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ABSTRACT
In this paper, we investigate the observation and stabilization problems for a
class of linear time-invariant systems, subject to unknown state, and network
constraints, including time-delays and event-triggered sampling. A new type of
event-triggered mechanism is proposed based on an appropriate storage function,
which is chosen larger than the derivative of Lyapunov function. Thus, the conver-
gence of the observer system is guaranteed by the negativity of this appropriate
storage function. With the utilization of LMI techniques and the designed novel
event-triggered mechanism, only a slight over-estimation exists in the process of
obtaining stability conditions, leading to reduced conservatism. The effectiveness
of this novel event-triggered mechanism is proven through a comparison with a
classical event-triggered and also periodic time-triggered mechanisms, and through
simulations of a mobile cart system.

KEYWORDS
Observation; stabilization; event-triggered sampling; time-delays; LMI; reduced
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1. Introduction

Event-triggered mechanism is an important and effective technique for aperiodic
networked transmissions when communication and energy resources are limited,
see (Chen & Li, 2018; Heemels, Sandee, & Van Den Bosch, 2008; Hetel et al.,
2017; D. Zhang, Shi, Wang, & Yu, 2017; X. M. Zhang, Han, & Zhang, 2017) for
introductions to the topic. The interests of considering an event-triggered condition
is to decide whether to transmit the data or not. The event-triggered condition usu-
ally contains some known system’s parameters or real-time information of systems,
which allow to determine whether it is necessary to transmit data between components.

State observation (or estimation) is one of the central problem in system theory.
Compared to event-triggered control problems, the event-triggered transmission
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applied to observers of networked systems has been less studied in the literature, to
the best of our knowledge. Such as studies for linear continuous systems (Tanwani,
Prieur, & Fiacchini, 2016), and for linear discrete systems (Dong, Wang, Alsaadi, &
Ahmad, 2015; Han et al., 2015; J. Huang, Shi, & Chen, 2017; Leong, Dey, &
Quevedo, 2017; Molin & Hirche, 2017; Molin, Sandberg, & Johansson, 2016; Shi,
Chen, & Ling, 2014; Z. H. Zhang & Yang, 2017). However, these above literatures
about event-triggered observers ignore the presence of delays, which actually will be
considered in this paper. Besides, concerning the event-triggered observers, there are
also studies based on nonlinear systems, such as for continuous nonlinear systems
(Etienne & Gennaro, 2016; Etienne, Gennaro, & Barbot, 2017; Y. Huang, Wang,
Shi, & Shi, 2018; Li, Wang, Ma, & Liu, 2019; Zou, Wang, Gao, & Liu, 2017),
and for discrete nonlinear systems (Chu & Li, 2018; Zheng & Fang, 2016). For
these studies of event-triggered observer systems, most of them use the classical
event-triggered condition, which is based on the difference between current value
and the last transmitted value, such as in (Chu & Li, 2018; Dong et al., 2015;
Etienne & Gennaro, 2016; Etienne et al., 2017; Y. Huang et al., 2018; Li et
al., 2019; Tanwani et al., 2016; Zheng & Fang, 2016; Zou et al., 2017). The
difference between current value and the last transmitted value is also called sampling
error, see (Y. Huang et al., 2018). For this classical event-triggered condition, the
output data is transmitted from the sensor to the observer through a network if
the sampling error exceeds a designed bound. This classical kind of event-triggered
mechanisms potentially mean that, if the data changes fast, then more transmissions
are triggered, conversely, if it changes slowly, then less transmissions are triggered. It’s
better for getting more approximate dynamics of transmitted data, which is finally
for getting a better estimation performance. From this point of view, designing a new
event-triggered condition which is directly related to estimation performance, may
bring less conservatism.

Thus, in this paper, the event-triggered condition is based on an appropriate storage
function, which is larger than the derivative of a Lyapunov function, so that, if this
particular storage function is guaranteed to be non-positive, then the derivative of
Lyapunov function is negative. This storage function actually bounds the derivative of
a Lyapunov function. So, in this novel event-triggered mechanism, if this appropriate
storage function is predicted to be positive, then transmission will be triggered to
correct it to be non-positive, otherwise the transmission will not be triggered. This
new kind of event-triggered mechanisms is potentially committed to guarantee the
convergence of the system since it guarantees the decrease of a Lyapunov function.
Actually, this conception has already attracted researchers attention (Seuret, Prieur,
Tarbouriech, & Zaccarian, 2016; Tarbouriech, Seuret, Silva, & Sbarbaro, 2016).
However, paper (Seuret et al., 2016) studies a static state-feedback event-triggered
controller with known state information, and paper (Tarbouriech et al., 2016)
proposes an observer-based event-triggered controller in which the observer in sensor
side uses the continuous output data, while in this paper the state information is
unknown and an event-triggered observer is proposed far away from sensor side, only
using aperiodic (event-triggered) sampled output. Besides, both of the studies (Seuret
et al., 2016; Tarbouriech et al., 2016) ignore the network-induced time-delay when
it is considered in this paper.

