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HATEB-2: Reactive Planning and Decision making in Human-Robot
Co-navigation

Phani Teja S1 and Rachid Alami1,2

Abstract— We propose a new framework combining deci-
sion making and planning in the human-robot co-navigation
scenario. This new framework, called HATEB-2, introduces
different modalities of planning and shift between them based
on the situation at hand. These transitions are controlled by
the decision making loop present on top of the planning. We
also present the improvements made to human prediction and
estimation along with the modifications to a few social con-
straints from our previous work, that are included in HATEB-
2. Finally, several experiments are performed in human-robot
co-navigation scenarios and results are presented. One of the
modalities of HATEB-2 is used in EU-funded MuMMER [1]
project (http://mummer-project.eu/).

I. INTRODUCTION

The study of human-aware navigation, sometimes, called
social navigation is increasing day by day as assistive robots
are being deployed at various places like airports, malls [1],
hospitals etc. Various methods of human-aware navigation
are proposed, and most of them are based on the theory
of proxemics [2] and social force model [3]. Many of
the earlier proposed methods, however, do not use human
predictions in the planning and hence faced difficulties in
complex situations. Consequently, human motion predic-
tions and estimations were introduced into human-aware
navigation to have a better planning system. Our previous
work, Human Aware Timed Elastic Band (HATEB) based
co-navigation planner [4] falls into this category, including
human estimations and predictions. HATEB includes human
predictions by simultaneously planning for humans and the
robot. This allows HATEB to handle intricate situations like
narrow corridor crossing and door crossing where human and
robot cooperative motion is needed.

With the increasing complexity in environments and the
need to navigate robots in such environments, decision
making has been introduced into planning [5], [6]. However,
these frameworks might make the robot wait in confined
spaces instead of proactively planning and hence resulting
in larger execution times. Therefore, in this paper, we
propose HATEB-2, a new modality based human-robot co-
navigation framework, that deals with decision making, to
solve crowded as well as intricate scenarios. This is achieved
by shifting between different modalities and by simultane-
ous human-robot planning, similar to HATEB. The main
contributions of this paper are three-fold: 1) HATEB-2, a
new human-robot co-navigation planner comprising decision
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making. 2) Improvements and modifications to HATEB. 3) A
detailed analysis of human-robot co-navigation in a variety
of situations.

This paper is organised as follows. After an overview
of the related works in Section II, Section III describes
the architecture of the proposed framework along with the
modifications in HATEB. It also presents improvements
made to human predictions in HATEB-2. Section IV reports
the results and analysis based on several experiments. Section
V presents the experiments on the real robot, and finally,
Section VI talks about the conclusions and future work.

II. RELATED WORK

Human-aware navigation involves navigation planning of
a robot around humans. Humans follow certain social norms
while navigating in an environment and expect the same
from others, who are navigating in the same environment.
Therefore, a robot cannot move along the shortest path
while navigating around humans. Otherwise, it will create
confusion and discomfort to humans. The theory of prox-
emics [2] provides a set of rules, that can be used to realize
more human-like behaviour during robot motion and non-
motion tasks [7]. Most state-of-art human-aware navigation
planners add proxemics costs around humans in a grid-based
map representation of the robot’s working environment [8].
There are other approaches like social force models [3]
which also make use of proxemics. Nonetheless, proxemics
alone may not be sufficient to completely generate a human
acceptable trajectory for the robot. In the human-aware
navigation planner proposed by Sisbot et al. [9], other social
criteria like visibility and hidden zones are considered along
with proxemics. Another navigation framework proposed by
Kruse et al. [10] introduces the directional cost model, which
attempts to solve the spatial conflict by adjusting velocity
instead of the path when possible. This model has shown
to increase the legibility of the robot motions and hence in
HATEB-2, we introduced some new constraints that restrict
the path change and adjust the velocity (Eq. (1)) based on the
distance between human and the robot. The study conducted
by Kruse et al. [11] shows that humans prefer the robot to
follow this strategy, especially in path crossing scenarios.

