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Walking Human Trajectory Models and Their Application to
Humanoid Robot Locomotion

I. Maroger, O. Stasse and B. Watier

Abstract— In order to fluidly perform complex tasks in
collaboration with a human being, such as table handling,
a humanoid robot has to recognize and adapt to human
movements. To achieve such goals, a realistic model of the
human locomotion that is computable on a robot is needed.
In this paper, we focus on making a humanoid robot follow a
human-like locomotion path. We mainly present two models of
human walking which lead to compute an average trajectory
of the body center of mass from which a twist in the 2D plane
can be deduced. Then the velocities generated by both models
are used by a walking pattern generator to drive a real TALOS
robot [1]. To determine which of these models is the most
realistic for a humanoid robot, we measure human walking
paths with motion capture and compare them to the computed
trajectories.

Index Terms— humanoid robot, human locomotion, path
planning, benchmarking, clothoid, optimal control

I. INTRODUCTION

The context of this paper is human-humanoid interaction
while walking. A classical approach consists in a robot pas-
sively following a human during an interaction [2]. However,
a more efficient way is to use a model of the human walking
behaviour. This allows the prediction and adaptation of the
humanoid robot foot holds beforehand, in order to avoid the
need to wait for a physical interaction. In the context of the
French National Project Cobot, the targeted application is
for a human and a humanoid robot to collaboratively hold
a table. In this paper is proposed a study of the human
gait to have a reference model for prediction which can be
implemented in a humanoid robot Walking Pattern Generator
(WPG).

A. State of the art

Human-humanoid interaction. In [3], Bussy et al. proposed
a control scheme that allows a humanoid robot to perform a
complex transportation scenario jointly with a human partner.
The robot is guessing its human partner’s intentions to proac-
tively participate in the task. In a second phase, the robot
(teleoperated by a human) takes over the leadership of the
task to complete the scenario using motion primitives. The
motion primitives are Stop, Walk, Side, Turn and Walk/Turn.
They are pieced together using a finite state machine. The
desired velocity used to drive the robot is inferred from this
plan and by using a critically damped second order filter. To
our knowledge, this is the first experiment where a humanoid
robot is proactively generating a motion in collaboration with
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a human. With respect to this work, we are mostly focusing
on the velocity model of the human behaviour, and checking
its use on a human sized humanoid robot.

In [4] a controller is proposed to control two Nao hu-
manoid robots in order to move collaboratively a table from
one place to another. The controller stability is analyzed and
proved to be stable. The system is able to lift a table-like
object weighting more than half of the robot total weight.
Unfortunately as we have only a very limited control over
the human this work is not applicable in our context.

In [5] a human and a humanoid robot HRP-2 are walking
and holding collaboratively a table while maintaining a
ball on its top. This is carried out through visual servoing.
An extension of this work has been presented in [6]. The
HRP-4 robot is able to hold a bucket and a large box.
The walking pattern generator used in this work is able to
take as input a desired velocity. In our work, we propose a
model of the human walk to take advantage of this walking
pattern generator.

Humanoid robot walking pattern generator. Humanoid
robot walk generation is a challenging topic. One common
approach to address this problem is based on Zero Moment
Point (ZMP) control, also named Center of Pressure (CoP) in
biomechanics. Introduced in [7] and used in [8] and [9], the
ZMP preview controller imposes to plan the robot footprints
on the ground before the robot starts to walk which is not the
most suitable for online application. Then, in [10] and [11]
is introduced a WPG which only needs a velocity command
to generate the ZMP and Body Center of Mass (shortened
as CoM) trajectories and the footprints. For this kind of
WPG, only a velocity command on the CoM is needed. This
command can be easily deduced from a smoothed reference
CoM trajectory (i.e. without the perturbations induced by the
steps). We will call this average trajectory: CoM path.

Following such dynamics is not simple as it depends on the
mechanical capabilities of the robot, its stabilizer, its walking
pattern generator and the used foot step planners as shown in
[4]. We therefore choose to use the stabilizer and the walking
pattern generator provided by PAL Robotics on the humanoid
robot TALOS. Thanks to this reference velocity of the CoM it
is possible to try to follow the model of human CoM velocity.
This is different from [12], where the authors compute the
ZMP trajectory and the foot positions from a generated CoM
path using clothoid but do not follow the velocity model.

