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Abstract

Intrinsically Disordered Proteins (IDPs) play key functional roles facilitated

by their inherent plasticity. In most of the cases, IDPs recognize their part-

ners through partially-structured elements inserted in fully-disordered chains.

The identification and characterization of these elements is fundamental to un-

derstand the functional mechanisms of IDPs. Although several computational

methods have been developed to identify order within disordered chains, most

of the current secondary structure predictors are focused on globular proteins

and are not necessarily appropriate for IDPs. Here, we present a comprehen-

sible method, called Local Structural Propensity Predictor (LS2P), to predict

secondary structure elements from IDP sequences. LS2P performs statistical

analyses from a database of three-residue fragments extracted from coil regions

of high-resolution protein structures. In addition to identifying scarcely popu-

lated helical and extended regions, the method pinpoints short stretches trig-

gering β-turn formation or promoting α-helices. The simplicity of the method

enables a direct connection between experimental observations and structural

features encoded in IDP sequences.
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1. Introduction

Intrinsically Disordered Proteins (IDPs) have emerged as key actors in multi-

tude of relevant biological processes such as signalling, regulation and homeosta-

sis [1, 2, 3]. Moreover, malfunction of IDPs has been linked to a large proportion

of cancers and neurodegenerative and cardiovascular diseases [4]. IDPs perform

highly specialized functions despite they are devoid of permanent secondary or

tertiary structure. Indeed, their malleability enables biological tasks that are

out of reach for their globular counterparts [5]. In most cases, function is man-

ifested when these flexible proteins interact with globular partners to trigger

signaling or metabolic cascades [6]. These interactions are normally of low or

moderate affinity, giving rise to fuzzy complexes where the IDP remains flexi-

ble upon binding [7, 8]. These interactions are often mediated by Short Linear

Motifs (SLiMs) or Molecular Recognition Elements (MoREs) that specifically

recognize the surface of the partner [9, 10, 11, 12]. The presence of partially-

structured elements in SLiMs tunes the thermodynamics and kinetics of the

interaction, often assisted by their flanking regions [13]. Structural and elec-

trostatic changes induced by post-translational modifications can also modulate

the affinity of the interaction and represent efficient mechanisms of regulation

[14, 15].

The identification and characterization of partially-structured elements in

IDPs is complex and requires extensive experimental work, mainly using Nu-

clear Magnetic Resonance (NMR). In particular, NMR Chemical Shifts (CSs)

and Residual Dipolar Couplings (RDCs) are sensitive to small populations of

secondary structural elements [16, 17, 18]. Computational tools represent a

good complement or an alternative to experimental studies to localize such

structurally biased elements. For over 40 years, numerous methods have been

developed to predict secondary structure in proteins from their amino acid se-

quence (see for instance [19]). However, current secondary structure predictors

are in general trained and evaluated on folded/globular proteins, and thus are
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not necessarily appropriate to identify partially structured regions in IDPs. Nu-

merous methods have also been proposed to predict structural disorder from

protein sequence (see [20, 21] and references therein). Most of the available

disorder predictors focus on the identification of disordered regions in predom-

inantly folded proteins. In general, they only provide a binary output (i.e. or-

dered/disordered) or a residue-specific disorder probability, but do not identify

structural classes. Since they aim at providing different information, tradition-

ally, secondary structure and disorder predictors have been developed indepen-

dently from each other. One exception is the s2D method [22], which predicts

secondary structure populations and disorder in a unified framework. s2D, as

the work presented here, relies on a more holistic view of IDPs by exploring

structural descriptors that span the continuum between ordered and disordered

proteins [23, 24, 12].

In contrast to the most recent approaches, which are based on intricate

machine-learning techniques, here we present an extremely simple strategy to

identify secondary structural propensities from protein sequences. As machine-

learning-based approaches, our method exploits structural information con-

tained in databases. However, instead of training a machine-learning model

or architecture, our approach performs simple statistical operations. These op-

erations are based on a classification of the conformational preferences of three-

residue fragments extracted from coil regions of experimentally determined high-

resolution protein structures. Although small, tripeptides have been shown to

encode relevant sequence-dependent structural information [25], and are valu-

able building-blocks to model unfolded states and disordered proteins or regions

[26, 27, 28]. Furthermore, statistical analyses of three-residue fragments have

also been used as key components of knowledge-based potentials and protein

fold recognition methods [29, 30].