Employing social constraints alone may not be sufficient
to develop a socially acceptable navigation planner, and
this arises the need for including human motion predictions
into the framework [12]. Many methods based on social
force model [3] predict homotopically distinct trajectories for
humans and design planners that learn the navigation policies
for the robot based on human demonstrations [12]. Although



these methods involving independent human predictions
work fine in large open spaces, they might require re-learning
of parameters to handle situations such as long corridor
crossing or passage through a door, where a cooperative
behaviour is needed between human and the robot. Hence
planning for humans along with the robot is required in such
situations. The approach presented by Ferrer et al. [13], uses
the social force model for both to predict human paths and
to control the robot motion. In this approach, the human
predictions based on the previously planned path are used.
Other approaches [14], [15] try to predict the possible human
goals based on some type of reasoning and generate locally
optimal motion for the robot. One of the recent approaches
[16] suggests the use of probabilistic human predictions to
handle various uncertainties and plan robot motion on top
of these probabilistic predictions. This approach is partic-
ularly useful in systems with unreliable sensors. All these
approaches are effective in densely crowded environments
as a virtue of remaining purely reactive but could lead to
needless detours in intricate situations. Our previous work [4]
is specifically developed to handle such intricate situations
in semi-crowded environments. Such planning for humans
along with the robot is usually required in robot-human
handover scenarios, to know where to perform a task, and
who performs a task [17], [18]. Similarly, in HATEB, the
tightness of the elastic band can be adjusted to make either
robot or the human take more load.

The concept of modality shifting in human-aware naviga-
tion is discussed in works by Mehta et al. [6] and Qian et
al.[5], where Partially Observable Markov Decision Process
(POMDP) is used for decision making. In both of the works,
different modalities necessary for human-aware navigation
are proposed, assuming that the robot takes all the load of
the navigation process. Hence these methods may also suffer
problems like purely reactive planners in complex situations
leading to unnecessary detours or long halts. HATEB-2
includes HATEB as one of the modalities and hence can
handle both intricate situations as well as crowded scenarios,
by switching between different modalities when needed. In
this work, however, we focus mainly on different intricate
situations involving cooperative motion between the human
and the robot.

III. HATEB 2: ARCHITECTURE AND METHODOLOGY

The proposed framework, HATEB-2 combines decision
making and planning into a single framework and opens
up new frontiers for reactive planning. This new framework
can encompass a large variety of problems by allowing the
transition between different modalities based on context. In
this work, however, we study only the human-robot co-
navigation problem. HATEB-2 introduces decision making
on the top of planning, and this makes the planner to adapt
better to the situations at hand. These situations might be
very different from each other and need to be handled
differently. Hence, having only a single way of planning may
not be sufficient. Therefore, we introduce different modalities
into planning, and the transition between these modes is

handled by the decision making loop. The decision making
loop of HATEB-2 can be seen in Fig. 1. In this work, we use
three different modalities, and all these modalities are based
on Timed Elastic Band (TEB) [19] approach.

TEB is one of the well-known approaches for robot
navigation around dynamic obstacles, which allows us to
include several kinodynamic and custom constraints (like
holonomic, non-holonomic, human-aware constraints) into
the local reactive planning. TEB is modelled as a non-linear
least squares optimization problem using hypergraphs [20]
which makes it possible to introduce new constraints by
adding new edges (and sometimes vertices) to this hyper-
graph. In our previous work [4], we extended the Timed
Elastic Band approach by introducing prediction and opti-
mization of human trajectories along with social constraints
into it, thereby making it Human Aware Timed Elastic Band
(HATEB). HATEB addresses the human-robot co-navigation
problem by adding elastic bands to both humans and robot,
optimizing the human-plans and the robot-plans together
taking into consideration the human-aware constraints. More
details about the implementation and the social constraints
can be found in [4].

