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Abstract. Sargassum seaweed forms large floating mats drifting on
the oceans. These mats are increasingly beaching on Caribbean islands,
threatening the local wildlife and economies. This paper focuses on their
tracking from space, in order to monitor these mats. More specifically,
we focus on clustering sargassum mats on satellite images. This consti-
tutes an important building block of the sargassum monitoring system,
which then predicts the drift of those clusters to anticipate beachings
and warn the local authorities. The difficulty of the clustering opera-
tion comes from the noisy nature of input data: image artefacts, partial
cloud occlusion, mats discontinuities due to sea conditions, and the dif-
ficulty of acquiring ground truth data. This paper details our approach
to overcome those challenges. We propose a method (hereafter named
Sargassum Mats Detection Method - SMDM) that improves the mats iden-
tification by combining a first artefact detection step, a tailored clustering
algorithm and a region growing algorithm.

Keywords: Unsupervised Machine Learning - Clustering - Sargassum
Detection - Earth Observation Data.

1 Introduction and Industrial Context

Sargassum seaweed (sargassum fluitans and sargassum natans) has always been
present in the Atlantic Ocean. These floating algae have the particularity of
forming large mats, sometimes reaching over 10 kilometers in length. These mats
drift around the ocean, driven by currents and winds. They are home to a unique
ecosystem and are a breeding ground for many marine species. However, when
these large mats make landfall, the algae vegetation decomposes, resulting in the
atrophication of the nearshore waters and the release of harmful sulfur dioxide
gases. The sargassum seaweed invasion came to the fore from 2011 onwards
when large amounts of mats started landing on the coastlines of the Caribbean
islands and the central American countries. The increasingly heavy impact on
the livelihood of the Caribbean societies spurred the scientific community into
investigating the phenomena.

* This work was funded by the CNES (Centre National des Etudes Spatiales)
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Challenges in data exploitation. In 2015, CLS, with the financial support of ESA,
started an operational system to provide a variety of users with high quality mat
location data using Earth Observation. The project worked on the computation
of an improved algae index for each pixel of observation data and on enabling
a forecast capability. By using wind and current data, mats movements are
estimated to identify the most likely beaching zones. To this end, a drift model
is fed with the current location of the mats. Although sargassum mats are easy
to spot using the human eye, automating the mats detection is a challenge due
to the noisy nature of the observation data. Furthermore, the behaviour of the
mats is heavily impacted by environmental conditions as sections of mats might
be temporarily submerged in certain wind and wave conditions or not as visible
due to the satellite sensor angle.

Contributions. This paper focuses on unsupervised machine learning approach.
We propose a method, named Sargassum Mats Detection Method (SMDM), to
cluster the distribution of pixels of individual satellite images into a set of sar-
gassum mats.

This paper is organized as follows. Section 2 details the studied problem and
reviews some of the state of the art methods to achieve clustering. Our approach,
SMDM, is presented in Section 3 and its performances are evaluated in Section 4.
Then, we report conclusions of this study and list some perspectives in Section 5.

2 Problem statement and unsupervised learning

The CLS approach relies on the analysis of satellite images to detect the presence
of sargassum mats and to simulate their drift. It is based on 3 steps. First, a data
processing step that computes the algae index. Second, a clustering step that
detects mats. Finally, a drift simulation step simulates the drifting of detected
mats to forecast their stranding.