We have evaluated the performance of our method, called Local Structural

Propensity Predictor (LS2P), using a benchmark of nine well-characterized

IDPs. LS2P accurately predicts previously identified helical and extended re-

gions in the benchmark. Moreover, small stretches forming β-turns or pro-
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moting α-helices emerge from the analysis of the preferred structural classes

of the tripeptides within the local sequence context. The main advantage of

our strategy with respect to most machine-learning-based methods for sec-

ondary structure prediction, especially those using neural networks, is that it

enables a comprehensible connection between amino acid sequence and struc-

tural preferences. LS2P is publicly available through a web server at: https:

//moma.laas.fr/applications/LS2P.

2. Theory

The prediction method proposed in this work, LS2P, exploits statistical in-

formation about the structural preferences of three-residue fragments, called

tripeptides from now on. This information was extracted from a structural

database constructed from coil regions in high-resolution protein structures. De-

tails about the tripeptide database construction can be found in the Materials

and Methods section.

To simplify the structural classification, the conformational space of each

residue ri was subdivided according to the values of the Ramachandran angles,

φ and ψ, into three regions S = {α, β, γ}. These regions, represented in Figure 1,

are defined as follows [31]:

α : −180◦ < φ ≤ 0◦ , −120◦ < ψ ≤ 50◦

β : −180◦ < φ ≤ 0◦ , 50◦ < ψ ≤ 240◦

γ : 0◦ < φ ≤ 180◦ .

For a given tripeptide, combining these three structural classes at the single

residue level leads to 27 structural classes S : ααα, ααβ, ααγ, αβα, . . . , γγγ.

The number of conformations per class was retrieved from the database and

stored for each of the 8,000 tripeptide types. These numbers are used by the

LS2P predictor as explained below.

For each residue ri in the sequence, the secondary structure propensity is

calculated using statistical information for the tripeptide ti centered at this
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residue and for its neighbors: ti−2, ti−1, ti+1 and ti+2. Let ni denote the total

number of structures present in the tripeptide database for ti. The number

of structures for each one of the 27 structural classes is indicated using the

corresponding Greek letters in subscript. For instance, niβγα is the number of

structures of ti with the first residue of the tripeptide in the β region, the second

in γ and the third in α. We use lower-case Latin letters, for instance x or y,

as variables when the three structural classes have to be considered for one or

several residues. This notation is used below within summation equations.

For a tripeptide ti, independently of the rest of the sequence, the number of

structures present in each of the 27 structural classes with respect to the total

number of structures already gives an idea of its conformational preferences. For

example, for the particular case S = βγα, and considering ti independently of

the rest of the sequence:

p(βγα)i =
niβγα∑

w,x,y∈S
niwxy

(1)

However, in order to better take into account the sequence context, the compati-

bility of the structural preferences of ti with those of the neighboring tripeptides

has to be considered. This is illustrated in Figure 1. In this particular case,

the probability of ti to adopt a βγα conformation depends on the probability

of the last two residues of ti−1 to adopt a βγ conformation, of the first two

residues of ti+1 to adopt a γα conformation, of the last residue of ti−2 to adopt

a β conformation, and of the first residue of ti+2 to adopt a α conformation.

The structural preferences conditioned by the neighbors can be easily computed

operating with the numbers of structures in the tripeptide database. For the

example of S = βγα, the equation can be written as:

p(βγα)i =

∑
t,u,y,z∈S

ni−2tuβ n
i−1
uβγ n

i
βγα n

i+1
γαy n

i+2
αyz∑

t,u,v,w,x,y,z∈S

(
ni−2tuv n

i−1
uvw nivwx n

i+1
wxy n

i+2
xyz

) (2)

To compute the propensity of tripeptide ti to adopt a particular structural

class e.g. S = βγα with respect to the observations in our database, p(βγα)i is
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divided by the overall probability to observe this structural class in all tripep-

tides:

p(βγα)all =
nallβγα
N

(3)

where “all” implies the sum for the 8,000 tripeptide sequences, and N is the

total number of tripeptide structures in the database. Thus, the structural

propensity can be written as:

P (βγα)i =
p(βγα)i
p(βγα)all

(4)

Note that P (S )i values do not correspond to the estimations of the popu-

lation for the structural classes of the tripeptides found in the protein. They

are an indicator of the structural propensities along the IDP sequence. Values

larger than 1.0 for a given structural class indicate that this class is favored for

a given tripeptide in the local sequence context, while values below 1.0 indicate

the unlikelihood of this class.