In HATEB-2, HATEB is used as one of the modalities
and encompasses a large part of human-robot co-navigation
planning. We have also made few modifications to HATEB to
remove its drawbacks before using it in the new framework.
The other two modalities possess the same social constraints
as HATEB, but they differ significantly in their behaviour.
Different modes of HATEB-2 and its architecture along with
modifications of HATEB are discussed below. We start with
explanation of different modalities and the decision making
process.

A. Architecture and different Modes of planning

HATEB-2 operates mainly in three modes of planning:
1) Single Band, 2) Dual Band and 3) VelObs, however, an
intermediate mode is present before the occurrence of Dual
Band → VelObs1 transition. The intermediate mode refers
to the trajectory planning in the close vicinity of the human
(for distances ≤ 2.5m), where large velocity changes are
restricted, and the elastic band is made tighter. More details
about these changes are presented in the next sub-section.
We briefly explain different modes of this framework below.

1) Single Band Mode: Here, the elastic band is added only
to the robot to avoid the obstacles in the environment. This
mode is computationally less expensive as it does not deal
with human estimates and trajectory predictions. This mode
can be seen as a purely reactive mode with social constraints.
In this work, this mode is used when the humans are far
from the robot or there are no humans. However, this can be
extended to the crowded situations when needed.

2) Dual Band Mode: This mode is same as the standard
HATEB where elastic bands are added to humans and robot
and trajectories are optimized simultaneously. However, few
modifications are made before using it in HATEB-2 and

1→ represents one sided transition



these are explained in the next sub-section. This mode adapts
trajectory planning according to the motion of the humans
and the predicted goals. The main advantage of this mode is
that it always proposes a possible solution from the current
scenario besides being more proactive. The main drawback
is the entanglement problem which is discussed below.

The entanglement Problem: HATEB assumes that humans
keep moving and try to adapt its path according to their
motion. Therefore, the planner continuously plans assuming
that both human and the robot will be moving at each instant
of time. This assumption could result in an entanglement of
trajectories when the human no longer moves, and the robot
keeps waiting for the human to move, neglecting the other
possible solutions. These situations can commonly occur in
corridors. Two such situations are shown in Fig. 2. This

Fig. 1. Mode transition procedure. dist is the current distance between
the closest human and the robot, DistMin is the minimum value of dist to
add a double band and DistThreshold is the minimum cutoff dist to initiate
transition between Dual Band and VelObs. h vel is the velocity of human.
Note that, under DistThreshold, the elastic band and velocity profile are
changed irrespective of the mode of planning.

problem is addressed by HATEB-2 by shifting to VelObs
mode and partially removing the human plan prediction.

3) VelObs Mode: In this mode, the elastic bands are added
to the humans, and trajectories are predicted, only if they are
moving (have velocity). The trajectory is predicted assuming
that human follows the same velocity for the duration of the
prediction window, and the prediction is updated after each
time step. In our work we have chosen a prediction window
of 5s. This mode makes the robot less proactive, but the
entanglement problem does not exist and allows for an active
re-planning when human stops moving.

Now we move on to the decision making process involved
in transitioning between these modalities. In this work, we
have the following mode transitions: 1) Single Band ↔
Dual Band2 and 2) Dual Band → VelObs. The transition

2↔ represents two side transition

procedure and decision making loop is shown in Fig. 1. The
transition between Dual Band to VelObs is one-sided, and
it does not happen the other way around. As this transition
occurs mostly at the robot-human crossing, it is intuitive to
assume that human would be behind the robot and no longer
interferes with the robot trajectory after the transition. This
assumption also reduces the cost of computation as we no
longer plan for stationary human. Note that, this transition
occurs only when human and robot are under a specified
distance, called the DistThreshold. Under this DistThreshold,
the robot’s maximum velocity is reduced and the homotopy
class change is constrained to make the robot more legible
for the human. The weight of the proxemics constraint is
also reduced under this distance to allow the planner to find
a solution in very narrow corridors. DistThreshold is taken
as 2.5m in this work. The decision concerning the transition
between Single Band and Dual Band is based on cutoff
distance, DistMin. DistMin is the distance between human
and robot, above which the influence of human on the robot’s
trajectory is negligible. If the current distance of robot from
any human is less than DistMin, the planning shifts from
Single to Dual Band and vice versa. DistMin is taken as 10m
in this work. All these modalities are implemented using

