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A Comparison Study of Nonlinear State Observer Design: Application
to an Intensified Heat-Exchanger/Reactor*

Xue Han 1 Zetao Li 2 Michel Cabassud 3 Boutaib Dahhou 4

Abstract— In this paper, five c lassical n onlinear state 
observers: extended Luenberger observer (ELO), extended 
Kalman filter ( EKF), h igh-gain o bserver ( HGO), s liding mode 
observer (SMO) and adaptive observer (AO), are applied to 
an intensified c hemical h eat e xchanger/reactor ( HEX reactor). 
In order to choose a suitable observer to develop a new 
fault diagnosis algorithm for this high nonlinear system, the 
behaviors of these observers are compared. The maximum 
overshoot and the settling time, which are the key features of 
the dynamic of the output estimation error system, are used as 
the criteria to compare the performances of the observers. Both 
cases with and without measurement noise are considered. It is 
concluded that the AO presents the fastest convergence speed 
and the minimum oscillation for the application to the HEX 
reactor. And the information provided by the AO will be further 
used for its fault diagnosis.

I. INTRODUCTION

With the increment of the complexity of industrial sys-
tems, it is difficult to supervise a ll the internal s tates during
production. However, these process states are critical features
to indicate whether the system functions normally or not.
Especially for the reactors which are extensively operated
in chemical, food, and pharmaceutical industries, unexpected
deviation in temperature or concentration of the reactant will
result in serious consequence. Therefore, it proposes a high
demand for detailed information on system states. The state
observers, which use the structure of the real system and a
minimum set of measurements, can provide the estimation
of the actual states of the system in real time.

After the original work by Luenberger [1], a variety of
methods for state estimation of nonlinear systems have been
proposed in the literature [2]–[4]. In most cases, an adequate
mathematical model of the plant is necessary. Extended
Luenberger observer (ELO) [5] and extended Kalman filter
(EKF) [6] are both derived from linear cases based on first-
order linearization. Unlike the ELO, the EKF can perform
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a state estimation which is robust concerning measure-
ment noise. However, the dynamic uncertainties, as well
as the measurement uncertainties, pose great challenges in
the process of state estimation. To overcome them, high-
performance robust observers have been widely considered.
Based on the work of [7], a high-gain observer (HGO) is
developed not only for single-output system but also multi-
output system [8]. The sliding-mode observer (SMO) [9],
which is based on the sliding-mode principle, can precisely
estimate the internal states by generating a sliding motion
on the sliding surface [10], [11]. When unknown parameters
exist in real system, an adaptive observer (AO) is proposed,
where both system states and unknown parameters can be
estimated at the same time. Early results on adaptive observer
were presented in [12], and further developed by [13], [14].
Since all the observers have the information of the system
states, they are helpful for the following operations, like
controller design [11], [15], fault diagnosis [14], [17] and
fault tolerant control [16], [18].

Unlike the traditional batch reactor, the intensified HEX
reactor is a sort of plug-flow chemical reactor which com-
bines heat exchanger and chemical reactor in one minimized
module [19]. Due to its complexity and high nonlinearity, it
is a challenging task to construct an observer to supervise
all the internal states during the process of production.
And that also makes it difficult to diagnose and identify
the potential faults. Our main goal is choosing a suitable
nonlinear observer to estimate all the system states and
provide sufficient information to the further fault diagnosis,
identification (FDI) and fault tolerant control (FTC).

In this paper, five classical nonlinear observers are applied
to the HEX reactor system in an open loop. The perfor-
mances of the observers are compared and presented in
the cases with and without measurement noise. Since the
characteristics of different observers vary a lot due to the
change of the observer gain. It is difficult to compare the
behaviors of different observers. In this work, the maximum
overshoot and the settling time of the estimation error system,
which separately indicates the stability and the convergence
speed, are considered as the criteria for this comparison.
The observer gain is chosen to satisfy one request and the
other criterion is compared. The observer which estimates the
states with the minimum overshoot and the shortest settling
time is the suitable choice for further FDI and FTC use.

The paper is organized as follows. Section II gives an in-
troduction to the classical observer design techniques. Then,
an intensified HEX reactor, which acts as the target system, is
presented. In section IV, the considered observers are applied



to this HEX reactor, and the comparison results between
different observers are performed under two cases: with
and without measurement noise. Finally, after comparing
the behaviors of the state observers, concluding remarks are
proposed in the last section.

II. NONLINEAR STATE ESTIMATION
TECHNIQUES

Considering the nonlinear system in a state space form:

ẋ = f (x,u)

y = h(x)
(1)

where x represents the state vector, u is the input vector, and
y is the measured output vector.

