
HAL Id: hal-02938190
https://laas.hal.science/hal-02938190v1

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Reinforcement Learning, Constraint
Programming and Local Search: A Case Study in Car

Manufacturing
Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham Essodaigui,

Alain Nguyen

To cite this version:
Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham Essodaigui, Alain Nguyen. Lever-
aging Reinforcement Learning, Constraint Programming and Local Search: A Case Study in Car
Manufacturing. Principles and Practice of Constraint Programming. CP 2020, Sep 2020, Louvain La
Neuve, Belgium. pp.657-672, �10.1007/978-3-030-58475-7_38�. �hal-02938190�

https://laas.hal.science/hal-02938190v1
https://hal.archives-ouvertes.fr

Leveraging Reinforcement Learning, Constraint
Programming and Local Search: A Case Study

in Car Manufacturing

Valentin Antuori1,2, Emmanuel Hebrard1,3, Marie-José Huguet1, Siham
Essodaigui2, and Alain Nguyen2

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
{vantuori,hebrard,huguet}@laas.fr

2 Renault, France
{valentin.antuori,siham.essodaigui,alain.nguyen}@renault.com

3 ANITI, Université de Toulouse, France

Abstract. The problem of transporting vehicle components in a car
manufacturer workshop can be seen as a large scale single vehicle pickup
and delivery problem with periodic time windows. Our experimental eval-
uation indicates that a relatively simple constraint model shows some
promise and in particular outperforms the local search method currently
employed at Renault on industrial data over long time horizon. Interest-
ingly, with an adequate heuristic, constraint propagation is often suffi-
cient to guide the solver toward a solution in a few backtracks on these
instances. We therefore propose to learn efficient heuristic policies via re-
inforcement learning and to leverage this technique in several approaches:
rapid-restarts, limited discrepancy search and multi-start local search.
Our methods outperform both the current local search approach and the
classical CP models on industrial instances as well as on synthetic data.

Keywords: Constraint Programming · Reinforcement Learning · Local
Search · Scheduling · Traveling Salesman Problem

1 Introduction

Improving the production line is a constant concern in the industry. The car
manufacturer Renault has long been interested in models and techniques from
Operations Research and Constraint Programming to tackle the various routing
and scheduling problems arising from the production process.

Recent advances in Artificial Intelligence and in particular in Machine Learn-
ing (ML) open up many new perspectives for solving large scale combinatorial
optimization problems with promising results popularized by the success of Al-
phaGo and AlphaZero [14, 15]. In particular, several approaches combining rein-
forcement learning and deep neural networks to guide the reward strategy have
been proposed for solving the traveling salesman problem (TSP) [2, 4]. More-
over, the combination of ML and classical combinatorial techniques seems very

2 V. Antuori et al.

promising. For instance, the integration of standard TSP heuristics with a neural
network heuristic policy outperforms the pure ML approaches [5].

In Section 2 we introduce the problem of planning the flow of vehicle com-
ponents across the assembly lines. More precisely, given fixed production cycles,
logistics operators are in charge of collecting components from, and delivering
them to, working stations in such a way that there is no break in the manufac-
turing process. This problem is in many ways similar to the Torpedo Scheduling
Problem [7], from the 2016 ACP challenges [13]: pickup and delivery operations
are to be scheduled, and these operations are repeated in time because the com-
modity is being produced constantly at a fixed rate. However, in our problem,
components are carried over using trolleys that can be stacked into a “train”
that should not exceed a given maximal length. It should be noted that in this
paper we consider the problem associated to a single operator whose route is
to be optimized. However, the more general problem for Renault is to assign
components (or equivalently working stations) to operators as well as to plan
the individual routes, and the longer term objective is to proactively design the
layout of the assembly line to reduce the cost of logistics operations.

We first evaluate in Section 3 two basic constraint programming (CP) models
in Choco [11] and compare them to the current method used by Renault: a local
search (LS) method implemented in LocalSolver4. From this preliminary study,
we observe that although the problem can be hard for both approaches, CP
shows promising results compare to LS. Moreover, if solving the problem via
backtracking search seems very unlikely given its size, and if stronger filtering
techniques seem to be ineffective, greedy “dives” are often surprisingly successful.

We therefore propose in Section 4 to learn effective stochastic heuristic poli-
cies via reinforcement learning. Then, we show how these policies can be used
within different tailored approaches: constraint programming with rapid restarts,
limited discrepancy search, and multi-start local search approach.

Finally, since industrial benchmarks are easily solved by all new methods
introduced in this paper, we generated a synthetic dataset designed to be more
challenging. In Section 6 we report experiments on this dataset that further
demonstrates the efficiency of the proposed methods.

2 Problem Definition

The Renault assembly line consists of a set of m components to be moved across a
workshop, from the point where they are produced to where they are consumed.
Each component is produced and consumed by two unique machines, and it is
carried from one to the other using a specific trolley. When a trolley is filled
at the production point for that component, an operator must bring it to its
consumption point. Symmetrically, when a trolley is emptied it must be brought
to the corresponding production point. A production cycle is the time ci taken to
produce (resp. consume) component i, that is, to fill (resp. empty) a trolley. The

4 https://www.localsolver.com/home.html

Leveraging Reinforcement Learning, CP and Local Search 3

end of a production cycle marks the start of the next, hence there are ni = H
ci

cycles over a time horizon H. There are two pickups and two deliveries at every
cycle k of each component i: the pickup peki and delivery deki of the empty trolley
from consumption to production and the pickup pfki and delivery dfki of the full
trolley from production to consumption. The processing time of an operation a
is denoted pa and the travel time between operations a and b is denoted Da,b.