Fig. 2. Robot getting stuck due to entanglement of trajectories. The blue
trajectories correspond to human trajectories, and the red ones correspond to
robot trajectories. In both situations shown, there exists an alternate solution
for the robot to solve the problem. However, the assumption that human is
always moving and the constraint of proxemics makes the robot wait in the
same entanglement, speculating the motion of human. The picture on left
is of open space, whereas the one on the right is of a narrow corridor.

the same hypergraph based optimization used in HATEB
and the details of this implementation can be found in
[4]. HATEB-2 is implemented in ROS and integrated as
a local planner in Move Base package. HATEB-2 follows
the same software architecture as HATEB and is integrated
with a global planner. A human navigation package is also
implemented using ROS that allows the direct execution of
trajectory planned by HATEB-2 as well as manual control
using a Joystick. Human is shown as a green cylinder with
an arrow throughout this work, where the direction of the
arrow corresponds to the front direction. We now proceed to



discuss about the modifications made in HATEB.

B. Modifications in HATEB

The following constraints are modified to increase the
legibility and acceptability of the robot motion, particularly
in the close vicinity to human.

1) Modified Elastic Band: The default settings of the
elastic band allow it to rapidly change the homotopy class.
This change is good when the robot is at a large distance
from humans. In the closer distances, it may lead to the loss
of legibility as the study in [11] says. Hence, we address this
issue by restricting the changing of homotopy class under
a threshold distance, DistThreshold, from a human. This
restriction is implemented, by decreasing the time interval
between consecutive poses, which tightens the elastic band
and decreases the possibility of homotopy class change, as
shown in Fig. 3.

Fig. 3. Modified Elastic band. The blue trajectory is of human, and the
red one is of the robot. Tightening of the elastic band results in very close
pose predictions in the trajectories and slow velocities.

2) Modified Robot Velocity constraint: In the place of a
constant velocity, we assigned a non-linear profile for the
velocity of the robot which slows down the robot up to 75%
in the close vicinity of the human. This change is made
in order to avoid rapid changes in velocity and increase
the legibility of motion. The velocity function used in this
constraint is given as follows:

v(d) = min(1.0,max(10d−2, 0.25)) (1)

where d is the distance between the human and the robot
and v is velocity of the robot.

3) Modified Time to Collision (TTCplus) constraint: Time
to collision constraint, as per its name calculates the time
the robot takes to collide with the human from the current
position and velocity. The original implementation in [4]
computes the error all the time and adds it to the optimiza-
tion. This implementation results in many false negatives
which affects the quality of the trajectory. To decrease the
number of false alarms and also to maintain the advantages
of the constraint, we have to regulate the addition of the
error to the optimization. The regulation is implemented in
HATEB-2 as follows:

error =

{
ttcerror if ta > td and tm < 5td

0, otherwise
(2)

where td is the threshold time, ta is the cumulative time
with positive ttcerror and tm is the cumulative time with

zero ttcerror. ta is reset whenever tm ≥ 5td and tm is reset
when a positive error is observed. This new implementation
shown in Eq. (2), called TTCplus decreases the number of
false negatives, avoiding the unnecessary oscillations and im-
proving the quality of trajectory as well as the acceptability.
The main advantage of including TTC constraint is better
trajectory planning and earlier intention show by making the
robot move in the intended direction early. This can be seen
in the Fig. 4. Although, the difference seems small in the
image, it is more than half a meter in the real world. TTCplus
preserves these properties eliminating the drawbacks of TTC.