3. Results

3.1. Identification of secondary structure propensities in IDPs: An overall pic-

ture

A benchmark set of nine structurally well-characterized IDPs were used

to evaluate the performance of our approach. Concretely, MAPK Kinase 7

(MKK7) [32], the fragment 945-1097 of the Erythrocyte binding antigen 181

(EBA-181) [33], p15 [34], Sic1 [14], Measles virus ntail (ntailMV) [35], Sendai

virus ntail (ntailSV) [36], the unique domain of the src kinase (USrc) [37], K18

construct of Tau protein (K18) [38], and full-length Tau protein [39] were used

in our study. Predictions of secondary structure propensities by LS2P were

compared to the NMR RDCs, which are extremely sensitive to conformational

preferences at the residue level [17]. Previous structural analyses of these nine

proteins were also considered for this evaluation. In addition, we applied five

commonly used disorder predictors: DisEMBL-coils [40], DISOPRED-3 [41],

IUPred2A [42], PONDR-VLTX [43], and SPOT-Disorder2 [44]. The obtained
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disorder probability profiles are presented in SI (panel (a) in Figures S3 to S11).

Overall, they agree with experimental studies, showing a high level of disorder

for the proteins in our benchmark set. Discrepancies between the different pre-

dictors highlight the difficulty to structurally characterize these nine proteins

using computational methods.

First, we analyzed the number of structures in our database for all the tripep-

tides of the benchmark (see Figure S1 for details). The average number of

structures per tripeptide ranges from 637 to 792 for Sic1 and Tau, respectively.

The minimum number of structures found for a tripeptide type is 22, which

corresponds to the tripeptide 942Met-His-Met944 in EBA-181, while the tripep-

tide Gly-Gly-Gly, which appears in several proteins of the benchmark, is the

most represented tripeptide with 2,560 structures. These observations indicate

that we have sufficient samples for the vast majority of the tripeptides, so that

reliable statistics can be retrieved from the analysis. We also performed a com-

parative analysis of the number of structures for each of the 27 structural classes

of tripeptides found in the nine IDPs (see Figure S2 for details). This analysis

shows that, although the tripeptides are extracted from protein fragments ex-

cluding α-helices and β-strands according to the DSSP classification [45], a large

proportion of the tripeptides in the database adopt fully helical or extended con-

formations (according to our classification based on φ and ψ dihedral angles),

with a similar percentage around 20%. Nevertheless, when we compare the pro-

portion of the tripeptide sequences in our benchmark with the overall proportion

(i.e. computed from the 8,000 tripeptide sequences), one can observe that, in

general, ααα and βββ structures are relatively less frequent for the tripeptides

found in our IDPs, while “rare” structural classes, such as γγγ, are statistically

more frequent. This highlights the specific amino acid sequences found in IDP

that, in turn, define their structural preferences.

In order to illustrate the application of LS2P, results for two representative

cases, MKK7 and EBA-181, are presented in more detail here (Figure 2), while

results for the other proteins are shown in SI (Figures S5 to S11). From a struc-

tural point of view, MKK7 and EBA-181 present very different features. While
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MKK7 involves relatively long regions with helical or extended propensities,

EBA-181 is almost fully disordered, only presenting short partially-structured

fragments. Note that disorder predictors also provide significantly different

results for both proteins (see Figures S3.a and S4.a). Whereas most of the

predictors agree on a relatively low disorder probability at the N-terminus and

C-terminus of MKK7, the consensus is less clear for EBA-181, and three over

five predictors return a very high degree of disorder for this protein.

The N-terminus of MKK7 (residues 5-30) presents an α-helical structure

that is characterized by the positive values of the RDC profile. The α-helical

propensity is well predicted by the LS2P method. Then, LS2P predicts the re-

gion starting at residue 26 to be highly extended, in line with their negative RDC

values. The rest of the sequence appears, according to LS2P, as preferentially

extended, although some α-helical propensity is observed at the C-terminus.