Let P be the set of pickup operations and D the set of delivery operations:

P =
m⋃
i=1

(
ni⋃
k=1

{peki , pfki }
)
, D =

m⋃
i=1

(
ni⋃
k=1

{deki , dfki }
)

. The problem is to com-

pute the bijection σ (let ρ = σ−1 be its inverse) between the |A| = n first positive
integers to the operations A = P ∪D satisfying the following constraints.

Time windows. As production never stops, all four operations of the k-th cycle
of component i must happen during the time window [(k − 1)ci, kci]. Let raki
(resp. daki) be the release date (k − 1)ci (resp. due date kci) of operation aki of

the k-th cycle of component i. The start time of operation σ(j) is:

sσ,j =

{
rσ(j) if j = 1

max(rσ(j), sσ,j−1 + pσ(j−1) +Dσ(j−1),σ(j)) otherwise

Then, the completion time eσ,j = sσ,j + pσ(j) of operation σ(j) must be lower
than its due date:

∀j ∈ [1, n], eσ,j ≤ dσ(j) (1)

Precedences. Pickups must precede deliveries.

ρ(pfki) < ρ(dfki) ∧ ρ(peki) < ρ(deki) ∀i ∈ [1,m] ∀k ∈ [1, ni] (2)

Notice that there are only two possible orderings for the four operations of a
production cycle. Indeed, since the first delivery (of either the full or the empty
trolley) and the second pickup take place at the same location, doing the second
pickup before the first delivery is dominated (w.r.t. the train length and the time
windows). Hence Equation 3 is valid, though not necessary:

ρ(dfki) < ρ(peki) ∨ ρ(deki) < ρ(pfki) ∀i ∈ [1,m] ∀k ∈ [1, ni] (3)

Train length. The operator may assemble trolleys into a train5, so a pickup need
not be directly followed by its delivery. However, the total length of the train of
trolleys must not exceed a length Tmax. Let ti be the length of the trolley for
component i, and let taki = ti if aki ∈ P and taki = −ti otherwise, then:

∀j ∈ [1, n],

j∑
l=1

tσ(l) ≤ Tmax (4)

5 Trolleys are designed so that they can be extracted out of the train in any order

4 V. Antuori et al.

This is a particular case of the single vehicle pickup and delivery problem with
capacity and time windows constraints. However, there is no objective function,
and instead, feasibility is hard. Moreover, the production-consumption cycles
entail a very particular structure: the four operations of each component must
take place in the same time windows and this is repeated for every cycle. As
a result, one of the best method, Large Neighborhood Search [12], is severely
hampered since it relies on the objective to evaluate the moves and the insertion
of relaxed requests is often very constrained by the specific precedence structure.

3 Baseline Models

We designed two CP models: a variant of a single resource scheduling problem
and a variant of a TSP. Then, we describe the current LocalSolver model.

Scheduling-based model. The importance of time constraints in the problem stud-
ied, suggests that a CP model based on scheduling would be relevant [1]. The
problem is a single resource (the operator) scheduling problem with four types
of non overlapping operations (pickup and delivery of empty and full trolleys).
For each operation a ∈ A, we define the variable sa ∈ [ra, da] as the starting
date of operation a. Moreover, for each pair of operations a, b ∈ A, we introduce
a Boolean variable xab standing for their relative ordering. In practice, we need
much fewer than n2 Boolean variables as the time windows and Constraint (2)
entails many precedences which can be either ignored or directly posted.

xab =

{
1⇔ sb ≥ sa + pa +Da,b

0⇔ sa ≥ sb + pb +Db,a
∀(a, b) ∈ A (5)

xdfki peki ∨ xdeki pfki ∀i ∈ [1,m] ∀k ∈ [1, ni] (6)

Constraint (5) chanel the two sets of variables, and constraint (6) encodes Equa-
tion (3). Finally, Constraint (4) can be seen as a reservoir resource with limited
capacity, which is filled by pickups, and emptied by deliveries. We use the algo-
rithm from [9] to propagate it on starting date variables using the precedence
graph implied by Boolean variables and precedences from Constraint (2).

TSP-based model. The second model is an extension of the first one, to wich we
add extra variables and constraints from the model for TSP with time windows
proposed in [6]. We need two fake operations, 0 and n+ 1, for the start and the
end of the route. For each operation a ∈ A∪{0, n+ 1}, there is a variable nexta
that indicates which operation directly follows a. Also, a variable posa indicates
the position of the operation a in the sequence of operations. We need another
variable traina ∈ [0, Tmax] which represents the length of the train before the
operation a. The following equations express the constraints of the problem:

train0 = 0 ∧ trainnexta = traina + ta ∀a ∈ A ∪ {0} (7)

pospfki < posdfki ∧ pospeki < posdeki ∀i ∈ [1,m] ∀k ∈ [1, ni] (8)

s0 = 0 ∧ snexta ≥ sa + pa +Da,nexta ∀a ∈ A ∪ {0} (9)

Leveraging Reinforcement Learning, CP and Local Search 5

Constraint (7) encodes the train length at every point of the sequence using
the Element constraint and constraint (8) ensures that pickups precede their
deliveries. Constraint (9) ensure the accumulation of the time along the tour.
Moreover, we use the Circuit constraint to enforce the variables next to form
an Hamiltonian circuit. Additional redundant constraints are used to make the
channeling between variables and improve filtering in addition to the constraint
from the first model: xab =⇒ nextb 6= a, posb > posa + 1 =⇒ nexta 6= b,
posb > posa ⇔ xab, posa =

∑
b∈A∪{0,n+1} xab and AllDifferent(pos).