Fig. 4. Intention show of the robot with and without TTC. Inclusion of
TTC or TTCplus constraint results in an early intention show as can be seen
from the picture on left. Even though the difference seems small from the
pictures, this corresponds to more than half a meter in the real world. Red:
Robot Trajectory, Blue: Human Trajectory

C. Improved Human Predictions in HATEB-2

The better the estimates of humans, the better the reactive
planning can plan the joint trajectories. Therefore, we have
made the following improvements in HATEB-2 to have better
estimates and predictions for humans.

1) Human Velocity Estimate: The nominal velocity of a
human was assumed to be constant in our previous work.
However, this assumption leads to a trajectory plan that does
not necessarily comply with the current human trajectory.
Although, HATEB-2 being a reactive planner quickly re-
plans and adapts, this wrong estimate can sometimes lead
to unexpected behaviours of the robot. Therefore, a moving
average filter based estimate of velocity is added to the
human prediction to avoid this and thus providing an adaptive
and better nominal velocity estimate to the optimization.

2) Human Goal Prediction: We include human goal pre-
diction into the system to address the changes in the human
goal during the planning process. We adopt the method
proposed in [21] with a predefined set of the goals for
the human. HATEB-2 quickly adapts to the changes in the
human goal and re-plans, as shown in Fig. 5, making it more
adaptable to real-world scenarios.

IV. RESULTS AND ANALYSIS

Various experiments are conducted using simulated PR23

robot and Humans in MORSE4 [22] to demonstrate the ca-

3http://wiki.ros.org/Robots/PR2
4https://www.openrobots.org/wiki/morse



Fig. 5. Human goal prediction in HATEB-2. On the left side, the initial
predicted goal, and the calculated trajectory by HATEB-2 are shown. On
the right, human decides to move in a different direction, and HATEB-2
predicts a new possible goal and calculates path. Red: Robot Trajectory,
Blue: Human Trajectory.

pabilities of HATEB-2. Two different environments are used
to test several scenarios and the results are presented in this
section. Both Qualitative as well as the Quantitative analysis
are performed and the corresponding results are presented.
We start with the Qualitative analysis and demonstrate the
improvements in HATEB-25.

A. Qualitative Analysis

Here, three different analyses on HATEB-2 are presented,
contrasting and comparing the improvements made and situ-
ation handling. We also present an analysis discussing the
importance of double band in human-robot co-navigation
planning. During all these experiments, we manually control
the human using a Joystick.

1) Entanglement Resolution: One of the main drawbacks
of HATEB is the entanglement issue presented in the pre-
vious section. With the introduction of decision making and
mode transition in HATEB-2, this entanglement is resolved
and the robot finally reaches the goal without getting stuck.
When the human stops moving and blocks the robot, a new
trajectory is planned and the transition from Dual Band
mode to VelObs mode occurs. Since, the human’s velocity is
zero, the VelObs mode does not plan any trajectory for the
human until he starts moving again. During this time, the
robot escapes from the entanglement and starts following its
trajectory to the goal. The various stages of this entanglement
resolution are illustrated in Fig. 6.

2) TTC vs TTCplus: TTC constraint in HATEB makes the
robot very reactive and leads to unnecessary oscillations as
discussed previously. Fig. 7 shows the trajectory of the robot
in the same scenario using TTC and TTCplus constraints
respectively. As can be seen from the trajectory on the left,
plan using TTC constraint is making the robot back off
further when it is already at sufficient distance from the
human. This exaggerated reaction results in long execution
times apart from the oscillations. The trajectory planned
using TTCplus in HATEB-2 is shown on the right and it can

5Source code for the HATEB-2 is available at https://github.
com/sphanit/hateb_local_planner/tree/hateb_new