Data processing. In this paper, we focus on the sargassum mats detection step.
Before detailing this step, we briefly present the data that will be used as in-
put. Sargassum presence is detected by the increase of the reflectance spectrum
between the red and near infra-red (NIR) wavelengths. The NDVI (Normalized
Difference Vegetation Index) has been widely used in the past to map vegetation
over land surfaces. Over the ocean, it has been successfully used with MODIS
250-m resolution data to study a severe floating green algae bloom event in the
Yellow Sea [6]. Well-known sargassum indices were proposed in the literature, for
example the Maximum Chlorophyll Index [4], the Floating Algae Index (FAI) [5],
the Alternative Floating Algae Index [9], follows the same mathematical state-
ment : AFAI= pn1g — ply g Where pyrr denotes a reflectance, partially (or not)
corrected for atmospheric effects in the NIR band, and py; is the equivalent NIR
reflectance that would be measured at the same point in absence of sargassum.
Pnir s approximated by a linear interpolation between the two reflectances
measured at nearby wavelengths in the red and short-infrared bands. We use
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here a normalized version of the FAI, in which the normalization by the sum
of reflectances is introduced to mitigate the variability of the FAI due to at-
mospheric conditions and observation geometry, as done for the NDVI over land
surfaces: NFAI= (pnrr — Pvir)/(PNIR + PyiR)- Derivation of floating vegeta-
tion presence using NFAI seems thus straightforward. However, a lot of wrong
detections are found mostly in the vicinity of clouds. It is thus necessary to im-
plement an automatic editing procedure to remove them. The drawback of such
automatic procedure is to also remove true detections. At the end of the data
processing step, to each pixel is associated an indicator:

— P to represent the potential presence of algae: P pixel represents the non
edited values of NFAI

A to guarantee the presence of algae: A pixel is a pixel with the edited values
of NFAI;

S when the pixel corresponds to the sea;

C indicates the presence of clouds or unspecified data.

Throughout this paper, we will illustrate the different steps with two satellite
images (part of the Caribbean Sea) taken from MODIS 250-m sensor: Mapl
(long: [-60.8,-58.8], lat:[15.2,16.7], day: 10/07/19) and Map2 (long: [-63.2,-61.2],
lat: [13.9,15.4], day: 10/07/19) These images are grids of [801601] pixels. The
Figure (1) gives an illustration of Mapl with indicator on each pixel.

Fig. 1: Mapl-Input of SMDM. Pixels A in Yellow; P in Red; S in Blue; C in White.

Based on the pixel grid with these indicators, the aim is to find a method
to efficiently identify sargassum mats to compute their drift and forecast their
strandings. The characteristic shape of these mats is a long and elongated shape,
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and they are possibly made up in parallel stratum. Even if mats are quite easy to
spot using the human eye (especially for oceanographic experts), an automatic
detection method faces several obstacles:

1. Mats can be composed of only A pixels, only P pixels, or both.

2. The dataset of images presents artefacts due to multiple scattering in the
near infrared occurring in the close vicinity of clouds. These artefacts induce
falsely positive values (some of the P pixels). They are characterized by
isolated and small groups of P pixels. Other artefacts such as those arising
from the satellite angle, the proximity of land as well as the sun glint effect
are beyond the scope of this paper.

3. Some C or S pixels may actually divide sargassum mats (with clouds or mats
partially submerged). Reconstruction of whole mats by putting together dis-
continuous clusters should also avoid overestimating the size of mats.

4. Algae density is highly variable, both in different parts of a given image and
from one image to another.

Algae contouring. A standard contouring method, the marching squares algo-
rithm (MS), was implemented before this study. MS is a contouring method com-
monly used, for instance for generating isobars in weather maps. As a generic
method, MS is easy to use and requires little parametrization. In MS, only A
pixels are used to identify objects that will be associated with sargassum mats.
However, A pixels are often disconnected from each other, and this approach
produces many contours of small objects. The use of P pixels (or A and P
pixels) faces the same limitation: the number of contouring objects is too high
and mats appear as multiple independent clusters, which is then problematic
for drift simulation. Some sargassum mats can be filtered (for example if they
do not contain a sufficient number of A pixels), nevertheless, for the drift step,
using such contouring algorithm implies to consider an important set of pixels in
input. Figure (2) presents the limitation of MS on A pixels (loss of information)
and on both A and P pixels (too many small clusters).