Search strategy. Preliminary experiments revealed that branching on variables
in an ordering “consistent” with the sequence of operations was key to solving
this problem via CP. In the TSP model, we simply branch on the variables next
in ascending order, and choose first the operation with least earliest start time.
In the scheduling model, we compute the set of pairs of operations a, b such
that {sa, sb} is Pareto-minimal, draw one pair uniformly at random within this
set and assign xab so that the operation with least release date comes first. In
conjunction with constraint propagation, this strategy acts as the “nearest city”
heuristic in TSP. Indeed, since the sequence of past operations is known, the
earliest start time of an operation depends primarily on the distance from the
latest operation in the partial sequence (it also depends on the release date).

LocalSolver. The LocalSolver (LS) model is similar to the TSP model. It is
based on a variable of type list seq, a special decision variable type that represent
the complete tour: seqj = a means operation a is performed at position j. This
variable is channeled with another list variable pos with posa = j ⇔ seqj = a.
We need two other list variables: train and s to represent respectively the length
of the train and the start time of the operation at a given position.

s1 = 0 ∧
sj = max(rseqj , sj−1 + pseqj−1 +Dseqj−1,seqj) ∀j ∈ [2, n] (10)

train1 = 0 ∧ trainj = trainj−1 + tseqj ∀j ∈ [2, n] (11)

sj + pseqj ≤ dseqj ∀j ∈ [1, n] (12)

pospfki < posdfki ∧ pospeki < posdeki ∀i ∈ [1,m] ∀k ∈ [1, ni] (13)

posdfki < pospeki ∨ posdeki < pospfki ∀i ∈ [1,m] ∀k ∈ [1, ni] (14)

Count(seq) = 0 (15)

The last constraint (15) acts like the global constraint All Different and
therefore ensures that seq is a permutation. Surprisingly, relaxing the due dates
and using the maximal tardiness as objective tends to degrade the performance
of LocalSolver, hence we kept the satisfaction version.

3.1 Preliminary Experiments

The industrial data we have collected fall into three categories. In the industrial
assembly line, each category is associated to one logistic operator who has the

6 V. Antuori et al.

charge of a given set of components. In practice, these datasets are relatively
underconstrained, with potentially quite large production cycles (time windows)
for each component. For each category, denoted by S, L and R, we consider
three time horizons: 43 500, 130 500 and 783 000 hundredths of a minutes which
corresponds to a shift of an operator (7 hours and 15 minutes), a day of work
(made up of three shifts) and a week (6 days) respectively.

We then have 9 industrial instances from 400 to more than 10 000 operations.
The main differences between those three categories are the number of compo-
nents, and the synchronicity of the different production cycles. For S instances,
there are only 5 components, and their production cycles are almost the same
and very short. The other two instances have more than 30 components, with
various production cycles (some cycles are short and others are very long).

The CP models were implemented using the constraint solver Choco 4.10 [11],
and the LocalSolver version was 9.0. All experiments of this section were run
on Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with a timeout of 1 hour.

The results are given in Table 1. The first column (Cl) denotes the category
of the instance and second column (H) denotes the temporal horizon. For the
two CP models (Scheduling and TSP), two indicators are given, the CPU time
(in seconds), and the numbers of fails for solved instances. For LocalSolver, we
give the CPU time when the instances are solved before the time limit.

The CP scheduling-based model solves all of the industrial instances without
any fail except for instances R and L on the whole week. Notice, however, that
when using generic heuristics such as Domain over Weighted Degree [3], only 3
instances could be solved by the same model in less than an hour. Moreover,
LocalSolver cannot solve the largest instances, and requires much more CPU
time in general. Although industrial instances are clearly very underconstrained,
they are not trivial. Moreover, even on underconstrained instances, wrong early
choices may lead to infeasible subtrees from which we cannot easily escape. In
particular, the number of fails for the largest instance of category R shows that
the very deep end of the search tree is likely explored in a brute-force manner.

One key factor in solving these instances is for the variable ordering to follow
the ordering of the sequence of operations being built. Indeed, the propagation
is much more efficient in this way, and in particular, the earliest start times of
future operations can be easily computed and, as mentioned in the description
of the heuristic, it reflects the distance from the last operation in the route.

We observe that the scheduling-based model is the fastest. Moreover, the
TSP-based model contains too many variables and constraints, and run out of
memory for the bigger horizon. Instances without any fails show that the first
branch can be very slow to explore as propagation in nodes close to the root can
be very costly, in particular with the TSP-based model.

We draw two conclusions from these preliminary experiments: First, the basic
CP (or LS) models cannot reliably solve hard instances6. It is unlikely that
stronger propagation would be the answer, as the TSP model (with stronger

6 There might be too few data points to make that claim on industrial instances, but
it is clearly confirmed on the synthetic benchmark (see Table 2).