Fig. 6. HATEB-2 solving the entanglement. The various stages of
entanglement resolution are as shown: a) Detection of Entanglement: The
entanglement is detected based on the human velocity and the current
distance between human and robot. b) Re-planning: HATEB-2 tries to re-
plans the trajectory before changing the mode c) Mode Transition: Mode
transition occurs as human is still and no longer moves. d) Execution of
new plan: Finally the robot executes the planned trajectory reaching the
expected goal. Red: Robot Trajectory, Blue: Human Trajectory

Fig. 7. The original TTC constraint-based trajectory shown on the left
results in unnecessary oscillations due to exaggerated constraint. However,
TTCplus constraint regulates this exaggeration and results in a smooth
trajectory as shown on the right. Note that the trajectory on the left is
making the robot move backwards even when there is no necessity. Red:
Robot Trajectory, Blue: Human Trajectory.

be clearly seen from the Fig. 7 that this trajectory results in
faster execution as it removes the problem of oscillations.
Clear differences in the followed trajectory can be seen in
the video 6.

3) Single band vs Double band: Single band refers to the
addition of elastic band only to robot along with the human-
aware constraints, where as double band includes an addition
of elastic band to human as well. We test the following
hypothesis to see if double band has any advantage over
the single band:

“The presence of an elastic band for human and co-
planning allows the robot to predict the human motion better
and adapt its trajectory accordingly.”

To test the hypothesis we controlled the human manually
and tried to block the robots trajectory and observed the
reactivity of the robot. We conducted two different exper-
iments (wide space and narrow passage (Fig. 9)) and in
both the experiments, the robot reacted slowly while using a
single band. However, while using a double band, the robot
proactively backs off as human moves towards it. Therefore,



we can say that our hypothesis is correct and inclusion of
an elastic band for human is advantageous in human-aware
navigation planning. These experiments can be seen in the
video6.

Fig. 8. Double band and Single band trajectories while passing through
a narrow passage. As the red trajectory corresponds to the robot, it can be
observed from the picture on the left that double band based planning is
making the robot back off and provide a way to the human. Whereas, Single
band based planning shown on the right provides a way by backing off a
little and then moving sideways.

4) Pass through narrow opening: This experiment can be
thought of as passing through a door where only a single
person can fit. Suppose two persons arrive at the narrow
opening at the same time, one has to back off and give
way for the other to pass through. We tried to simulate this
scenario 6 in the human-robot co-navigation, and we want the
robot to back off, and give way to the human. To increase
the complexity of this problem further, human crosses the
opening and stops close to this opening. Enough space is
present for the robot to pass through, but the trajectory might
need re-planning. This scenario is shown in Fig. 9. We tested
all the three planners (HATEB, HATEB-2 and Single Band)
in this scenario and snap shots of the trajectories at this
crossing are shown in Fig. 8 for both double band (HATEB,
HATEB-2) and single band planning. Both HATEB and
HATEB-2 reacted in the same way to back off and provide
way to human, which is shown in the left picture of Fig. 8.
Although they reacted similarly at this instant, HATEB gets
stuck in entanglement when the human stops moving after
crossing the opening. HATEB-2 breaks the entanglement and
re-plans to reach the given goal. Coming to the case of single
band, the human has to stop in front of the robot and wait
for the robot to back off and re-plan. Single band also solves
this case as it does not suffer from entanglement, but with
lesser reactive speeds. Also, note that the robot backs off in
a double band scenario, whereas it tries to move aside in
single band case.