Comparing these two types of event-triggered conditions, including the classical
error-based one and the new proposed one, their basic thinking is totally different. For
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the classical kind of event-triggered condition, the idea that more transmissions for
fast-changing data and less transmissions for slow-changing data, is actually devoted
to recovering the dynamics of the data. However, for the new proposed event-triggered
condition in this paper, as mentioned above, it is committed to guarantee the decrease
of the Lyapunov function, further guaranteeing the convergence of the system, which
is directly related to estimation performance, further may bring less conservatism.
In this paper, this new proposed method will be named as storage function based
event-triggered mechanism.

Normally, some essential over-estimations exist when deriving stability condi-
tions of the observer, for example in (Ahmed-Ali, Assche, Massieu, & Dorleans,
2013) Young’s inequalities are used, and in (Ahmed-Ali et al., 2013; Shoukry
& Tabuada, 2016) norm inequalities and some matrix inequalities are used. As
we known, over-estimations lead to more conservative stability conditions. In this
paper, with the utilization of LMI techniques and the designed novel event-triggered
mechanism, a Wirtinger-based inequality from (Seuret & Gouaisbaut, 2013) is
used to derive efficient stability conditions, which leads to a slight over-estimation,
and consequently, less conservative stability conditions, compared to Jensen inequality.

Thus, the contributions of this paper are as follows: (1) Based on aperiodic sampled
and delayed output, an event-triggered state observer is proposed for a class of linear
systems; (2)Differently from usual classical event-triggered schemes, a new type of
event-triggered condition is designed which is more direct and less conservative; (3)
Only a slight over-estimation exists in the process of obtaining stability conditions
which leads to less conservative stability conditions.

2. Prepiminaries

In this paper, the symbol R denotes the set of real numbers. The symbol N denote
the set of natural numbers. For p, q ∈ N, Rp×q stands for the set of real matrices of
dimension p × q. For n ∈ N, In ∈ Rn×n is the identity matrix of dimension n × n.
For p, q,m, n ∈ N, if F ⊂ Rp×q and G ⊂ Rm×n, C(F,G) denotes the space of all
continuous functions mapping F to G. For any vector or matrix A of appropriate
dimension, A′ represents the transpose of matrix/vector A. t0 represents the initial
time. If A ∈ Rn×n, He(A) is a simplified symbol of matrix A+A′ in the sequel.

Also, the Wirtinger-based inequality in Lemma 2.1 will be used shown in the sequel:

Lemma 2.1. For any matrix R > 0, the following inequality holds for any continu-
ously differentiable function ω in [a, b] → Rn:∫ b

a ω̇′(s)Rω̇(s)ds ≥ 1
b−a(ω(b)− ω(a))′R(ω(b)− ω(a)) + 3

b−aΩ
′RΩ (1)

where Ω = ω(b) + ω(a)− 2
b−a

∫ b
a ω(s)ds

The proof is omitted and can be found in (Seuret & Gouaisbaut, 2013).
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3. Problem formulation

Consider the following continuous-time plant:{
ẋ(t) = Ax(t) +B(u(t)), t ≥ t0, x(t0) = x0
y(t) = Cx(t)

(2)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, the input and the output
of the plant, respectively, with n,m, p ∈ N. Matrices A ∈ Rn×n, B ∈ C(Rm,Rn) and
C ∈ Rp×n are known. The pair (A,C) are assumed to be detectable.

In this paper, the interest is to design an observer for plant (2), when its output
is aperiodically sampled and contains a fixed time-delay, which is denoted by τ ∈ R
satisfying τ > 0. The sampled and delayed output is denoted by z(t) = y(tk − τ)
when t ∈ [tk, tk+1). Define t̄k ∈ R satisfying t̄k = tk − τ , thus {t̄k|k ∈ N} is the set
of aperiodic sampling instants, which are decided by the event-triggered mechanism,
which will be designed later in the Section 5.1.