Moreover, some MKK7 stretches around residues 54, 65 and 80 are dominated

by less abundant structures involving γ-type conformations.

The MKK7 fragment analyzed involves three MAPK binding domains that

have been structurally characterized by NMR: D1 (residues 25-34), D2 (residues

38-47) and D3 (residues 70-79) [32]. Our secondary structure prediction is in

very good agreement with the structural conformation found for these motifs.

D1 lies in the transition between helical and extended conformations at the

N-terminus of MKK7, and this dual behavior was captured by the ensemble

refinement done in the original study. D2, which is inserted in the long extended

region of MKK7 according to LS2P, was experimentally shown to sample β-

strand and polyproline-II (PPII) conformations. Conversely, predictions of the

D3 indicate that this region has no special enrichment neither in helical nor in

extended conformations, with the exception of residues 73 and 74, in line with

the original experimentally-derived ensemble model.

Structural investigations of EBA-181 have shown that the fragment involv-

ing residues 945-1097, which is part of the RIII–V region, behaves essentially

as a random coil with the presence of several turn motifs or short single-turn

α-helices [33]. These short helical elements, corresponding to positive RDCs
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around residues 987–988, 998, 1006–1007 and 1016–1019, are correctly identi-

fied by LS2P (Figure 2). Note that the identification of turns will be described

in more detail below. Other short regions present some propensity to adopt ex-

tended conformations, in particular regions around prolines P945, P949, P1003,

P1039, P1040 and P1044. These short extended regions are also well predicted

by LS2P. When analyzing the enrichment of the 27 structural groups, we observe

that most of them are present along the sequence and only regions around 958,

1050 and the C-terminus seem to be highly enriched in less common structural

classes (Figure S4). As mentioned above and illustrated in Figure S2, sequences

allowing more heterogeneous conformations seem to be an indicator of disorder

and absence of secondary structural elements.

These results for MKK7 and EBA-181, which showcase two structurally

diverse types of IDPs, demonstrate the performance of LS2P. The following

sections will describe more specifically the ability of LS2P to identify different

types of secondary structural elements within IDPs.

3.2. Identification of α-helical elements in IDPs

In addition to the previously described examples, our benchmark contains

other examples of IDPs involving relatively long fragments with helical propen-

sity. The two most prominent ones are ntailMV and ntailSV. These two proteins

have similar sequences and perform the same function by interacting with the

phosphoprotein in two related viruses through a highly stable α-helix [46].

LS2P identifies several regions displaying an enrichment in helical conforma-

tions in both N-tail proteins, including the experimentally characterized func-

tional α-helix. Figure 3 shows the experimental RDC profiles and the results

of the LS2P predictor of this region for both proteins. When comparing with

s2D predictions (note that the comparison with s2D is discussed in detail in a

different section below), we observe different levels of agreement (see Figures S7

and S8). In ntailSV, both algorithms identify four α-helices and, interestingly,

two of these regions (around residues 450 and 515) display positive RDCs, sug-

gesting the presence of helical populations in solution. Conversely, only the
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functional helix is identified by s2D for ntailMV. The most surprising result is

that our approach predicts that the two functional helices, especially ntailSV,

contain a non-negligible proportion of extended conformations in the middle of

the functional α-helix. This observation is in contrast with the experimental

data [36, 35] and the predictions done with s2D. This contradictory observa-

tion underlines a fundamental difference between both methods. While s2D

was trained using data from NMR experiments and captures propensities in

longer protein stretches, LS2P is only based on local conformational bias. De-

spite this potential limitation, LS2P was able to identify the long α-helix at the

N-terminus of MKK7 (Figure 2), suggesting that N-tail helices present some

specific features. It has been shown that the functional helices of both N-tail

proteins are highly stabilized by N-capping serine and aspartic acid residues

placed upstream of the helix [36, 35]. The inspection of the conformational

propensities in these regions identifies several residues with a strong propen-

sity for βαα and ββα structural classes. Concretely, tripeptides centered at

residues 485, 488 and 491 in ntailMV, and 473, 474 and 479 in ntailSV display

a strong enrichment in these conformational classes. We speculate that this

structural feature, which is identified by LS2P, promotes and stabilizes helical

conformations in both N-tail proteins.