Multiples solutions exist to generate such a path, it can be
as simple as following a straight line or more complex using
B-spline curves [13], parametric curves like clothoids [12] or



Fig. 1. TALOS robot produced by PAL Robotics walking toward a table

Optimal Control (OC) models like the unicycle model [14]
or the model described in [15].

B. Contribution

In this article, the aim is to generate human-like CoM
paths. To achieve this we generate trajectories using clothoids
computation and an OC framework described in II. These
trajectories are compared with humans CoM trajectories
analyzed during biomechanics motion capture experiments
performed on 10 subjects. Both models are recognized as
good approximations of human CoM path during locomo-
tion. The hypothesis is that the OC could provide better CoM
paths which can be implemented on a TALOS humanoid
robot (Fig. 1). For these experiments, a velocity command,
computed from the CoM path, is given to the PAL Robotics
WPG.

II. HUMAN-LIKE TRAJECTORY GENERATION

In this part are presented human locomotion models that
define paths from a starting position with horizontal position
(x0, y0) and orientation θ0 to a goal position (xf , yf ) and
orientation θf in a global predefined coordinate system. θ(t)
is the instantaneous pelvis orientation during the locomotion
phase. The problem is represented in Fig. 2. Two models
have been implemented as part of this study.

A. Nonholonomic locomotion model

It has been shown that humans can frequently be approxi-
mated by nonholonomic system as they usually walk forward
with the direction of their body tangent to their trajectory
[16], [17]. Biologically, this can be explained by the anatomy
of feet and legs. The nonholonomic locomotion problem, also
known as the unicycle problem, is a well-known research
topic in mobile wheeled robots [18]. However, when the goal
is very close or if there is an obstacle on the way, humans
decide to take sideward or oblique steps [15]. Moreover, the

Fig. 2. Coordinate systems in the trajectory problem to solve
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Fig. 3. Trajectories with a cusp generated with a python algorithm using
OC based on Crocoddyl

unicycle model can generate trajectories with cusps, as Fig.
3 shows, far from a human-like behaviour.

B. Clothoids

Clothoid curves (also known as Cornu spirals) are fre-
quently used for path-smoothing in robotics [14], [19], [20]
and to mimic human CoM path during locomotion. Indeed,
clothoid curves are interesting to generate trajectories be-
cause it has been demonstrated that clothoids arcs give good
approximations of human trajectories during gait [21]. A
clothoid satisfies the following system of ordinary differential
equations: 

ẋ(s) = cos θ(s)
ẏ(s) = sin θ(s)

θ̇(s) = κ0 + κ1s
(1)

with the following initial conditions : x(0) = x0, y(0) = y0
and θ(0) = θ0. κ0 is the initial curvature, κ1 the sharpness
of the curve and s the curvilinear abscissa. From this system,
the parametric expressions of a clothoid coordinates can be
define as:{

x(s) = x0 +
∫ s
0

cos (θ0 + κ0ξ + 1
2κ1ξ

2)dξ
y(s) = y0 +

∫ s
0

sin (θ0 + κ0ξ + 1
2κ1ξ

2)dξ
(2)

Thus, one of the advantages of the clothoid curves is
their linearly changing curvature which allows an easy
control of the trajectory curvature. However, due to their
transcendental nature, they cannot be solved analytically and
the computational time needed to compute them remains
important. In the robotics experiments using this model, we
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suppose that the human behaviour follows Eq.1.

As the starting position and orientation of the robot and
its goal position and orientation are known, a fitting method,
described in [22], has been used to generate a clothoid arc
between these two poses. The generated clothoid gives a
CoM path from which the velocity command along the
trajectory can be computed and given to the robot. The
computed CoM velocity profile can then be transferred to
the PAL Robotics WPG. Four trajectory examples are shown
in Fig.4 *. On this figure, the arrows represent the current
orientation of the system during the gait.