B, - et g s = e B O ~
(a) With only A pixels. (b) With A and P pixels
Fig. 2: Tlustration of MS on Mapl. The convex hull of sargassum mats are in light blue.
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Learning methods. Image segmentation methods identify clusters of pixels with
similar properties to detect regions or objects into an image. These methods
are less sensitive to spatial discontinuity than thresholding methods, and they
may overcome the issues of MS. Among image segmentation methods, supervised
learning is growing in popularity, particularly for object detection. Convolutional
Neural Networks are really effective for visual recognition issues which assign
an object to an image [7]. For sargassum algae detection, [1] develop a neural
network, called ERISNet, to determine if a pixel in a satellite image contains
sargassum algae. They train their network on labelled data where a pixel is a
1km square of the Mexican coast. This work is an alternative to the NFAI index
computation, but doesnt detect sargassum mats. Supervised learning methods
require building a set of annotated data (ground truth) to train and validate the
neural network. For sargassum mats, there is no ground truth associated with
each image. This represents a huge amount of specific work, so we do not select
this class of machine learning methods for our sargassum mat detection.

Unsupervised learning methods can group data with similar characteristics
from unlabelled data. The interesting features for grouping data are decided
upstream by the designer of the algorithm, then the clustering is automatic
without outside intervention. For instance, [2] use a k-means method fixing k to
5 to detect sargassum mats. Despite the computational efficiency of the algo-
rithm, fixing the number of sargassum mats upstream in an image doesnt seem
appropriate to our problem as the number of mats is unpredictable. Further-
more, this algorithm is noise-sensitive and will affect each P pixel to a mat,
even if they are isolated. DBSCAN [3] is another unsupervised learning method
which considers that clusters are connected dense regions in the data space. The
algorithm extracts one unvisited random pixel p in the image, and marks it as
visited. If p has at least m neighbors within a distance €, these neighbors are
in the same cluster as p and they are recursively visited to check their own e-
neighborhood. Otherwise, p is considered noise (without a cluster). This process
continues until there is no unvisited pixel in the image. Therefore, DBSCAN re-
quires the setting of two parameters: € and m. In our case study, the method
has several advantages: the computational efficiency regardless of the size and
the shape of the clusters, the identification of noise, the flexibility to the varying
number of clusters and the relatively insensitivity to initialization. Because of
all the advantages of DBSCAN over other methods, we will use DBSCAN in SMDM
presented in the next Section.

3 Proposed approach

This section presents the processing chain of SMDM to detect sargassum mats on
the high seas. The input to this pipeline is the pixel grid, presented in Section 2,
containing the indicators P (potential presence of algae), A (algae), S (sea)
and C (cloud or unspecified data). SMDM consists of three main steps described
hereafter.
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Step 1: Remove artefacts. We consider small clusters that do not contain A
pixels as artefacts. This step starts with a clustering on the pixels with potential
presence of algae (P pixels), and then processes each individual cluster to identify
and remove those originating from artefacts. The clustering is performed by
DBSCAN on the P pixels with the parameters set to focus the detection on small
sized clusters: € = 2 et m = 5. This enables the detection of clusters of at least
5 neighboring P pixels. A cluster is then considered as an artefact if it doesn’t
contain A pixel (guaranteed presence of algae) and if it is sufficiently small
(in practice, at most 30 pixels). At the end of this first step, all the presumed
artefacts (false positive P pixels) are deleted.

Step 2: Identify Sargassum Clusters. In this step, we identify sargassum clusters
in two stages: clusters detection and clusters extension.

Detection. The clustering algorithm DBSCAN is used again on the P pixels with
slightly relaxed parameters. We set ¢ = 2.8 and m = 12 to identify larger clusters
than in Step 1. All the identified clusters are given at the extension stage.
Extension. As DBSCAN relies on circle-based exploration, elongated clusters
(which are quite common) may not be fully detected. To compensate for this ef-
fect, we extend the clusters identified in the previous detection phase. Sargassum
clusters affected by this step are the continuous and thin ones that are partially
detected. For instance, Figure (3) illustrates this problem: while discontinuous
mats of circular shape are correctly detected after the identification step (left)
and unaffected by the extension (right), elongated and continuous mats are only
partly identified by DBSCAN. This partial detection is therefore extended. This
stage uses the region growing method [8]. More precisely, for each cluster G, we
inspect each pixel p € G. If p is adjacent to another P or A pixel p’ that is not
in G, we add p’ to G. We recursively inspect adjacent pixels of p’ until we find
no more adjacent P or A pixel. If the growing of a cluster G leads to add pixels
of another identified cluster G, both clusters are merged: G < G U G.