B. Quantitative Analysis

To perform the Quantitative analysis, five different exper-
iments were conducted, and each experiment is repeated 10
times using HATEB and HATEB-2. The list of the performed
experiments is given in table I. The experiment Narrow
opening 1 is same scenario presented in Fig. 9, where as

6Link to the video: https://youtu.be/xEG4e-Y9z8g

Narrow opening 2 corresponds to similar case with opening
that can be seen in Fig. 7. L-crossing is the same experiment
that is shown in Fig. 7 and finally Narrow corridor and
Wide space represents the scenarios presented in Fig. 2. In
all these experiments the goal of the human is assumed to
be behind the robot and the human executes the trajectory
planned by the corresponding local planner. A set of five
metrics are defined to analyse the results: 1) Initial plan
length, ipl, 2) Total time for completion, ct, 3) Traversed
path length, tpl 4) Minimum distance from human, dmin and
5) Length deviation factor, α. The minimum distance from
human metric, dmin, refers to the closest distance between
human and the robot while executing a planned trajectory.
Length deviation factor, α, is defined as follows:

α =
|tpl − ipl|

ipl
(3)

where | | denotes the absolute value. After determining ipl
and tpl from the experiments, α is calculated using Eq. (3).

All these metrics are calculated for each experiment and
mean value over 10 experiments are presented in the table
I. The values highlighted in each row corresponds to the
best values in the given experiment. The evaluation of best
values for the metrics is done in the following manner.
For ipl, the value closest to the tpl is taken as the best
value, as it suggests that the initial plan is very close to
the traversed path. In case of tpl and ct, smaller value
represents the best value. The greater the distance of the
robot from human, the more the safety factor for the human
and hence the larger distance is the best value. Finally, the
lower value of α represents the lesser deviation from the
initial plan and hence showing better performance of the
planner. By observing the values of α from the table, it can
be inferred that HATEB-2 performs better than HATEB in all
the cases, except Narrow opening 1. In all these scenarios
it can also be seen that ipl has the best value, and hence
we can say that HATEB-2 predicts better plan than HATEB.
The cause of this result can be directly associated with the
improvements in human prediction and the new TTCplus
constraint, thereby demonstrating the importance of human
prediction in human-aware navigation. As the maximum
allowed velocity decreases below DistThreshold in HATEB-
2, an increase in ct is expected and it is true in 3 out of the 5
cases. In Narrow opening 2 and L-crossing cases, HATEB-2
has lesser ct than HATEB and this is because of the improved
TTC constraint, TTCplus. Since HATEB uses the original
TTC, the robot suffers from unnecessary oscillations and
results in a longer path length, tpl as well as ct. It can be
observed that HATEB-2 completely out performs HATEB in
these two scenarios. Although, HATEB has better tpl values
in the other three scenarios, the tpl values of HATEB-2 are
very close to those HATEB. Finally it can observed that
overall performance of HATEB-2 is better than HATEB.

V. EXPERIMENTS

In this section, we present the experiments we have
conducted using the proposed framework. We have ported the



Fig. 9. Narrow passage passing scenario. In this scenario, human and robot arrive at the common passage at the same time, and one should back off
to provide way to another. Otherwise, there exists no solution. This is one of the intricate situations addressed in this work, and the picture on the left
shows the simulation of this scenario in MORSE [22]. Right side picture shows the trajectories for the human (blue) and the robot (red), generated using
the proposed framework, HATEB-2. It can be seen from the picture that the robot’s trajectory (red) is making the robot to move backwards and hence
providing way to the human.

HATEB HATEB-2
Experiment ipl(m) tpl(m) ct(s) dmin(m) α ipl(m) tpl(m) ct(s) dmin(m) α

Narrow opening 1 5.2589 5.9372 13.635 0.7222 0.1290 5.3597 6.3423 17.6350 0.539 0.1903
Narrow opening 2 8.7117 11.0897 24.2917 0.1455 0.2730 9.0233 9.1606 21.9319 0.1505 0.0152

L-crossing 10.6641 15.2904 32.5567 0.1455 0.4338 13.4602 13.0613 29.8967 0.3430 0.0296
Narrow corridor 8.51 13.1747 27.92 0.7222 0.5481 12.8807 13.2372 30.8850 0.4845 0.0277

Wide space 8.5137 9.5454 19.8133 0.7222 0.1212 9.8575 9.6781 22.2517 0.8274 0.0182