3.3. Identification of extended regions in IDPs

Several regions are identified as extended (βββ) in the analysis of the bench-

mark set. Note that the current implementation of LS2P does not discriminate

between β-strand-type and PPII-type conformations, both of them being clas-

sified as “extended”. Note also that the possible presence of hydrogen bonds to

stabilize parallel or anti-parallel β-strands is not considered as this constitutes

an uncommon situation in IDPs. Instead, extended regions are identified only

on the basis of local structural preferences along the amino acid sequence.

Protein Tau is a good example to illustrate the ability of LS2P to predict the

propensity of some regions within IDPs to adopt extended conformations. The

method identifies extended regions described in previous studies [38, 39]: at the
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N-terminal region of Tau (around residue 50, in particular), within the proline-

rich region (residues 212-232), and inside the pseudorepeat domains contained

in the K18 fragment (residues 275-282, 307-313 and 338-346, approximately).

All the regions correspond to negative RDCs (see Figures 4, S10 and S11). LS2P

also identifies extended regions in other proteins, such as p15 [34] (Figure S5)

and Sic1 [14, 47] (Figure S6), in good agreement with the original studies and

the RDC profiles.

Relying only on the local sequence, there are two main factors that induce

extended conformations. One of them is the presence of prolines, which en-

riches neighboring residues in extended conformations, as it is the case for the

proline-rich region in Tau or the short extended regions in EBA-181 (see above).

Amino acid bulkiness is another property that has a strong effect on the confor-

mational preferences of neighboring residues [48]. Amino acids with large side

chains enrich extended conformations in neighboring residues as a conforma-

tional mechanism to avoid steric clashes. To illustrate the importance of amino

acid bulkiness in the identification of extended conformations, we computed the

bulkiness profile for the proteins in the benchmark set, using averaged values

over a five-residue window as proposed in [49]. Note that in our case we did

not increase the theoretical volume of prolines. Figure 4 shows experimental

RDCs, the predicted extended propensity and the bulkiness profile for the K18

construct of Tau. We observe a correlation between the regions having highly

negative RDCs, displaying an enhanced population of βββ propensity, and large

bulkiness. This correlation suggests that LS2P properly identifies regions with

extended conformations and that our statistical approach, despite its local na-

ture, captures the steric influence exerted by flanking bulky residues.

3.4. Identification of β-turns in IDPs

β-turns represent the third most abundant secondary structure in proteins

[50, 51]. Based on a standard definition, β-turns are constituted of four consec-

utive residues, with a distance between the Cα atoms of the first and the fourth

residues smaller than 7 Å. Different β-turn types can be defined based on the φ
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and ψ values adopted by the two central residues, which are normally derived

from high-resolution crystallographic structures [51]. However, the coarse sub-

division of the conformational space used by LS2P hampers the possibility to

precisely discriminate among all these β-turn types. Moreover, in IDPs, turns

are only partially formed, which complicates their identification and classifica-

tion. Experimentally, turns can be identified based on RDCs, which display

anomalous values with respect to the neighboring residues [38, 33, 39]. Based

on this fuzzy description, β-turns identified in IDPs were characterized by two

consecutive residues with nearly helical conformations, preceded and succeeded

by residues with more extended conformations. Such a description broadly fits

the definition of type I and some type IV β-turn sub-types [51].

Following this definition, turns could be predicted from the results of LS2P

by identifying consecutive (overlapping) tripeptides with high propensities for

βαα and ααβ structural classes. As shown in Figure 5.a, this concatenation of

classes is found by LS2P for the well-characterized turns in the K18 construct of

Tau [38], involving residues 252-255, 283-286, 314-317, and 345-348. In addition

to the aforementioned signature βαα-ααβ for the two middle residues, these

β-turns can present a ααα peak for the second of these middle residues, which

can be higher than the ααβ propensity (see turn IV of K18 in Figure 5.a). In

such cases, the ααβ propensity increases for the next residues in the sequence.

For the four turns in K18, the extended-helical-extended transition is reinforced

by the high propensity for ββα and αββ structural classes for the N- and C-

flanking tripeptides, respectively (Figure 5.a). Therefore, LS2P results suggest

that the concatenation of specific structural classes is a good indication of the

presence of stable turns in IDPs.