The general structure of a state observer, which consists
of a copy of the original model and a correction term, is
written as follows:

˙̂x = f (x̂,u)+K(y− ŷ)

ŷ = h(x̂)
(2)

where x̂ and ŷ are the estimations of the state vector x and
output vector y. The gain of the observer, denoted by K,
determines the convergence properties of the state estimator.

Define the estimation error:

e = x− x̂ (3)

Then the error dynamic is derived:

ė = f (x,u)− f (x̂,u)−K(h(x)−h(x̂)) (4)

Thus, the observer design problem is reformulated as
choosing a suitable gain K such that the estimation error
dynamic (4) is asymptotically stable. Five classical nonlinear
observers used in this paper are presented in the following.

A. Extended Luenberger Observer

As is shown in the name, ‘extended’ indicates that it is an
extension of the original linear version to nonlinear systems.
By linearizing the nonlinear system at an operation point, the
ELO is constructed by the same method as used to design a
Luenberger observer.

Considering the nonlinear system (1), the extended Luen-
berger observer is constructed in the same form as (2). After
the linearization of (4), we obtain:

ė = (F−KH)e (5)

where F and H are calculated by:

F =

[
∂ f (x,u)

∂x

]
x=x̂

, H =

[
∂h(x)

∂x

]
x=x̂

(6)

The observer gain K is chosen by satisfying the eigen-
values of (F −KH) have strictly negative real parts. The
estimation accuracy of the ELO relays on how well the
linearized model represents the nonlinear dynamics. For this
reason, the ELO is more easily applied to less complex
nonlinear systems.

B. Extended Kalman Filter

The extended Kalman filter is an extension of Kalman
filter, which is considered as a stochastic problem as well as
a deterministic optimization problem [3].

Considering the time-varying nonlinear system with pro-
cess noise and measurement noise:

ẋ = f (x,u)+η , η ∼N (0,Q)

y = h(x)+ ς , ς ∼N (0,R)
(7)

where η and ς represent the process noise and the mea-
surement noise, which are random variables with Gaussian
distribution. Their corresponding variances are Q and R,
respectively.

Then, the EKF is constructed in the same form of (2). The
observer gain K equals to:

K = SHT R−1 (8)

where S is the solution of:

Ṡ = FS+SFT +Q−SHT R−1HS (9)

F and H are both calculated by the linearization (6).
As mentioned in the ELO design, the EKF is also limited

to a small space for the reason that the model linearization
has a strict limitation of the operation point. Besides, its
robust can not be guaranteed if there are modeling errors.

C. High Gain Observer

Considering an input affine system:

ẋ = f (x)+g(x)u

y = h(x)
(10)

Using diffeomorphism φ = [h L f h . . . Ln−1
f h]T ,

where L f h represents the Lie derivative of h along f , this
input affine system (10) can be transformed to a canonical
form (11):

ẋ =


ẋ1
ẋ2
...

ẋn−1
ẋn

=


x2
x3
...

xn
ϕ(x)

+


g1(x1)
g2(x1,x2)

...
gn−1(x1, . . . ,xn−1)

gn(x1, . . . ,xn)

u

= Ax+Gu

y = x1 =Cx
(11)

where A =

[
0 In−1
0 0

]
, C =

[
1 0 . . . 0

]
. ϕ(x) is a

nonlinear function. I represents the identity matrix, n is the
dimension of the real system.

Assume that each component gi(i = 1,2, . . . ,n) and ϕ(x)
are global Lipschitz, Gauthier [7] has proposed a high-gain
observer:

˙̂x = f (x̂)+g(x̂)u−S−1
∞ CT (Cx̂− y) (12)



where S∞ is the unique solution of the Lyapunov algebraic
equation:

θS∞ +AT S∞ +S∞A−CTC = 0 (13)

θ is chosen large enough to control the speed of convergence,
and that is the reason why it is called the high-gain observer.

Besides, the high-gain observer provides an exponential
convergence of the estimation error. However, the transfor-
mation is challenging to calculate sometimes, and a very high
gain may cause the peaking phenomenon.

D. Sliding Mode Observer

Based on the theory of sliding mode, a sliding mode
observer [9] has been proposed. As an inherent property,
SMO is insensitive to parameter uncertainties or external
disturbance signals, which makes it a proper choice for state
estimation.

For the nonlinear system (11), a sliding mode observer is
designed as follows:

˙̂x = Ax̂+Gu−Kl(Cx̂− y)−Knsign(Cx̂− y) (14)

where the Kl is chosen such that (A−KlC) is stable, and
Kn is a key factor to determine the bandwidth on the
patch. Increasing the bandwidth may potentially reduce the
sensitivity to measurement noise.