C. Human locomotion path model

Reference [15] gives a realistic model of the human
locomotion path with an OC model of the following form :

min
X(.),U(.),T

∫ T

0

φ(X(t), U(t))dt (3)

under the following constraints : Ẋ = f(t,X(t), U(t)) Dynamical constraint
X(0) = X0 Initial condition
X(T ) = Xf Final condition

(4)

where X(t) and U(t) are the state and control variables
and φ(X(t), U(t)) =

∑n−1
i=0 αiφi(X(t), U(t)) is an a priori

unknown objective function with n the number of base
functions needed to describe the objective function.

The authors consider a holonomic locomotor system which

*All the source code can be found on https://github.com/
imaroger/walking_human_trajectory_models

follows the following dynamics equation:

ẋ = cos θ.vforw − sin θ.vorth
ẏ = sin θ.vforw + cos θ.vorth
θ̇ = ω
v̇forw = u1
v̇orth = u2
ω̇ = u3

(5)

with (x, y, θ) the position and orientation of the locomotor
system in the global frame and (vforw, vorth, ω) the forward,
orthogonal and rotational velocities in the local frame as
represented in Fig. 2. So in the OC problem expressed in
eq.(3) and eq.(4), the state is X = (x, y, θ, vforw, vorth, ω)T

and the control is U = (u1, u2, u3)T . In the robotics
experiments using this model, we assume that the human
behaviour follows Eq.5.

Using inverse OC, the authors find out that the objective
function that best fitted their measurements of human loco-
motion trajectories is :

φ(X(t), U(t)) = α0 + α1u
2
1(t) + α2u

2
2(t) + α3u

2
3(t)

+ α4ψ(X(t), Xf )2 (6)

with ψ(X(t), Xf ) = arctan
yf−y(t)
xf−x(t) − θ(t) and

(α0, α1, α2, α3, α4) = (1, 1.2, 1.7, 0.7, 5.2)

In this paper, we adapt this OC problem in order to solve
it with a Differential Dynamic Programming (DDP) solver
[23] from the open-source Crocoddyl library [24]. For the
interested reader more details on the DDP algorithm are
given in [23]. The specifications of the implementation used
here are given in [24]. This adaptation was a necessity as it
seems that the MUSCOD software [25], which was used in
[15], is discontinued.

In Crocoddyl, the dynamic of the system is given to the
action model and the initial state is one of the parameter
given to the shooting problem. However the DDP solver does
not allow a strict final equality constraint. Thus, to satisfy
the final constraint in Eq.(4), we need to add terms in the
objective function to take into account the final state. This is
called weak optimality and the final position may sometimes
not exactly be reached at the end of the optimisation process.
Eq. (6) becomes :

φ(X(t), U(t)) = α0 + α1u
2
1(t) + α2u

2
2(t) + α3u

2
3(t)

+ α4ψ(X(t), Xf )2 + α5((xf − x(t))2 + (yf − y(t))2)

+ α6(θf − θ(t))2 (7)

where the weights α5 = 5 and α6 = 8, have been
heuristically found. Let us point out that we use the DDP
solver already developed in the Crocoddyl library to solve
our OC problem. To this end, we had to create a new action
model in order to respect the dynamics of our system and
the cost function we have chosen.

https://github.com/imaroger/walking_human_trajectory_models
https://github.com/imaroger/walking_human_trajectory_models
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In this study, as the duration time T of the trajectory
cannot be a free variable in the Crocoddyl solver, a similar
problem is solved. Eq.(3) becomes :

min
X(.),U(.)

∫ T

0

φ(X(t), U(t))dt (8)

Physically, T represents the duration during which the
locomotor system will perform the trajectory. As we
want a realistic duration, we choose T close to ∆t =√

(xf−x0)2)+(yf−y0)2
v with v the nominal speed of the sys-

tem. As the path is necessarily longer that the straight line,
the problem is solved for T from ∆t to ∆t + 200 by
increment of 5s. The T which solves the problem and min-
imizes the objective function is kept. Thus, smoothed CoM
trajectories can be computed along time and the velocity
profiles can be deduced. Four trajectory examples obtained
with this model are shown in Fig.5. The arrows represent the
current orientation of the system during the gait.