The concatenation of ββα, βαα, ααβ and αββ propensities is also found in

the four turns described for EBA-181 (see Figure 5.b). Interestingly, LS2P ratio-

nalizes the differences between these turns found in a previous study [27]. While

the first two turns (around residues 987 and 998) follow the above-described

concatenation of classes, the last two turns (around residues 1006 and 1017)

present a short segment enriched in ααα. As a consequence of this structural
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difference, these two last turns present more positive RDCs. Note that the βαα-

ααβ propensity for pairs of consecutive residues is also high in other regions of

EBA-181, such as residues 971-972 and 1031-1032 (see Figure S8). Although

less intense than the previously described turns, these two regions also display

specific features in the RDC profile.

3.5. Comparison with state-of-the-art methods for structural propensity predic-

tion

As mentioned in the introduction, the vast majority of secondary struc-

ture predictors aims at identifying structural elements within globular proteins.

These methods usually fail to recognize partially-structured regions in IDPs,

especially when the structural propensity is relatively low [22, 23]. On the other

hand, disorder predictors, which aim at identifying regions lacking secondary

structure, do not provide information about structural propensities at the fron-

tier between order and disorder. A remarkable exception is the s2D method [22],

which was especially conceived to simultaneously predict secondary structure

and disorder propensities, and which is particularly well suited to the structural

investigation of IDPs. Here, we compare the performance of s2D and LS2P to

predict secondary structure propensities for the nine proteins considered in this

work.

LS2P and s2D agree in many cases, particularly when the structural elements

are known to have relatively high propensity to be formed in solution. This is

the case for instance for the helical region at the N-terminus of MKK7 and for

the helical regions in ntailSV and ntailMV (see Figures S3, S7 and S8). As

mentioned before, s2D performs better than LS2P in some of these cases due

to the underlying principles of the method, which operates in terms of longer

sequence fragments. Both methods also agree on the prediction of the extended

regions in K18 (see Figure S10). In all these cases, disorder predictors tend to

provide a relatively low disorder probability.

However, s2D generally fails to identify transient secondary structure in sev-

eral cases in which LS2P successfully provides this information. This is for
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instance the case for p15, illustrated in Figure 6 (see also Figure S5). Based on

the negative RDC values observed for the 15–24 and 94–104 segments in p15,

[34] suggested a low population (about 8%) of β-strand conformations. While

LS2D clearly identifies these two extended regions, s2D predictions are unclear.

Sic1, which has been shown to concatenate regions with significant propensity

to adopt extended or helical conformations [14, 47], is another example of bet-

ter performance of LS2P (Figure S6). In this case, s2D does not identify any

secondary structural preference in the protein. s2D also fails to identify small

structural motifs such as turns or short helices, whereas LS2P is able to find

them, as it has been illustrated for EBA-181 and K18 (Figures S4 and S10).

Another difference between LS2P and s2D concerns the effect of the over-

all sequence in the prediction. Whereas the simple principle implemented in

LS2P only operates in terms of local structural preferences, s2D considers mean

secondary structure propensities for the entire protein. Although this makes

sense within the machine-learning approach implemented in s2D and can lead

to improved predictions in some cases, it also can produce unreliable results in

other cases. For instance, the results provided by s2D for the K18 construct

of Tau are very different than these for the same region within the full-length

protein (see Figures S10 and S11). Conversely, LS2P provides the same results

in both cases due to its local-sequence focus.

4. Discussion

In this work, we have investigated the ability to predict secondary structure

propensities within IDPs using local sequence-dependent information encoded

in small protein fragments extracted from coil regions in high-resolution pro-

tein structures. We have developed an extremely simple statistical approach

based on a coarse classification of tripeptide conformations. In contrast with

nowadays popular neural-network-based secondary structure predictors, this ap-

proach enables a comprehensible connection between sequence and structural

propensities. Moreover, thanks to this simplicity, the proposed predictor LS2P is
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very computationally inexpensive, enabling the fast scanning of large databases

or complete proteomes.

Results presented show that LS2P is able to predict in a robust manner

the main secondary structural elements: α-helices and extended conformations.