From its initial value, the convergence of the estimation
error e is divided into two steps. The first step is the sliding
surface design. When the system is barred to the designed
sliding surface, the expected performance is achieved. In the
next step, a variable structure control law is designed, then
the system trajectory is driven to the sliding surface and
maintains a sliding mode after transition time. As long as the
sliding surface is reached, the estimation becomes insensitive
to the disturbances. And then, the estimation error is forced
by the sliding mode observer to converge to zero, which
means that the estimated states converge to the actual states.

E. Adaptive Observer

The adaptive observer is also a well-known robust observer
which can estimate the system states under the parameter
uncertainties and modeling errors. Early works on adaptive
observers for linear systems can be tracked back to the 70s.
And the design for the nonlinear cases started from the early
90s. Then, it is widely used in actuator, sensor and process
fault diagnosis.

As proposed in [14], when the fault occurs in the lth
actuator of the system (10), we have u f

l = ul + fal = θal ,
where fal is a constant and u f

l is the actual output of the
lth actuator when it is faulty, while ul is the expected output
when it is healthy. The corresponding faulty model is:

ẋ = f (x)+∑
j 6=l

g j(x)u j +gl(x)θal , j = 1,2, . . . ,m

y = h(x)
(15)

where g(x) = [g1(x),g2(x), . . . ,gm(x)], m is the number of the
actuator..

Then, the adaptive observer for the faulty system (15) is:

˙̂x = f (x)+∑
j 6=l

g j(x)u j +gl(x)θ̂al +Ky(x̂− x)

˙̂
θal =−2γ(x̂− x)T Kθ gl(x)

(16)

where Ky is a Hurwitz matrix that it can be choose freely
with a goal to increase as much as possible the dynamic
of the observer. γ is a design constant and Kθ is a positive
definite matrix that satifies:

KT
y Kθ +Kθ Ky =−Q (17)

where Q is a positive definite matrix that can be chosen
freely.

After the transition time, the AO will give the accurate
estimation of the real system states and the faulty actuator
output u f

l if the gain is chosen suitably. But a suitable gain
matrix that can increase the dynamic of the observer is
difficult to choose sometimes.

III. CASE STUDY: AN INTENSIFIED HEX
REACTOR

The intensified HEX reactor considered in this paper is a
module that combines heat exchanger and chemical reactor.
Its effictiveness has been investigated in [19].

A. Physical Structure of the intensified HEX Reactor

Fig. 1: Physical structure of the HEX reactor [19]: (a)Process
channel; (b)utility channel; (c)the physical HEX/Reactor

The physical structure of the HEX reactor is shown in
Fig.1. It is composed of three process plates sandwiched
between four utility plates, which are all engraved with 2
mm square cross-section channels. The plate wall is the
steel between channels, and it acts as the heat exchange
media. The process flow, which consists of varible reactants,
is injected into the process channel, where the chemical
reaction is taken place. A utility fluid is injected into the
utility plat with a flow rate Fu to heat the process flow or
take away the heat generated by the reaction. A multi cell-
based model is proposed in [20]. And the effectiveness of
this model has been verified by the comparison between
simulation results and experimental data.

B. Mathematical Modelling

For simplicity, only the heat exchange part is considered in
this paper. Water with different temperatures (Tp,in, Tu,in) is
injected into process channel and utility channel respectively.
Define the state vector as x = [Tp Tu Tw]

T , the control
input u = Fu, the measurable variable y = Tp. According to



the energy balance equation, the mathematical model of the
HEX reactor is:

Ṫp =
Fp

Vp
(Tp,in−Tp)+

hpAp

ρpVpCp,p
(Tw−Tp)

Ṫu =
Fu

Vu
(Tu,in−Tu)+

huAu

ρuVuCp,u
(Tw−Tu)

Ṫw =
hpAp

ρwVwCp,w
(Tp−Tw)+

huAu

ρwVwCp,w
(Tu−Tw)

(18)

where the subscript p, u and w represent the process fluid,
utility fluid and plate wall, the subscript in represents the
inlet fluid. h(W ·m2 ·K−1) is the heat transfer coefficient.
ρ(kg ·m−3), V (m3), A(m2) and Cp(J ·kg−1 ·K−1) are den-
sity, volume, heat exchange area and specific heat of material
respectively. F(m3 · s−1) is the volume flow rate. T (K) is the
temperature.

The model above is just for one cell, which may cause
slightly differences in the dynamic behavior of the real
reactor. However, the observer application and the final state
estimation performance will not be affected.