Leveraging Reinforcement Learning, CP and Local Search 7

Table 1: Comparison on the industrial instances

Cl H
Scheduling TSP LocalSolver

cpu #fail cpu #fail cpu

S Shift 0.275 0 3.999 0 26
S Day 0.840 0 48.855 0 566
S Week 17.747 0 memory out timeout

L Shift 7.129 0 36.033 8 121
L Day 23.468 0 344.338 8 3539
L Week 318.008 6 memory out timeout

R Shift 8.397 0 41.615 14 1065
R Day 44.215 0 417.116 15 timeout
R Week timeout 773738 memory out timeout

filtering) tends to be less effective, and does not scale very well. Second, building
the sequence “chronologically” helps significantly, which explains why CP models
outperform local search. As a consequence, greedy runs of the CP solver are
surprisingly successful. Therefore, we propose to learn efficient heuristic policies
and explore methods that can take further advantage of these heuristics.

4 Reinforcement Learning

The search for a feasible sequence can be seen as a Markov Decision Process
(MPD) whose states are partial sequences σ, and actions A(σ) are the operations
that can extend σ without breaking precedence (2) nor capacity constraints (4).

In order to apply Reinforcement Learning (RL) to this MDP, it is convenient
to relax the due date constraints and replace them by the minimization of the
maximum tardiness: max{L(σ, j) | 1 ≤ j ≤ |σ|} where L(σ, j) = eσ,j−dσ(j) is the
tardiness of operation σ(j). We also define the maximum tardiness on intervals:
L(σ, j, l) = max{L(σ, q) | j ≤ q ≤ l}, and we write L(σ) for L(σ, 1, |σ|). Since in
this case operations can finish later than their due dates, it is necessary to make
explicit the precedence constraints due to production cycles:

max(ρ(dfk−1i), ρ(dek−1i)) < min(ρ(peki), ρ(pfki)) ∀i ∈ [1,m] ∀k ∈ [2, ni] (16)

Then we can further restrict the set A(σ) to operations that would not violate
Constraints (16), nor (3). As a result, any state of the MDP reachable from
the empty state is feasible for the relaxation. Finally, we can define the penalty
R(σ, j) for the j-th decision as the marginal increase of the objective function
when the j-th operation is added to σ: R(σ, j) = L(σ, 1, j)− L(σ, 1, j − 1)).

Now we can apply standard RL to seek for an effective stochastic heuristic
policy for selecting the next operation. Moreover, as the MPD defined above is
exponentially large, it is common to abstract a state σ with a small descriptor,

8 V. Antuori et al.

namely, λ(σ, a) a vector of four criteria for operation a ∈ A in state σ. Let
lst(a, σ) be the latest starting time of the task a in order to satisfy constraint
(1) with respect to the tasks in σ and constraints (2) and (3). For each operation
a ∈ A(σ), we compute λ(σ, a) as follows:

λ1(σ, a) = (lst(a, σ)−max(ra, eσ,|σ| − L(σ) +Dσ(|σ|),a))/max
b∈A
{db − rb} (17)

λ2(σ, a) = max(ra − (eσ,|σ| − L(σ)), Dσ(|σ|),a)/ max
b,c∈A2

{Db,c} (18)

λ3(σ, a) = 1− |ta|/Tmax (19)

λ4(σ, a) =

{
1 if a ∈ P
0 otherwise

(20)

Criterion (17) can be seen as the operation’s emergency : the distance to the
due date of the task. Criterion (18) is the travel time from the last task in the
sequence. For both of these criterion, we use eσ,|σ|−L(σ) instead of eσ,|σ| as the
end time of the partial sequence σ to offset the impact of previous choices. Crite-
rion (19) is the length of the trolley. Indeed, since all operations must eventually
be done, doing the operations which have the highest consumption of the “train”
resource earlier leaves more freedom for later. Finally, criterion (20) penalizes
pickups as leaving a trolley in the train for too long is wasteful.

We want to learn a stochastic policy πθ, governed by a set of parameters θ
which gives the probability distribution over the set of actions A(σ) available at
state σ. We first define a fitness function f(σ, a) as a simple linear combination
of the criteria: f(σ, a) = θᵀλ(σ, a). Then, we use the softmax function to turn
the fitness function into a probability distribution (ignore parameter β for now).

∀a ∈ A(σ) πθ(a | σ) = e(1−f(σ,a))/β∑
b∈A(σ) e

(1−f(σ,b))/β (21)

4.1 Policy Gradient

As we look for a stochastic policy, the goal is to find the value of θ minimizing the
expected maximum value (i.e., maximum tardiness) J(θ) of solutions σ produced
by the policy πθ. The basic idea of policy gradient methods is to minimize J(θ)
by gradient descent, that is: iteratively update θ by subtracting the gradient.
We resort to the REINFORCE learning rule [16] to get the gradient of J(θ):

∇θJ(θ) = Eσ∼πθ(σ)[L(σ)∇θ log πθ(σ)] (22)

Which can then be approximated via Monte-Carlo sampling over S samples:

∇θJ(θ) ≈ 1

S

S∑
k=1

L(σk)∇θ log πθ(σk) (23)

Leveraging Reinforcement Learning, CP and Local Search 9

We can decompose Equation (23) in order to give a specific penalty to each
decision (for every position j) of the generated solutions:

∇θJ(θ) ≈ 1

S

S∑
k=1

n∑
j=1

G(σk, j)∇θ log πθ(σk(j) | σk(1, j − 1)) (24)

The penalty function takes into account that a decision can only affect the
future marginal increase of tardiness: we replace the overall tardiness L(σ) by:

G(σ, j) =

{
R(σ, j) if j = n

R(σ, j) + γ ∗G(σ, j + 1) otherwise

The value of γ controls how much decisions impact future tardiness. For γ = 0,
we only take into account the immediate penalty. Conversely γ = 1 means we
consider the sum of the penalties from position j.