(a) After detection. (b) After detection and extension.
Fig. 3: Tllustration of Step 2. The convex hull of sargassum clusters are in light blue.

Step 3: Aggregate Clusters into Mats. We extend the clusters from the previous
step to find final sargassum mats. Only sufficiently stretched and large clusters
are extended. Both criteria were derived from the experts perspective on sargas-
sum mats: large and thin mats. The elongation of a cluster is computed with a



Clustering Sargassum Mats from Earth Observation Data 7

Principal Component Analysis on the pixels of this cluster. It gives the direction
in which the cluster is the most elongated, as well as the elongation rate on this
axis between 0.5 and 1.0. A rate of 0.5 represents a rounded cluster whereas
a rate of 1.0 represents a thin and elongated cluster. To extend a cluster, its
elongation must be greater than 0.8, and it must consist of at least 50 pixels.

The extension of a cluster is made using a slightly modified region growing
method to assemble discontinuous clusters. Therefore, the clusters affected by
this step are those partially separated by a few pixels of sea or clouds (C or S
pixels). More precisely, for a cluster G, we consider each pixel p € G, and we
inspect each pixel p at 2 pixels from distance to p. If p is a P, A or C pixel and
is at less than 5 pixels from the direction of elongation of G, we add p to CL.
Then, we recursively inspect adjacent pixels of p’ in the direction of elongation
of G until we find only S pixels. If the growing of a cluster G leads to add pixels
of another identified cluster G, both clusters are merged: G « G U G.

Algorithm Output and Post-processing. A post-processing stage allows to at-
tribute a confidence level to sargassum mats. We have defined three confidence
levels sorted by decreasing likelihood. A pixel in a mat of a level is necessarily
in a mat of an upper level.

— Level 1 regroups the sargassum clusters found at the end of Step 2 containing
at least one A pixel.

— Level 2 considers all sargassum mats found at the end of Step 3, but it
removes all pixels located less than 10 pixels from a C pixel and which are
not in a mat of the confidence level 1. In this level, a mat with no A pixel
can appear, but it removes the uncertainty of algae near clouds.

— Level 3 regroups all sargassum mats found at the end of Step 3. In the
confidence level 3, a mat with no A pixel can appear, and mats are more
likely to cross clouds or sea.

4 Evaluation

In this section, we present our approaches to validate our solution. The major
difficulty of this validation is the absence of ground truth data against which
we could quantitatively compare. We circumvent this problem by relying on
two complementary approaches. First, we rely on the qualitative feedback from
oceanography experts that were involved throughout the process. Second, we
compare against MS, which constitutes the baseline used in production over some
metrics capturing the size and the elongation of identified clusters.

Ezpert Input. Since there exists no ground truth regarding sargassum mats, val-
idation of the previous approaches has been conducted using expert input. More
precisely, oceanographers leveraging both their sargassum and earth observation
knowledge are presented with a visualisation of the detected mats. Figure (4)
presents the results of our solution as presented to the experts. While some arte-
facts remain (e.g. East of both maps), the detection avoided the majority (e.g.
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S S ‘ .
(a) Mapl results. (b) Map2 results.
Fig. 4: Example output on Maps 1 & 2. Detected mats are circled in light blue.

Center of Map1). Moreover, SMDM manages to identify clear elongated mats (e.g.
North of Map2), even in challenging conditions like partial cloud occlusions (e.g.
South-West are of Mapl).

Comparing against Marching Squares. Prior to the deployment of our solution,
sargassums mats were clustered using the MS algorithm. Because of its historical
position and the absence of other competitor, MS is considered as the baseline
hereafter. Since MS does not produce confidence levels, to ensure a fair comparison
we set the "High confidence Level” of MS as the result of MS on A pixels only,
and the "Low confidence Level” as the result of MS on P pixels. Similarly, we
focus on the two highest confidence levels of SMDM.