4. Event-triggered observer design
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Figure 1. Event-triggered observer system (ETM: event-triggered mechanism)

The framework of event-triggered observer system is shown in Figure 1, and it in-
cludes a plant, a sensor with an event trigger rule, a communication network with time
delays, and an observer far away from sensor. With the event trigger rule, the sensor
send the aperiodically sampled output to the observer through the communication
network which contains the time delays. Based on the framework shown in Figure 1,
an event-triggered observer is designed for plant (2) as follow. It contains two main
ingredients:
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• A classical Luenberger observer, whose input is a vector w(t), to be designed:{
˙̂x(t) = Ax̂(t) +B(u)− L(Cx̂(t− τ)− w(t)), ∀t ≥ 0
ŷ(t) = Cx̂(t), ∀t ≥ 0

(3)

• A continuous estimation of the sampled and delayed output: (reset predictor){
ẇ(t) = CAx̂(t− τ) + CB(u(t− τ)), t ∈ [tk, tk+1), ∀k ≥ 0
w(t) = y(t− τ), t = tk, ∀k ≥ 0

(4)

Indeed the variable x̂(t) is built to estimate x(t), matrix L is the observer gain of
appropriate dimension, which will be designed by setting the poles of A − LC at
negative axis, x̂0 denotes the initial condition of the observer, ŷ(t) is the estimate of
the current output, and w(t) is the state of reset predictor (4), which is updated by
the real sampled and delayed output of the system. An event-triggered mechanism
will be designed later to decide the sampling instants {t̄k = tk − τ |k ∈ N}.

Let us define the state observation error as e = x̂− x. Equations (2) and (3) yields
the following dynamical equation:

ė(t) = Ae(t)− L(Cx̂(t− τ)− w(t))

= Ae(t)− L(ey(t− τ)− ew(t))
(5)

where ew(t) = w(t) − y(t − τ) is error of reset predictor and ey(t) = Ce(t) is the
measurement error.

5. Main results

5.1. Design of the event-triggered mechanism

The event-triggered mechanism is designed as follows:

t̄k+1 = min

{
t > t̄k, s.t.

[
Ce(t)

ew(t+ τ)

]′
F

[
Ce(t)

ew(t+ τ)

]
> 0

}
(6)

where matrix F =

[
F11 F12

F21 F22

]
with F11, F12, F21, F22 ∈ Rp×p is a parameter to be

designed satisfying

F11 < 0 (7)

Remark 1. (Feasibility of event-triggered mechanism (6)) The event-triggered con-
dition actually uses the information of observer, which is realized by setting a copy of
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observer model at sensor side, so that the variables in observer can be seen as available
when designing event-triggered mechanism, and the observer model can be replicated
to the sensor side since all information of observer is actually known for sensor side.
Besides, in the event-triggered mechanism (6), a future value ew(t+ τ) is used, which
actually can be realized: it’s easy to get ew(t+ τ) = w̄(t)− y(t) with w̄(t) , w(t+ τ),
and the item y(t) can be seen as known information for sensor side. So, we just need
to handle w̄(t). One have ˙̄w(t) = ẇ(t+ τ) = CAx̂(t) + CB(u(t)) for t ∈ [t̄k, t̄k+1) and
w̄(t̄k) = w(t̄k + τ) = w(tk) = y(tk − τ) = y(t̄k), so w̄(t) can be seen as known item
when designing event-triggered condition just by setting the following model at the
sensor side

f :

{
˙̄w(t) = CAx̂(t) + CB(u(t)), t ∈ [t̄k, t̄k+1)
w̄(t̄k) = y(t̄k)

(8)

Remark 2. (Design an event-triggered mechanism like (6)) In (6), we just give the
event-triggered mechanism first, and the details about how to design it will be shown
later as three steps in the ’proof’ part of following Theorem 5.1. According to the
three steps in the ’proof’ part of following Theorem 5.1, in general, the event-triggered
mechanism is designed following this idea: (1) Deign a Lyapunov function for observe
system, and give the derivative of it; (2) Find an appropriate storage function larger
than the derivative of the Lyapunov function, which is only related to available
information of sensor; (3) Design an event-triggered mechanism which guarantees this
storage function non-positive. That means the sensor needs to detect the real-time
value of this storage function, and once it becomes positive, data transmission should
be done to make it non-positive (sampling error ew(t+ τ) = 0 for t = t̄k, so that the
condition in (6) becomes (Ce(t))′F11Ce(t) < 0 for Ce(t) ̸= 0). Actually, the aim is to
guarantee the derivative of the Lyapunov function to be negative, however not all of
the variables in it are available for sensor, so this appropriate storage function has to
be found for sensor’s detection, helping to guarantee the derivative of the Lyapunov
function to be negative.