4.2 Learning algorithm

We learn a value of θ for the synthetic dataset (Section 6) with the REINFORCE
rule. Given a set of instances I, we learn by batch of size S = q|I|, in other words,
we generate q solutions for each instance. The value of θ is initialized at random,
then we apply the following three steps until convergence or timeout:

1. Generate S solutions following πθ.
2. Compute ∇θJ(θ) according to Equation (24)
3. Update the value of θ as follows: θ ← θ − α∇θJ(θ)

We found out that using a classic softmax function did not discriminate
enough, and hence acts as random policy. To circumvent this, we use the pa-
rameter β in Equation (21) to control the trade off between the quality and the
diversity of generated solutions. For a low value of β the policy always chooses
the best candidate, whereas a large value yields a more “balanced” policy. It
turns out that β = 0.1 was a good value for learning in our case.

Then, we have evaluated the impact of γ to compute the gradient in Equa-
tion (24). Recall that γ controls how much importance we give to the j-th de-
cision in the total penalty: the overall increase of the tardiness from j to n for
γ = 1 or only the instant increase for γ = 0. Moreover, we also tried to give
the penalty L(σ) uniformly for every decision j of the policy, instead of giving
individual penalties G(σ, j). We denote this penalty strategy “Uniform”.

For each variant, we plot in Figure (1a) the average performance L(σ) of the
policy after each iteration (notice the log-scale both for X and Y). Here we learn
on all generated instances of a day horizon (40 instances), for 2000 iterations.

High values for γ are always better. For low value of γ, the (local) optimum
is higher, and in some cases the method may not even converge, e.g. for γ = 0.
Using uniformly the overall tardiness gives similar results to γ = 1, however it
is less stable, and in Fig. (1a) we observe that it diverges after 1000 iterations.

10 V. Antuori et al.

(a) Convergence for different values of γ

Cl By Inst. By Cat. All

A 1011 1130 1128

B 6417 6766 6797

C 14622 15184 15069

D 20285 20578 20640

(b) Different training sets

Fig. 1: Behavior of reinforcement learning

Datapoints are colored with the vector θ interpreted as a RGB value (|θ| = 4

but it can be characterized by three values after we normalize so that
∑4
i=1 θi =

1)7. We can see for instance that γ = 0.9 finds a value of θ that is significantly
different from all other methods (〈0, 0.63, 0.29, 0.07〉). Interestingly, “Uniform”
and γ = 1 not only converge to the same average tardiness, but to similar θ’s
(respectively 〈0.30, 0.49, 0.16, 0.04〉 and 〈0.25, 0.56, 0.15, 0.04〉). However, γ = 1
finds values of θ that seem closer to the target (“greener”) earlier, although it
is not really apparent from the value of L(σ). These values of θ indicate that
a good heuristic is mainly a compromise between the emergency and the travel
time8. Moreover, the travel time tends to be more important on larger horizon,
because it a longer term impact: all subsequent operations are affected.

Finally, we report in Figure (1b) the average tardiness for each instances
following πθ. The gain of learning specifically for a given (class of) instance(s)
is at best marginal. This is not so surprising as we abstract states with a very
simple model using a few criteria. However, it means that the value of θ learnt
on the full dataset is relevant to most instances.

5 Using the Heuristic Policy

We have implemented two types of approaches taking advantage of the stochas-
tic policy learnt via RL: integrating it within CP as a randomized branching
heuristic, and using it to generate sequences to be locally optimized via steepest
descent in a multi-start local search. Here we describe the necessary modifica-
tions of the CP model, and we propose an efficient local search neighborhood.

7 To highlight the differences we also normalize the RGB values and omit γ = 0
8 Although the importance of a criterion also depends on the distribution of the val-

ues of λ after normalization, we are confident that the first two criteria are more
important than the other two.

Leveraging Reinforcement Learning, CP and Local Search 11

5.1 Constraint Programming

In order to use the stochastic policy described in Section 4 in a CP solver, we
need to slightly change the scheduling model. We introduce a new set of variables
seqj , one for each position j, standing for the operation at that position, with
the following channeling constraint: xseqjseql = 1 ∀j < l ∈ [1, n]

We branch only on the variables seq in lexicographic order. Therefore, the
propagation for this constraint is straightforward: when branching on seqj = a,
as all variables seql ∀l < j are already instantiated, we set xab = 1, ∀b ∈
A\{seql | l < j}. Conversely, after assigning seqj we can remove a from the
domain of seqj+1 if there exists b ∈ A\{seql | l ≤ j} such that the domain
of the variable xab is reduced to {0}. Moreover, we can easily enforce Forward
Consistency on {seq1, . . . , seqj} with respect to precedence and train size con-
straints (2) and (4) as well as Constraint (3), i.e., when {seq1, . . . , seqj−1} are
all instantiated, we can remove all values of seqj that cannot extend the cur-
rent subsequence. Therefore, we do not need the Reservoir resources propagator
anymore.

We propose two strategies based on this CP model using the learned policy.

1. Softmax policy and rapid restart. In this method we choose randomly the
next operation according to the softmax policy (Eq. 21). In order to explore
quickly different part of the search tree, we rely on a rapid restart strategy,
following a Luby [10] sequence with a factor 15.