Table 1 compares both approaches on Maps 1 and 2. Recall that Map 1 is
paradigmatic of an occluded region containing many clouds and many artefacts,
whereas Map 2 represents a good situation with few clouds and clear mats. First,
SMDM is slightly slower than MS on A pixels. This originates from the processing
time for steps 1 and 3 in SMDM. On the bright side, SMDM generates all confidence
levels within this time, whereas MS, when run on P pixels takes considerably
longer. This gap in MS performance is explained by the number of clusters it
identifies. For instance, on low confidence level in Map 1, MS identifies around
80 times more clusters than SMDM. The identified clusters are all very small.
In contrast, SMDM identifies a small number of large clusters, even at the high
confidence level.

Figure (5) sketches an exploratory analysis of the identified clusters. The left
part represents the distribution of cluster sizes identified on Maps 1 and 2 for
both methods. It confirms the previous results: the vast majority of the many
clusters identified by MS are below 100 pixels, whereas the SMDM clusters are
nearly always above 100 pixels. A careful comparison of SMDM in Low and High
confidence levels allow to observe that SMDM traded some 500 High confidence
clusters for fewer large (> 2000 pixels) Low confidence clusters.

Overall, those results shows SMDM meets its objectives: identify less clusters
of bigger size. While interacting with the experts and exploring the results of
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Confidence High Low
Map 1 1 2 2 1 1 2 2
Method MS SMDM MS SMDM MS SMDM MS SMDM
Time (s) 22 33 6 8 266 - 64 -

Pixels in clusters 7536 16522 673 6022 66413 17882 11986 3849
Number of clusters 308 88 166 16 6155 79 1127 16
Elongation (mean) 0.85 0.80 0.88 0.90 0.81 0.80 0.83 0.88

Elongation (std.) 0.12 0.11 0.14 0.07 0.13 0.12 0.14 0.11

Size of clusters (mean) 24 188 4 376 10 226 10 241
Size of clusters (std.) 88 379 4 572 42 525 71 314
Table 1: Comparison of the proposed approach against MS on Maps 1 & 2.

Method Ms . SMDM Ms

High Confidence Clusters 0 .’-»};-;7

0 il el N e m - - L -, ~100
1 10 100 1000 0

Number of Clusters

25 758 = s
0 EESRERNE EURTESE § S - 100
1 10 100 1000 -60 =30 0 30 6660 -30 0 30
log(Cluster Size) X
(a) Size (b) Layout of the 5 largest detected mats

Fig. 5: Statistics of the identified clusters, depending on Confidence Level, on Maps
1 & 2. The number of clusters is limited to 100 for readability. Maximum number
of clusters for MS is over 900 in the Low Confidence level. The layout of the largest
clusters is for high confidence clusters on Map 1.

both methods, we used 6 additional maps that are not presented here as they
confirm the above conclusions without bringing further insights.

5 Conclusion

To sum up, this paper presents SMDM, an unsupervised clustering approach for
Sargassum mats detection. It consists in a sequence of steps to i/ detect and
remove artefacts from the data ii/ cluster the cleaned data conservatively and
iii/ grow the clusters into mats by exploiting the specificities of their geometry.
This approach is then compared against current SoA method, and its benefits
are illustrated on two test maps. Dealing with the absence of ground truth data
has been the central challenge of Sargassum detection, both for the design step
(restricting the approach to unsupervised methods) and for the validation step.
Hence a first promising research direction is to explore the temporal dimension
of the problem. Since two consecutive images should contain reasonably similar
geographic distributions of mats, exploiting these similarities could make up for
a ground truth proxy. However, tracking a sargassum mat across multiple shots

Low Confidence Clusters 0 e g‘[
100 -50
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is not trivial due to drifts, cloud movement and varying satellite angles. Driven
by the growing number of freely accessible Earth Observation images, a second
research direction consists in applying SMDM to other oceanographic features, in
particular river plumes and chlorophyll filaments.
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