Remark 3. The event-triggered mechanism (6) and (7) guarantee
[Ce(t); ew(t+ τ)]′ F [Ce(t); ew(t+ τ)] ≤ 0 for all t ≥ 0 which actually also guarantees[

Ce(t− τ)
ew(t)

]′
F

[
Ce(t− τ)
ew(t)

]
≤ 0 (9)

for all t ≥ τ just with a variable substitution, which is an important condition further
guaranteeing the decrease of the Lyapunov function in the sequel.

For the designed observer (3) and (4) and the system (2), consider the following
Lyapunov function:
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V (e(t)) =

[
e(t)∫ t

t−τ e(s)ds

]′ [
P Q
Q′ T

] [
e(t)∫ t

t−τ e(s)ds

]
+
∫ t
t−τ e

′(s)Se(s)ds

+
∫ t
t−τ (τ − t+ s)ė′(s)Rė(s)ds+ e′w(t)Pwew(t)

(10)

with

[
P Q
Q′ T

]
> 0, S > 0, R > 0 and Pw > 0. Thus, in the following Theorem 5.1

and its proof, we will show how to guarantee the decrease of the Lyapunov function
(10) by designing the event-triggered mechanism as (6).

Theorem 5.1. Under the proposed observer (3) and (4) for system (2), the decrease of
Lyapunov function (10) is guaranteed if there exist positive parameter τ > 0, matrices
M ∈ Rn×(4n+p), F ∈ R2p×2p satisfying (7) and positive matrices S ∈ Rn×n, R ∈

Rn×n, Pw ∈ Rp×p,

[
P Q
Q′ T

]
∈ R2n×2n with P,Q, T ∈ Rn×n such that the following

condition is satisfied:

Φ(τ) +M ′D +D′M −G′FG < 0 . (11)

where

D =
[
A −LC 0 −In L

]
(12)

G =

[
0 C 0 0 0
0 0 0 0 Ip

]
(13)

Φ(τ) = He

(
M ′

1PM4 +M ′
1QM1 −M ′

1QM2 +M ′
3Q

′M4 +M ′
3TM1 −M ′

3TM2

)
+M ′

1SM1 −M ′
2SM2 +M ′

4τRM4 +
−1

τ
(M1 −M2)

′R(M1 −M2)

+
−3

τ
(M1 +M2 −

2

τ
M3)

′R(M1 +M2 −
2

τ
M3) +He(M ′

5PwCAM2)

(14)

with

M1 = [In, 0, 0, 0, 0]

M2 = [0, In, 0, 0, 0]

M3 = [0, 0, In, 0, 0]

M4 = [0, 0, 0, In, 0]

M5 = [0, 0, 0, 0, Ip]

(15)
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Proof. (1) Considering the Lyapunov function (10), one can easily see that V (tk) <
V −(tk), thus we only need to prove that V̇ (t) < 0, t ∈ [tk, tk+1) in the following part.
For t ∈ [tk, tk+1), according to the Wirtinger-based inequality shown in Lemma 2.1,
the derivative of the Lyapunov function is as follow:

V̇ (e(t)) = 2

[
e(t)∫ t

t−τ e(s)ds

]′ [
P Q
Q′ T

] [
ė(t)

e(t)− e(t− τ)

]
+ e′(t)Se(t)

− e′(t− τ)Se(t− τ) + τ ė′(t)Rė(t) +

∫ t

t−τ
−ė′(s)Rė(s)ds+ 2e′w(t)Pw ˙ew(t)

≤ 2

[
e(t)∫ t

t−τ e(s)ds

]′ [
P Q
Q′ T

] [
ė(t)

e(t)− e(t− τ)

]
+ e′(t)Se(t)

− e′(t− τ)Se(t− τ) + τ ė′(t)Rė(t) +
−1

τ

( ∫ t

t−τ
ė(s)ds

)′
R
( ∫ t

t−τ
ė(s)ds

)
+

−3

τ

( ∫ t

t−τ

(τ + 2(s− t)

τ

)
ė(s)ds

)′
R
( ∫ t

t−τ

(τ + 2(s− t)

τ

)
ė(s)ds

)
+ 2e′w(t)PwCAe(t− τ)

= 2

[
e(t)∫ t

t−τ e(s)ds

]′ [
P Q
Q′ T

] [
ė(t)

e(t)− e(t− τ)

]
+ e′(t)Se(t)