IV. SIMULATION RESULTS AND DISCUSSION

To illustrate the effectiveness of the state estimation, the
observers presented are applied to the HEX reactor presented
in section III. Table I gives the nominal values of the
operating conditions used in the simulation. And the related
experimental data can be found in [19].

TABLE I: Physical Data of The Pilot

Constant Value Units
Vp 2.68×10−5 m3

ρp,ρu 103 kg ·m−3

Cp,p,Cp,u 4.186×103 J ·kg−1 ·K−1

Ap 2.68×10−2 m2

Vu 1.141×10−4 m3

Au 4.564×10−1 m2

Vw 1.355×10−3 m3

ρw 8×103 kg ·m−3

Cp,w 5×102 J ·kg−1 ·K−1

In this study, different initial values are given to the real
system and the observer to investigate the behavior of state
estimation. And all the observers are provided with the
same initial values in order to compare their performance of
convergence. The initial temperatures (◦C) of the HEX reac-
tor are x(0) = [Tp(0) Tu(0) Tw(0)]

T = [17.6 39.7 25]T ,
the initial temperatures (◦C) provided to observers are
x̂(0) =

[
T̂p(0) T̂u(0) T̂w(0)

]T
= [20 42 25]T . The tem-

peratures of the inlet fluids (Tp,in, Tu,in) for the reactor and
observers are the same as their corresponding initial values.
The mass flow rate (kg · s−1) for process plates and utility
plates are 14 kg · s−1 and 113 kg · s−1. Since the temperature
of the process fluid (Tp) can be measured directly while the
temperature of utility fluid (Tu) is immeasurable (it can be
obtained in simulation), the output estimation error eTu =
T̂u− Tu is the one that we considered for the comparison.
Generally, the estimation error will converge to zero after a

period of time. However, for a unique observer, different gain
values will result in the various dynamics of the estimation
error system. So, it is not easy to compare the performances
of five classical observers. In this paper, the maximum
overshot |δm| and the settling time ts are considered as the
main features to represent the dynamic of the estimation error
system. The maximum overshoot is defined as the maximum
peak value of the output error curve measured from zero.
And the settling time is defined as the time required for the
output error curve to reach and stay within a range around
zero. To start, one of the main features of the estimation
error system is fixed at a set point, and then, it can be
reached by choosing suitable gains for each observer. Finally,
the other can be compared to investigate the performance
of the observers. The smaller the value |δm| is, the more
gentle oscillation the system has. The shorter settling time it
takes, the faster convergence speed it has. In this paper, the
maximum overshoot is fixed as δm =−20%×eTu(0), where
eTu(0) = T̂u(0)−Tu(0), and the range is set as ±2%×eTu(0).
Moreover, the performances of the state estimation with and
without measurement noise are both taken into consideration.

A. Case 1:Noise free

(a) Output estimation error of ELO, HGO, SMO, AO and EKF

(b) Zoom in

Fig. 2: Noise free case: output estimation error comparison
(Situation 1: Maximum overshoot is fixed).

In this case, the system is well known and without
measurement noise. In order to compare the performances
of the presented observers, two situations are considered.
Firstly, the maximum overshoot of the output estimation
error system is fixed. Then, the settling time, which indicates
the convergence speed, has been compared to understand
the convergence behavior of each observer. Secondly, the
settling time has been fixed. Then the stability of each output
estimation error system has been presented by comparing the
maximum overshoots generated by the considered observers.
The comparison results are shown in Fig.2 and Fig.3. It
should pay attention to the EKF, both of the variances of
process noise and that of measurement noise are the key
parameters to determine its estimation behavior. In this paper,



(a) Output estimation error of ELO, HGO, SMO, AO and EKF

(b) Zoom in

Fig. 3: Noise free case: output estimation error comparison
(Situation 2: Settling time is fixed).

they are set at quite small values (1.0×10−3 and 1.0×10−4

respectively) to investigate its performance under the noise
free case.

According to Fig.2, the maximum overshoot of each
observer is fixed at δm = −20%× eTu(0) = 0.46, which is
represented by the black dotted line in the figure. The settling
time for each observer varies from 0.22s to 5.09s. The red
dotted lines represent the envelopes to indicate the settling
time. It is obvious that the adaptive observer has the shortest
settling time, which means it has the fastest convergence
speed, while the high gain observer takes the longest time to
estimate the real states. In Fig.3, the settling time is fixed at
2.74s, which equals to the time that the EKF used to estimate
the states where its parameters can not be adjusted in this
case. The value of the maximum overshoot |δm| of each
observer performs differently. The estimation error generated
by EKF and AO both converges to zero without oscillation.
Among the rest three observers, HGO provides the maximum
overshoot while SMO offers the minimum overshoot. The
ELO has an overshoot a little smaller than that of HGO.