2. Limited Discrepancy Search. As the key to solve those instances is to follow
good heuristics, and to deviate as little as possible from them, limited discrep-
ancy search (LDS) [8] fits well with this approach. We run the LDS imple-
mentation of Choco, which is an iterative version: the discrepancy starts from
0, to a maximum discrepancy parameter incrementally. For this approach we
use the deterministic version of the policy π(σ) = arg mina f(σ, a).

5.2 Local Search

The solutions found by the heuristic policy can often be improved by local search
moves. Therefore, we also tried a multi-start local search whereby we generate
sequences with the heuristic policy, and then improve them via steepest descent.
Sequences are generated using the same model used for RL (i.e., with relaxed due
dates). Therefore, generated sequences respect all constraints, except (1) and we
consider a neighborhood that preserves all other constraints as well. Then we
apply the local move that decrease the most the maximum tardiness L(σ) until
no such move can be found. We use two types of moves and the time complexity
of an iteration (i.e., computing, and commiting to, the best move) is in O(nm).

We recall that L(σ, j, l) = max{L(σ, q) | j ≤ q ≤ l} is the maximum tardiness
among all operations between positions j and l in σ.

Swap moves. The first type of moves consists in swapping the values of σ(j) and
σ(l). First, we need to make sure that the ordering of the operations within a

12 V. Antuori et al.

given component remains valid, i.e., satifies constraints (2) and (16): a pickup
(resp. delivery) operation must stay between its preceding and following deliver-
ies (resp. pickups) for the same component. For every operation a, a valid range
between the position of its predecessor pr(a) and of its successor su(a) can be
computed in constant time. Then, for all j ∈ [1, n] we shall consider only the
swaps between j and l for l ∈ [j + 1, su(σ(j))] and such that pr(σ(l)) ≤ j.

The second condition for the move to be valid is that the swap does not
violate constraint (4), i.e., the maximum length of the train. Let τj =

∑j−1
l=1 tσ(l)

be the length of the train before the j-th operation. After the swap we have
τj+1 = τj + tσ(l) which must be less than Tmax. At all other ranks until l,
the difference will be tσ(l) − tσ(j), we only need to check the constraint for the
maximum train length, that is: max{τq | j ≤ q ≤ l}+ tσ(l) − tσ(j) ≤ Tmax. This
can be done in constant (amortized) time for all the swaps of operations a by
computing the maximum train length incrementally for each l ∈ [j+1, su(σ(j))].

Then, we need to forecast the maximum tardiness of the sequence σ′ where
the operations at positions j and l are swapped, i.e., compute the marginal
cost of the swap. The tardiness of operations before position j do not change.
However, we need to compute the new tardiness L(σ′, j) and L(σ′, l) at positions
j and l, respectively. Moreover, we need to compute L(σ′, j + 1, l − 1) the new
maximum tardiness for operations strictly between j and l and L(σ′, l + 1, n)
the new maximum tardiness for operations strictly after l.

The new end time eσ′,j of operation σ′(j) = σ(l) and hence the tardiness at
position j is L(σ′, j) = eσ′,j − dσ′(j) can be computed in O(1) as follows:

eσ′,j = pσ′(j) + max(rσ′(j), (eσ′,j−1 +Dσ′(j−1),σ′(j)))

Next, operations σ(j + 1), . . . , σ(l − 1) remain in the same order and σ(j + 1)
is shifted by a value ∆ = eσ′,j + Dσ′(j),σ′(j+1) − eσ,j − Dσ(j),σ,j+1. However,
subsequent operations may not all be equally time-shifted. Indeed, when ∆ < 0
there may exist an operation whose release date prevents a shift of ∆.

Let gj = rσ(j) − sσ(j) be the maximum left shift (negative shift of highest
absolute value) for the j-th operation, and let gj,l = max{gq | j ≤ q ≤ l}.

Proposition 1. If the sequence does not change between positions j and l, a
time-shift ∆ < 0 at position j yields a time-shift max(∆, gj,l) at position l.

Let L∆(σ, j, l) be the maximum tardiness on the interval [j, l] of sequence
σ time-shifted by ∆ from position j. We can define L−∞(σ, j, l) the maximum
tardiness on the interval [j, l] for an infinite negative time-shift:

L−∞(σ, j, l) = max{L(σ, q, l) + gj,q | j ≤ q ≤ l} (25)

Proposition 2. If ∆ < 0 then L∆(σ, j, l) = max(∆+ L(σ, j, l), L−∞(σ, j, l)).

Conversely, when ∆ > 0 some of the time-shift may be “absorbed” by the
waiting time before an operation. However, there is little point in moving oper-
ations coming before a position j with a non-negative waiting time (i.e., where

Leveraging Reinforcement Learning, CP and Local Search 13

sσ(j) = rσ(j)), as this operation and all subsequent operations would not profit
from the reduction in travel time. Therefore we consider only swaps whose ear-
liest position j is such that ∀q > j, gq < 0. As a results, if there is a positive
time-shift ∆ at q > j, we know that L∆(σ, q, l) = ∆ + L(σ, q, l). Moreover, the
values of L(σ, j, l), gj,l and L−∞(σ, j, l) can be computed incrementally as:

L(σ, j, l + 1) = max(L(σ, j, l), L(σ, l + 1))

gj,l+1 = max(gj,l, gl+1)

L−∞(σ, j, l + 1) = max(L−∞(σ, j, l), gj,l+1 + L(σ, l + 1))

Therefore, when j < l−1, we can compute the new tardiness L(σ′, j + 1, l − 1) =
L∆(σ, j + 1, l − 1) of the operations in the interval [j+1, l−1] in constant (amor-
tized) time since the query of Proposition 2 can be checked in O(1).