III. COMPARISON WITH HUMAN TRAJECTORIES

Natural human behaviour during gait were measured
and the obtained CoM trajectories were compared to the
simulated CoM paths.

A. Method

Participants. Ten healthy subjects (2 females and 8
males) volunteered to take part in this experiment. Their
ages ranged from 18 to 26 years old (average 23.3), their
heights from 1.68 m to 1.84 m (average 1.77) and their
masses from 58 kg to 105 kg (average 73.9). Each participant
was informed of the experimental procedure and signed an
informed consent form prior to the study. The study was
conducted in accordance with the declaration of Helsinki
and was approved by the University of Toulouse ethical
committee. In order to preserve their natural behaviour, the
participants were not familiar with this study and unaware

Fig. 6. Forty different starts and the goal position

of the expected results.

Experimental protocol. The subjects were asked to walk
toward a table from 10 different starting positions with 4
different orientations at 90 degrees interval toward a goal
position in front of the table (Fig. 6). For each starting
position and each orientation, each volunteer performed at
least three trials. Thus, each participant performed a total of
120 trials representative of common cases from 0.6 to 5.5m
away from the table.

Kinematics. Kinematics data were collected from
passive markers recorded by fifteen infrared cameras
(VICON, Oxford, United-Kingdom) sampled at 200Hz. The
experimental setup is shown in Fig. 7. The CoM position
during gait was approximated by the middle of the two
postero-superior iliac spine [26]. All kinematics data were
recorded in three dimensions.

Data reduction and analysis. Kinematics data were filtered
using a 4th order, zero phase-shift, low-pass butterworth
with a 10Hz cutoff frequency. The CoM trajectory during
each trial was then extracted in the horizontal plane and
normalized from 1 to 100%. For each starting position, a
mean trajectory of the CoM was computed including all
the subjects and at least one trial per condition. Then the
simulated CoM trajectories were compared with the natural
CoM trajectories of the subjects.
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Fig. 7. Experimental setup to capture human trajectories

B. Comparison

Distance between the natural trajectories of humans and
the simulated trajectories using clothoids and OC were
then compared. For such analysis, a linear interpolation has
been done to obtain the 2D coordinates of the CoM each
percent along the path. Thus N = 100 discrete positions are
compared between the human CoM path and the simulated
trajectories. The following average distance is defined :

d =
1

N

N∑
i=1

√
(xreal(i)− xsim(i))2 + (yreal(i)− ysim(i))2

(9)
with (xreal, yreal) the measurements and (xsim, ysim) the
generated data. In this study, we hypothesize that the best
model corresponds to the lowest distance d between the
generated CoM paths and the mean subjects trajectories.

The mean trajectory for each starting position is computed
as follows : (xj , yj) = 1

10 (
∑10
i=1 x

(i)
j ,
∑10
i=1 y

(i)
j ) where i

represents the ith subject and j the position along the CoM
path from 1 to 100%. Thus, for each mean experimental
starting position (x0, y0), each orientation and each goal
position (x100, y100) the CoM path is computed using the
clothoids and the OC models. The obtained trajectories for
3 different starting positions are represented on Fig.8.

The distance d between the experimental and the generated
curves are then computed. Fig.9 compares 4 trajectories
between the 2 models and the experimental path. For each
of these examples, the distance d is lower with the OC when
compared to the clothoids.

C. Results

The computed distance d between the 2 models and the
mean experimental trajectories are represented in Fig.10.
These results show that the OC model is better than the
clothoids. Indeed, the mean distance d for all starting
positions and all orientations is 0.186 m with the OC
model and 0.606 m with the clothoids. This result is more
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significant for θ0 = −π2 and θ0 = π where dOC = 0.186 m
and dClothoids = 0.939 m.

Moreover, we can note that the farther the starting position
is from the goal the greater the distance between the models
and the measurements will be, especially for the model
based on clothoids. In fact, the mean distances for all the
starting position farther than 3 m are dOC = 0.194 m and
dClothoids = 0.796 m.

