusion.

We have derived in this work a lattice solution to the identification problem of the optimal
linear predictor of ARMA type, which leads to a recursive algorithm with hereditary terms.
These terms, which are inherent to the statistical optimization, are due to the increasing mem-
ory structure of higher interval correlation computations which are essential for an accurate
spectral resolution. Heredity consists in preserving such terms which implies a growing mem-
ory algorithm as opposed to more usual approximations in view of finite recursiveness. The
projection technique introduced produces a minimum phase linear model of the signal whose
n-th order “whiteness” of the associated innovation has the following restricted meaning: or-
thogonality to an n-dimensional subspace memory of the past in a suitable Hilbert sequence
space. This is suitable for stationary signals, in which case we have shown the optimality of the
hereditary algorithm for fixed samples of data as well as its asymptotic convergence, for unlim-
ited records. In non-stationary situations, the algorithm exhibits also superior adaptive proper-
ties, when a limited window over the past is considered. Finally, we give an example of the
better parametric properties of the hereditary algorithm, when trying to fit a low order predictor
to higher dimensional spectrum such as the ideal low-pass.
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Figure and table

 Figure 1 - The normalized lattice structure
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 Figure 2 - The hereditary algorithm.
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 Figure 3 - Poles (x) and zeros (o) location (a) and power spectrum (b) (example 1).

 Figure 4 - Spectral density obtained with classical finitely recursive identification algorithms (example 1)

 Figure 5 - Transient spectral densities obtained with Gauss-Newton and hereditary algorithms (example 1).
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 Figure 6 - Power spectra obtained for a 150 long sequence (example 1).

 Figure 7 - Poles (x) and zeros (o) location (a) and power spectrum (b) (example 2).

 Figure 8 - Transient spectral densities obtained with Gauss-Newton and hereditary algorithms (example 2).
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 Figure 9 - Transient spectral densities obtained with finitely recursive algorithms (example 2).

 Figure 10 - Non stationary situation (example 3).
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 Figure 11 - The low-pass filter approximations with ELS and RML

 Figure 12 - The low-pass filter approximations with HLS and GNBD.

 Figure 13 - Final results after 2000 steps.
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