The new tardiness L(σ′, l) at position l is computed in a similar way as for
L(σ′, j) since we know the new start time of σ′(l − 1) from previous steps.

Finally, in order to compute the new maximum tardiness L(σ′, l + 1, n) over
subsequent operations, we precompute L(σ, j, n), gj,n and L−∞(σ, j, n) for every
position 1 ≤ j ≤ n once after each move in O(n). Then L(σ′, l + 1, n) can be
obtained in O(1) for every potential move from Proposition 2.

Therefore, we can check the validity and forecast the marginal cost of a
swap in constant amortized time and perform the swap in linear time. The time
complexity for an iteration is thus in O(nm) since, for a given component i, the
sum of the sizes of the valid ranges for all pickups and deliveries of this component
is in O(n). Indeed, let a1i , . . . , a

4ni
i be the operations component i ordered as in

σ. Then su(aki) = ρ(ak+1
i) and

∑4ni
k=1 su(aki)− ρ(aki) = ρ(a4nii)− ρ(a1i) ∈ Θ(n)).

Toggle moves. As observed in Section 3, there are only two dominant orderings
for the four operations of the k-th production cycle of component i. The second
type of moves consists in changing from one to the other of these two orderings,
by swapping the values of σ(pfki) and σ(peki) and the values of σ(dfki) and σ(deki).
This change leaves the size of the train constant, hence all these moves are valid.

Let j1 = pfki , j2 = dfki , j3 = peki , j4 = deki be the positions of the four
operations of component i and cycle k in the current solution, and suppose,
wlog, that j1 < j2 < j3 < j4. Let σ′ denote the sequence obtained by applying a
toggle move on component i and cycle k in σ. In order to forecast the marginal
cost of the move, we need to compute the new tardiness at the positions of the
four operations involved L(σ′, j1), L(σ′, j2), L(σ′, j3) and L(σ′, j4). Moreover,
we need the new maximum tardiness on four time-shifted intervals:
L(σ′, j1 + 1, j2 − 1) = L∆1

(σ, j1 + 1, j2 − 1), L(σ′, j2 + 1, j3 − 1) = L∆2
(σ, j2 + 1, j3 − 1),

L(σ′, j3 + 1, j4 − 1) = L∆3(σ, j3 + 1, j4 − 1) and L(σ′, j4 + 1, n) = L∆4(σ, j4 + 1, n).
Computing the marginal costs can be done via the same formulas as for

swaps: we can first compute the new end time for the operation at position j1,
then from it compute the value of∆1 that we can use to compute L∆1

(σ, j1 + 1, j2 − 1)
in O(j2−j1−1) time, and so forth. The difference, however, is that there is fewer
possible moves (n/4), although the computation of the marginal cost cannot be
amortized. The resulting time complexity is the same: O(nm).

14 V. Antuori et al.

6 Experimental Results

We generated synthetic instances9 in order to better assess the approaches. Due
to the time windows constraints, it is difficult to generate certifiably feasible
instances. Their feasibility has been checked on the shortest possible horizon,
i.e., the duration of the longest production cycle of any component, which is
about 10 000 time units depending on the instances. There are four categories
of instances parameterized by the number of components (15 in category A, 20
in B, 25 in C and 30 in D). In the real dataset, several components have similar
production cycles. We replicates this feature: synthetic instances have from 2 or 3
distinct production cycles in category A, to up to 7 in category D. The latter are
therefore harder because there are more asynchronous productions cycles. We
generated 10 random instances for each category and consider the same three
horizons (shift, day and week) for each, as industrial instances.

Experiments for this section were run on a cluster made up of Xeon E5-2695
v3 @ 2.30GHz and Xeon E5-2695 v4 @ 2.10GHz. For the basic CP models, we add
randomization and a restart strategy following a Luby sequence, and we ran each
of the 120 instances 10 times. We could not carry on experiments on synthetic
data with LocalSolver because we were not granted a license. However, from
the few tests we could do, we expect LocalSolver to behave similarly as on
industrial benchmarks.

Table 2: Comparison of the methods on generated instances

Cl H
Scheduling TSP CP-softmax LDS Multi-start LS

#S cpu #fail #S cpu #fail #S cpu #fail #S cpu #fail #S cpu Lmax

A
shift 7.1 418 300K 4.0 56 366 9.0 2 15 9.0 2 9 9.0 0 1m
day 4.0 29 213 3.6 802 1267 9.0 15 815 8.0 21 71 9.0 176 19m

week 3.1 866 1976 0.0 mem. out 8.0 118 27 5.0 68 0.0 7.0 155 1h11

B
shift 2.1 389 150K 0.9 844 11K 6.0 4 77 6.0 15 85 6.0 2 11m
day 1.0 201 15K 0.0 – 5.2 341 20K 4.0 12 19 4.6 346 1h

week 0.0 – 0.0 mem. out 3.5 423 715 1.0 99 0.0 1.0 0 4h59

C
shift 0.0 – 0.0 – 4.0 103 5366 4.0 715 4090 4.0 255 32m
day 0.0 – 0.0 – 1.0 12 7 1.0 18 27 1.0 1 1h45

week 0.0 – 0.0 mem. out 1.0 807 366 0.0 – 0.0 – 11h51

D
shift 0.0 – 0.0 – 1.9 697 24K 1.0 442 1058 1.6 1165 31m
day 0.0 – 0.0 – 0.0 – 0.0 – 0.0 – 2h19

week 0.0 – 0.0 mem. out 0.0 – 0.0 – 0.0 – 17h52

For each of the methods using the learnt heuristics, we normalize θ so that∑4
i=1 θi = 1 and set β to 1/150. We learn the policy by batches of size 240

formed by 6 runs on each of the 40 day-long instances, during 2000 iterations.