IV. APPLICATION ON TALOS ROBOT

The aim of this work not only consists in determining the
most human-like locomotion path but also in implementing
this model on a TALOS robot which implies to respect some
velocity and computation time limits.

A. Experiment

The main goal of this experiment is to make a TALOS
robot walk in a human-like way toward a table. To achieve
that, a motion capture system (20 infrared Qualisys Miqus
M3 cameras sampling at 650 Hz with a 0.3 mm precision
on the imaged area) is used to record in real time the
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positions of the robot and the table. This allows to generate
different trajectories using OC and clothoids and play them
on a TALOS robot.

Both models generate a CoM path between the initial pose
(where the robot initially is) and the final pose (at 90 cm from
the closest edge of the table and oriented to face it). Then,
a velocity command can be computed as follows: vx(t) = (xsim(t+ 1)− xreal(t))× f

vy(t) = (ysim(t+ 1)− yreal(t))× f
vθ(t) = (θsim(t+ 1)− θreal(t))× f

(10)

with (xsim(t + 1), ysim(t + 1), θsim(t + 1)) the next pose
in the computed trajectory, (xreal(t), yreal(t), θreal(t)) the
current pose of the robot known thanks to the motion
capture system and f the sending rate. To be sent to the
robot this velocity command must be expressed in the local
frame of the robot. Then, this command can be given to
the PAL Robotics WPG. In order to be performed safely by

the robot it has to respect limits. No more than 0.1 m.s−1

for the linear velocity along the ~x and ~y axis in the local
coordinate system and no more than 7◦.s−1 for the angular
velocity around the ~z axis.

To fulfill these requirements, a slowing parameter α has
to be added to the clothoid description. Thus, Eq.1 becomes
: 

ẋα(s) = α cos θ(s)
ẏα(s) = α sin θ(s)

θ̇(s) = κ0 + κ1s
(11)

with α ≤ 1, to linearly slow the system. To respect the linear
velocity limit we take α = 0.1. With a C++ algorithm that
solves this system using the method presented in II-B, the
computation duration is around 4.87 · 10−4s with a Intel®

Core™ i5-8400H CPU 2.50GHz processor. This allows to
swiftly recompute the trajectory if the table is moved or if
the robot gets away from its nominal trajectory. However, let
us point out that there is a risk of collision against the table
if the table is moved toward the robot because the velocity
vector is always tangent to the trajectory when dealing with
clothoid curve so the robot cannot walk backward.

The same idea is used to slow the trajectory generated
with the OC, Eq.5 becomes :

ẋ = α× (cos θ.vforw − sin θ.vorth)
ẏ = α× (sin θ.vforw + cos θ.vorth)

θ̇ = ω
v̇forw = u1
v̇orth = u2
ω̇ = u3

(12)

with α ≤ 1, the smaller α is the greater T will be. With a
C++ algorithm using Crocoddyl library as presented in II-C,
the computation duration depends on T and its optimisation
can be expensive. So to be more precise with α = 0.1, it is
around 37.1s on the same processor. This is far too much to
allow an online implementation in the robot. So to embed
this trajectory model on the robot, the trajectory has to be
previously generated and then played on the robot with
no possibility to take into account the possible changes of
environment, a change in the table location for example.



Fig. 11. Visualisation of the trajectory of the CoM of the robot (in green)
during one experiment aiming to follow a clothoid trajectory (in red), in the
upper right corner is the table (in white)

B. Results

Among 4 tests, the clothoid experiment produces the
following results: the robot ends at about 0.065 m in x and
0.205 m in y from the goal position with an orientation
of -0.028 rad from the goal orientation. Fig.11 shows a
visualisation of one of this experiment on RViz. During
one of the experiment, we moved the table and the robot
successfully recomputed and followed a new clothoid in real
time. One experiment with the robot following a clothoid
curve is shown in the video which accompanies this paper.