TABLE II: Comparison Between Observers: Noise Free Case

Type of
observers

Number of
parameter to
be adjusted

Situation 1:
Maximum overshoot fixed

Situation 2:
Settling time fixed

Settling
time
ts(s)

Maximum
overshoot
|δm |(K)

Settling
time
ts(s)

Maximum
overshoot
|δm |(K)

ELO 1 3.23

0.46 2.74

8.35
HGO 2 5.09 10.28
SMO 2 4.19 0.17
AO 3 0.22 0

EKF 2 0

The exact values of settling time and maximum overshoot
under these two situations are presented in Table II. The
observer gain vector K is considered as one parameter to
be adjusted, the dimension of the gain vector equals to the
dimension of the system state vector. In conclusion, the AO
has better performance under both situations in noise free
case.

B. Case 2: With measurement noise

In the second case, the measurement noise is considered,
a white Gaussian noise with a variance of 0.01 has been
added to the output of the HEX reactor. After that, the same
situations have been considered to compare the performance
of each observer: maximum overshoot is fixed and settling
time is fixed. For the EKF, the variance of process noise
is chosen the small value (1.0×10−3) as that in noise free
case, while the variance of measurement noise is set as 0.01
to cooperate with the measurement noise case. The behaviors
of the observers, which correspond to different situations are
presented in Fig.4 and Fig.5.

(a) Output estimation error of ELO, HGO, SMO, AO and EKF

(b) Zoom in

Fig. 4: With measurement noise: output estimation error
comparison (Situation 1: Maximum overshoot is fixed).

(a) Output estimation error of ELO, HGO, SMO, AO and EKF

(b) Zoom in

Fig. 5: With measurement noise: output estimation error
comparison (Situation 2: Settling time is fixed).

When the measurement noise is considered, the observers
present similar results as in noise free case. Under situation
one where the maximum overshoot |δm| is fixed, AO still
has the shortest convergence time of 0.23s. In contrast, the
longest time for state estimation is still generated by HGO



(5.20s). According to Fig.5, the settling time ts is settled
at 2.70s, which equals to the time that the EKF takes for
state estimation where its gains are fixed. Both the estimation
errors of EKF and AO are still vibrationless, while the HGO
gives the greatest oscillation. The ELO provides an overshoot
smaller than HGO, but much bigger than that of SMO. The
exact values of the overshoot and the settling time under
each situation are given in Table III. The AO still performs
better than other observers when the measurement noise is
considered.

TABLE III: Comparison Between Observers: With Measure-
ment Noise

Type of
observers

Number of
parameter to
be adjusted

Situation 1:
Maximum overshoot fixed

Situation 2:
Settling time fixed

Settling
time
ts(s)

Maximum
overshoot
|δm |(K)

Settling
time
ts(s)

Maximum
overshoot
|δm |(K)

ELO 1 3.24

0.46 2.70

8.81
HGO 2 5.21 10.24
SMO 2 4.48 0.17
AO 3 0.24 0

EKF 2 0

V. CONCLUSION

In this paper, five types of nonlinear observers are applied
to a high nonlinear HEX reactor system: two classical
extended observers (ELO, EKF) based on global lineariza-
tion, and three kinds of robust observers (HGO, SMO,
AO). In order to choose an observer that can offer the
shortest converge time and minimum oscillation for further
FDI use, the performances of these observers are compared
and presented here. The maximum overshoot indicates the
stability of the observer, and the settling time reveals the
convergence speed. These two features are considered as the
criteria to evaluate the dynamic of estimation error system.
Under the first situation, suitable gains are chosen to make
the estimation error system reached the fixed maximum
overshoot to compare the settling time of each observer. After
that, the settling time is fixed, and the maximum overshoot
corresponding to every observer are analyzed. Finally, the
comparison results are provided separately according to
the existence of measurement noise. In both cases, AO
has the minimum oscillation and the fastest convergence
speed, while HGO presents the most significant oscillation
and the slowest convergence speed. In addition, the EKF
performs good which is vibrationless and has a relatively
fast convergence speed. The ELO is limited by its quite big
oscillation when the settling time is fixed, and the SMO takes
a relatively long time to estimate the real states when the
overshoot is fixed.

In conclusion, the adaptive observer is a suitable choice
for state estimation of the HEX reactor. And it will be
used to develop a new algorithm for the fault diagnosis and
identification of the intensified HEX reactor. Moreover, some
operations like fault tolerant control can also be applied to
avoid accidental situations and provide a safe production
environment.
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