9 Avalaible at https://gitlab.laas.fr/vantuori/trolley-pb.

Leveraging Reinforcement Learning, CP and Local Search 15

The learning rate depends on the size of the instances: α = 2−12/n where n is
the average number of task in the batch. The rationale is that the magnitude of
the gradient depends on the tardiness L(σ) which tends to grow with the number
of operations. Therefore, we use the learning rate α to offset this growth, which
is key to have a stable convergence. For the two methods using the stochastic
policy, we made the first run deterministic i.e. the policy becomes stochastic
only after the first restart for the CP based one, and after the first iteration for
the multi-start local search.

The results are presented in Table 2. We report the number of solved instances
(among 10 instances for every time horizon) averaged over 10 randomized runs
for each CP model in the column “#S”. The synthetic dataset is more con-
strained than the industrial dataset and the two basic CP models fail to solve
most of the instances (“–” in the table indicates a time out). However, the rela-
tive performance remains unchanged w.r.t. Table 1: the scheduling-based models
shows better performance in terms of number of solved instances and CPU time
while scaling better in memory. All three of the RL-based methods significantly
outperform previous approaches. The results in Table 2 indicate that the rapid
restarts approach dominates the others. However, it may not be as clear-cut as
that: for other settings of the hyperparameters (α, β and γ) the relative efficien-
cies fluctuate and other methods can dominate. Moreover, one advantage of the
multi-start local search method is that since due dates are relaxed, imperfect
solutions can be produced, even for infeasible instances. We report the average
maximum tardiness in column Lmax.

This global θ also works well with the industrial dataset. All instances are
easily solved by all three methods, except “R” for the week horizon, which is
only solved by the rapid restart approach. We learnt a dedicated policy for the
industrial dataset with the same settings. It turns out that every instance was
solved by the deterministic policy using the new value for θ, except the instance
“L” for the week horizon. However, it is easily solved by all three methods.

7 Conclusion

In this paper we have applied reinforcement learning to design simple yet efficient
stochastic decision policies for an industrial problem: planning the production
process at Renault. Moreover, we have shown how to leverage these heuristic
policies within constraint programming and within local search.

The resulting approaches significantly improve over the current local search
method used at Renault. However, many instances on synthetic data remain
unsolved. We plan on using richer machine learning models, such as neural net-
works, to represent states. Moreover, we would like to embed this heuristic in a
Monte-Carlo Tree Search as it would fit well with our current approach since it
relies on many rollouts. Finally, we would like to tackle the more general problem
of assigning components to operators and then planning individual routes.

16 V. Antuori et al.

References

1. J. Christopher Beck, Patrick Prosser, and Evgeny Selensky. Vehicle Routing and
Job Shop Scheduling: What’s the Difference? In Proceedings of the 13th Interna-
tional Conference on Automated Planning and Scheduling, ICAPS, pages 267–276,
2003.

2. Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.
Neural Combinatorial Optimization with Reinforcement Learning. In 5th Inter-
national Conference on Learning Representations, Workshop Track Proceedings,
ICLR, 2017.

3. Frederic Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI, pages 146–150, 2004.

4. Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
Combinatorial Optimization Algorithms over Graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS, page
6351–6361, 2017.

5. Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-
Martin Rousseau. Learning Heuristics for the TSP by Policy Gradient. In Proceed-
ings of the 15th International Conference on the Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, CPAIOR, pages 170–181,
2018.

6. Sylvain Ducomman, Hadrien Cambazard, and Bernard Penz. Alternative Filter-
ing for the Weighted Circuit Constraint: Comparing Lower Bounds for the TSP
and Solving TSPTW. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence, AAAI, pages 3390–3396, 2016.

7. Martin Josef Geiger, Lucas Kletzander, and Nysret Musliu. Solving the Torpedo
Scheduling Problem. Journal of Artificial Intelligence Research, 66:1–32, 2019.

8. William D. Harvey and Matthew L. Ginsberg. Limited Discrepancy Search. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
IJCAI, page 607–613, 1995.

9. Philippe Laborie. Algorithms for propagating resource constraints in AI plan-
ning and scheduling: Existing approaches and new results. Artificial Intelligence,
143(2):151–188, 2003.

10. Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal Speedup of Las
Vegas Algorithms. Information Processing Letters, 47:173–180, 1993.

11. Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Documen-
tation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S., 2017.

12. Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,
40(4):455–472, 2006.

13. Pierre Schaus. The Torpedo Scheduling Problem. http://cp2016.a4cp.org/

program/acp-challenge/, 2016.

14. David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

Leveraging Reinforcement Learning, CP and Local Search 17

15. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of Go without human
knowledge. Nature, 550(7676):354–359, 2017.

16. Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256, 1992.