TABLE I
MEAN VALUES OF THE METRICS OVER 10 REPETITIONS. ipl: INITIAL PATH LENGTH, tpl: TRAVERSED PATH LENGTH, ct: COMPLETION TIME OF THE

EXPERIMENT, dmin : MINIMUM DISTANCE BETWEEN HUMAN AND ROBOT DURING THE EXECUTION OF THE TRAJECTORY IN THE GIVEN EXPERIMENT.
α: LENGTH DEVIATION FACTOR.

framework to Pepper7 robot and used it for this study. Since
the main objective is to study the navigation framework, we
used the OptiTrack8 motion capturing system to track the
humans. The localization of the robot in the map is done
using the standard localization technique based on ArUco9

markers.
We have conducted two experiments to check the capabil-

ities and improvements in HATEB-2. In the first experiment,
shown in Fig. 10, the human moves along his path without
blocking the way for the robot. It can be seen from Fig. 10,
the robot continues to navigate on the same side and follow a
path similar to the initially planned path. We can also observe
the band tightening in Fig. 10 (d) as the human is close
to robot. In the second experiment, the human goes out of
his path and blocks the robot’s planned path. Two kinds of
scenarios are possible depending on how the human acts in
this setup. If the human goes very close to the robot, the robot
has to backup before resolving the entanglement problem. In
the other case where human is at a nominal distance from
the robot, only entanglement resolution happens. These two
cases can be seen in the video6. However, we have presented
only the first scenario in this section as it brings out more
capabilities of the system and also due to space constraints.
This is shown in Fig. 11. In Fig. 11 (f), human goes very

7https://www.ald.softbankrobotics.com/en/pepper
8http://www.optitrack.com/
9https://chev.me/arucogen/

close to the robot and hence the robot backs off (Fig. 11 (g))
before resolving the entanglement. Finally, the entanglement
is resolved (Fig. 11 (h)) and the robot proceeds to its goal.

Fig. 10. Human follows his path without disturbing the robot. (a) Initial
positions (b) Intermediate positions. (c) & (d) are the trajectories at (a) &
(b) respectively. In (d), the band tightening can be seen as the robot is close
to the human. Red: Robot Trajectory, Blue: Human Trajectory

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new framework combining re-
active planning and decision making to handle human-robot
co-navigation, called, HATEB-2. This framework includes
three different modes of planning, namely Single Band, Dual



Fig. 11. Entanglement resolution in a real-world scenario. Here the human goes out of his path and blocks the robot’s planned path (f). While trying
to block the path, he moves very close to the robot as it can be seen from (f). Therefore, the robot backs off (g) before resolving the entanglement and
finding an alternative path (h). (a)-(d) represent different positions of the robot during the experiment, and (e)-(h) show the planned trajectories at these
positions. Red: Robot Trajectory, Blue: Human Trajectory

Band and VelObs. Switching between these modes allows for
solving many complex human-robot cooperative navigation
problems. We have presented details of these different modes
of planning, and also talked about the modifications made
in HATEB before including it into HATEB-2. These mod-
ifications remove some of the drawbacks of HATEB apart
from the improvements. We have also presented the improve-
ments made in human prediction and estimation. Finally, we
performed several experiments in various intricate situations
and then provided a detailed analysis of the results. Results
show that HATEB-2 have an overall better performance. The
framework was ported to real robot platform and results
were presented. As a part of future work, we plan to extend
this framework by including more modalities. Further, we
also plan to include improved human predictions and better
models for humans.
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[20] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram,
“Efficient Trajectory Optimization using a Sparse Model,” in European
Conf. on Mobile Robots, 2013, pp. 138–143.

[21] G. Ferrer and A. Sanfeliu, “Bayesian human motion intentionality pre-
diction in urban environments,” Pattern Recognition Letters, vol. 44,
pp. 134–140, 2014.

[22] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: Morse,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 46–51.