Another conclusion which can be drawn from this
experiment is that trying to make the robot follow a clothoid
trajectory with the CoM velocity command imposed by
the dynamic of the model does not result in the expected
behaviour. Indeed, as we see in Fig.11, when the curvature
increases the robot does not succeed in following the desired
trajectory. Moreover, the rate at which the commands are
sent seems crucial for the robot to perform the expected
behaviour.

V. DISCUSSION

In this paper, we study two a-priori human-like locomotion
models. These models are compared to human trajectories
in order to determine which one is the closest to human
behaviour. Without contest, the OC model is closer than the
model based on clothoid generation.

Human orientation and velocity analysis. In this work, two
questions remains regarding the gait model. Which model
gives the most human-like orientations of the pelvis during
the gait? Are the velocities given by the models similar to
human behaviour? First, as we see in Fig.4 and Fig.5, the
clothoids generate a CoM velocity tangent to the orientation
of the pelvis whereas in the OC model the CoM velocity
can take various orientation not only in the antero-posterior

direction but also along the medio-lateral axis. With the
measures of the human trajectories, we could compute the
pelvis orientation of the subjects during the gait. For ongoing
works, we plan to analyse and compare this data to the
generated orientation from the 2 models. This result could
reinforce the validity of the OC model. Thus, it will be
interesting to determine if the human orientation is tangent
to its trajectory or not.

Furthermore, analysing the human velocities and
comparing them to the hypothesized human-like velocities
given by the models will be a necessity for further studies
on the human behaviour during the gait.

Control over footsteps. We note that with no further
control over the WPG parameters (like the stepping
frequency, the duration of simple and double support), the
robot cannot exactly follow a given dynamic. Therefore,
if we can compute the footsteps and their timing along
the trajectory, we could improve our results. This could be
achieved using another WPG than the one currently provided
by PAL Robotics. In future works, a more adaptable WPG
should be developed. Moreover, analysis of the time, the
amount of steps or the energy needed by the robot during
locomotion will be considered in order to better assess its
performance.

OC cost function. In this paper, for the OC cost function
we use the same weights as those proposed in [15]. Our
measurements of human trajectories can be used with an
inverse optimal control scheme to determine the optimal
weights of the cost function described in Eq.7. These weights
might be different from those of the cost function introduced
in [15] as it was not possible to use the same solver. Instead
we used a DDP solver. Moreover, the additional α5 and α6

weights have been heuristically determined. They could be
optimized to provide more human-like results. Furthermore,
to better match the problem stated in Eq.3 and Eq.4, the cost
function defined in Eq.7 could be divided into a running
cost function and a terminal cost function (Mayer additional
term) which represents the final constraint. Future works
will focus on this point.

Computational time of the OC model. A drawback of
the OC approach is its computational cost compared to
the clothoid. However, a faster computation time may be
expected considering the formulation of the problem. First,
the optimisation of T which is partially responsible for the
great computational cost of the model could be improved
for further works. Then, we can try different approaches to
solve the OC problem for example other software like the
ACADO library [27]. Moreover, the DDP solver is providing
gains to regulate the difference between the target trajectory
and the current one. Investigating how this regulation could
be used to correct the current robot state with respect to the
target trajectory is one direction of improvement.



VI. CONCLUSION

In this paper, we compare two models of trajectory gen-
eration already used to describe human locomotion with the
aim of finding the model which best fits human trajectories
in order to help a humanoid robot follow and even predict
human behaviour to improve their collaboration. The com-
parison of these models with measurements on 10 human
subjects demonstrates that the trajectories generated with
the model based on OC is much more human-like than
the clothoid curves. Indeed, the distance between human
trajectories and the generated paths is smaller for the OC
than for the clothoid model for almost all of our 40 measured
trajectories. However, the OC is computationally more time
consuming which makes it hard to embed in a humanoid
robot for real time application. The implementation of the
models on a TALOS robot with the PAL Robotics stabilizer
and WPG shows that the dynamic given by these models
is hard to follow for the robot with only a control over the
CoM velocity. Further works with an improved and faster
OC model and an adaptable WPG are needed to achieve the
targeted goal of using a model of the human behaviour within
the WPG of a TALOS robot in order to ease its collaboration
with humans.
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