These are detected regardless of the length of the secondary structural element,

even though the method operates from structural preferences of three-residue

fragments. This highlights the importance of the local sequence context, which

implicitly encodes the cooperative formation of structural elements along the

polypeptide chain. This is a clear advantage with respect to state-of-the-art

secondary structure predictors, including those suited to IDPs, such as s2D,

which mainly identify relatively long and highly populated secondary structure

elements. In addition to the detection of the canonical secondary structures,

LS2P enables the identification of short structural elements. For instance, con-

formational classes inducing helical N-capping have been identified in the N-tail

proteins. Concretely, classes ββα and βαα are enriched in residues preceding

α-helical regions that become more stable than predicted by LS2P.

Another unique feature of our approach is the detection of certain types of

β-turns [51]. Provided with the correct definition of turn-types found in litera-

ture, we can connect amino acid sequence and the structural classes predicted by

LS2P with the presence of β-turns. However, the coarse description of the Ra-

machandran space used by LS2P precludes the discrimination between certain

β-turn types [51].

Despite the good overall performance of the method, it should be noted

that LS2P may predict structural propensity in some regions for which there

is no experimental evidence of secondary structure (i.e. false positives), and it

may also fail to predict structural propensities in a few cases (i.e. false neg-

atives). Nevertheless, it is hard to assess the degree of (in)accuracy of LS2P

due to the difficulty to precisely characterize structural properties of IDPs from

experiments. As an example of false positive prediction, LS2P predicts helical

propensity at the C-terminal region (residues 95-99) of MMK7, whereas the

RDC profile does not indicate such a structural propensity. Note that s2D also
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predicts this helical region (as shown in Figure S3) and that disorder profiles

obtained by most of the predictors are relatively low in this region. However, it

is well known that RDCs are much less informative at the sequence termini [52],

and thus it is not possible to discard that this helical propensity exists in reality.

An example of false negative prediction is the low-populated helical structure

involving residues 60-75 in USrc, which has been characterized by NMR experi-

ments [37]. Interestingly, s2D also fails to predict this helical region and disorder

predictors provide discrepant results, as shown in Figure S9. A possible expla-

nation of this under-performance of both predictors is that transient structural

elements in IDPs are not necessarily canonical secondary structure elements,

and sometimes are a concatenation of small partially-stable elements. In these

circumstances, the local focus of LS2P could be advantageous with respect to

methods that operate in terms of longer sequence fragments, such as s2D. Actu-

ally, although LS2P does not identify helical propensity around residues 60-75

in USrc, it predicts a concatenation of βγγ and γγβ propensity at residues 65

and 66, respectively. This approximately fits the description of type I’ β-turns

[51], and could explain the positive RDC profile in this region. Note that these

two consecutive residues are glycines, which are frequently found at the central

positions of β-turns [50].

Inaccurate predictions of LS2P in some regions can be due to biases or lack of

information in the tripeptide database. Indeed, in the same way that machine-

learning-based methods strongly rely on the data-set used for training, results

provided by LS2D depend on the quality of the tripeptide database. Our current

database was constructed from coil regions in a large set of protein structures,

mostly determined by X-ray crystallography. The available information in this

database can be inaccurate (e.g. due to biases induced by experimental con-

ditions) or limited for sequences that are seldom observed in globular proteins

but that may appear in IDPs. With the growing number of high-resolution

structures and NMR data-sets deposited in specific repositories, we expect to

enrich our database and achieve more robust predictions in the future. A more

extensive structural database would also enable to further refine the structural
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classes with respect to the three classes per residue α, β, γ considered in this

work. In particular, it would be interesting to discriminate between β-strand

and PPII conformations, which have been reported to be very common in IDPs

[53, 54].

In summary, we presented a novel method to identify partially structured

regions in IDPs, which we have made available through a web server. Although

the structural analysis of IDP sequences still represent a challenge for current

algorithms, LS2P presents some advantageous features. The most important of

them is the simplicity of the statistical approach used to compute local structural

propensities, enabling an easy connection between sequence and conformational

properties at the residue level. This new tool paves the way to systematic

studies of large IDP data-sets in order to better understand the connection

between structural changes and functional effects induced by point mutations.

5. Materials and Methods

5.1. Tripeptide database

The tripeptide database was built from a curated database of high-resolution

experimentally determined protein structures. More precisely, we used protein

domains from the SCOPe [55] 2.06 release. In order to remove highly-redundant

sequences, we used the 95% sequence-identity-filtered subset of these domains.

This subset consists of PDB-style files for 28,011 domains. DSSP [45] was

employed to assign secondary structure labels to each residue in these files.

Each structure file was processed by passing a sliding window of size 3 along

the amino acid sequence. Each resulting tripeptide was added to the database

if none of its 3 residues had a DSSP code of H, I or E. In other words, none

of the residues of the tripeptide participates in a α-helix, π-helix or β-strand.

An additional treatment was applied when the provided domain structure file

originated from NMR data. For each structural file that contained more than

one model, a distance filter was applied to corresponding tripeptides in each

model to avoid redundancy in the database. A tripeptide structure was consid-
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ered sufficiently distant from another one already extracted from the same file,

and was thus added to the database, if it met at least one of the two following

criteria: the RMSD on ω, φ and ψ angles is above 0.2 radians, or one of the

nine dihedral angles differs by more than 0.6 radians. In total, 2,972,319 tripep-

tides were extracted. The tripeptide backbone dihedral angles were collected in

the database and indexed by its corresponding amino acid sequence (i.e. 8,000

tripeptide classes). These values were used for the classification into the 27

structural classes.

5.2. LS2P

The principle of the method is explained in the Theory section of the manuscript.

The code implementing this method is freely available (see below).

5.3. s2D

The s2D method was used through the dedicated web server:

http://www-mvsoftware.ch.cam.ac.uk.

Only the protein sequence is required as input. The server provides a file with

the populations of α-helix, β-strand and random coil for each residue. This

information was used to generate the plots presented in this study. Similar

plots can be directly obtained from the s2D web server.

Availability

LS2P is publicly available through a web server at:

https://moma.laas.fr/applications/LS2P.

The code of LS2P (in Python) and the data (number of structures for each

tripeptide type and structural class extracted from high-resolution experimen-

tally determined protein structures) are available upon request to the Lead

Contact.
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[34] A. De Biasio, A. Ibáñez de Opakua, T. N. Cordeiro, M. Villate, N. Merino,

N. Sibille, M. Lelli, T. Diercks, P. Bernadó, F. J. Blanco, p15PAF is an
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Figure 1: Ramachandran plots of residues in ti, and in the neighboring tripeptides ti−2, ti−1,

ti+1 and ti+2. Colored regions correspond to the case where ti is in the structural class

S = βγα. Notice that overlapping residues in consecutive tripeptides must be in the same

structural class.
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Figure 2: Experimental RDC profiles and secondary structure propensities predicted by LS2P

for MKK7 (top) and EBA-181 (bottom). The plots only show helical (ααα) and extended

(βββ) propensities. The other structural classes are not displayed here, but are shown in

Figures S3 and S4. The three binding domains in MKK7 are highlighted in yellow. For EBA-

181, short helical and extended regions described in the literature are colored in red and blue,

respectively.
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Figure 3: L2SP analysis of the helical region for ntailMV (a) and ntailSV (b). Top pan-

els display the experimental RDC profiles. Middle panels show the predicted helical (ααα)

propensities. Bottom panels show other structural classes with significant propensities involv-

ing α and β conformations. In particular, the concatenation of high propensities for ββα and

βαα classes indicate the presence of N-capping residues.
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Figure 4: RDC profile (top, black line), βββ propensity (bottom, blue bars) and bulkiness

profiles (bottom, orange line) for the K18 construct of Tau protein. Prolines in the sequence

are indicated with green squares. The dashed horizontal line at bulkiness = 14 indicates

the threshold above which the sequence is considered bulky [49]. The three experimentally-

characterized extended regions involving residues 275-282, 307-313 and 338-346 are highlighted

in yellow.
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Figure 5: Experimental RDC profiles and secondary structure propensities predicted by LS2P

for K18 (top) and central region in EBA-181 (bottom). The plots show concatenated ββα,

βαα, ααα, ααβ and αββ propensities, which enable the identification of β-turns.
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Figure 6: Experimental RDC profiles and secondary structure propensities predicted by LS2P

(middle plot) and s2D (bottom plot) for p15. Extended regions described in the literature are

represented as horizontal blue bars.
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