− e′(t− τ)Se(t− τ) + τ ė′(t)Rė(t) +
−1

τ

(
e(t)− e(t− τ))′R

(
e(t)− e(t− τ)

)
+

−3

τ

(
e(t) + e(t− τ)− 2

τ

∫ t

t−τ
e(s)ds

)′
R
(
e(t) + e(t− τ)− 2

τ

∫ t

t−τ
e(s)ds

)
+ 2e′w(t)PwCAe(t− τ)

(16)

Introduce the vector as follow:

ξ(t) =


e(t)

e(t− τ)∫ t
t−τ e(s)ds

ė(t)
ew(t)

 (17)

Then, for t ∈ [tk, tk+1), one gets

V̇ (e(t)) = ξ′(t)Φ(τ)ξ(t) (18)
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Here, we need to introduce another relationship. According to (5), one gets

[
A −LC 0 −In L

]
ξ(t) = 0 (19)

According to the above condition (19), one gets

2ξ′(t)M ′ [ A −LC 0 −In L
]
ξ(t) = 0 (20)

which leads to

ξ′(t)M ′Dξ(t) + ξ′(t)D′Mξ(t) = 0 (21)

with

D =
[
A −LC 0 −In L

]
(22)

So, the decrease of Lyapunov function (10) is guaranteed if

Φ(τ) +M ′D +D′M < 0 (23)

(2) Next, we need to find an appropriate storage function larger than the derivative
of the Lyapunov function (18), which only related available information of sensor.
The available information of sensor related to vector ξ(t), is as follow:

ξe(t) =

[
Ce(t− τ)
ew(t)

]
(24)

Thus, we find a storage function like this form

[
Ce(t− τ)
ew(t)

]′
F

[
Ce(t− τ)
ew(t)

]
, which

may be larger than the derivative of the Lyapunov function (18) by design the matrix
F .

(3) Then, we design the event-triggered mechanism like (6) so that the following
condition is always satisfied:[

Ce(t− τ)
ew(t)

]′
F

[
Ce(t− τ)
ew(t)

]
≤ 0 (25)
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Thus, with (25), the decrease of Lyapunov function (10) is guaranteed if

Φ(τ) +M ′D +D′M −G′FG < 0 (26)

with

G =

[
0 C 0 0 0
0 0 0 0 Ip

]
(27)

Proof is ended here.

5.2. Exclusion of Zeno behaviour and convergence analysis

In this part, based on the results shown in the above Section 5.1, we will exclude the
Zeno behaviour and then give the convergence analysis.

Since the decrease of Lyapunov function has been proved in Theorem 5.1, one can
get that the estimation error is bounded, thus we assume ∥e(t)∥ ≤ Λ where Λ ∈ R
and Λ > 0. Since condition F11 < 0 is satisfied, it’s eigenvalues are all negative, thus
we assume the biggest eigenvalues of F11 as αF11max, and it satisfies:

αF11max < 0 (28)

In practical application, due to the precision of sensor, the event-triggered condition
in (6) only can be detected by sensor when ∥Ce(t)∥2 ≥ ρ where ρ ∈ R is a very
small positive constant depending on the precision of sensor. This condition is
actually added for excluding the Zeno behaviour in the sequel. This is actually
similar to the literature (Li et al. (2019)), in which a parameter ζ2y is added
in event-triggered condition for the same reason. Thus, the transmission period
t̄k+1 − t̄k can be guaranteed to be positive: At instant t̄k, the event is triggered,
which means that w(t) will be updated by real output at instant t̄k + τ , and one has
ew(t̄k + τ) = 0, so the inter-execution times t̄k+1 − t̄k are bounded by the time it

takes for

[
Ce(t)

ew(t+ τ)

]′
F

[
Ce(t)

ew(t+ τ)

]
to evolve from negative value (as a result of

F11 < 0) to positive value. Thus, we give the following results:

Theorem 5.2. For an arbitrary small positive constant ρ ∈ R such that ∥Ce(t)∥2 ≥ ρ,
then there exists a positive inter-event time t̄k+1 − t̄k satisfying

t̄k+1 − t̄k > T (29)
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where

T =
−Λ2∥F12+F ′

21∥∥CA∥∥C∥+Λ∥CA∥
√

Λ2∥F12+F ′
21∥2∥C∥2−4∥F22∥αF11maxρ

2∥F22∥∥CA∥2Λ2
(30)

Proof. Assume t is the current time, and t̄k is the last trigger instant. Now,
we need to use the event-triggered mechanism (6) to determine the next trigger
instant after t̄k. Thus, we assume the inequality in (6) is satisfied at certain time in-
stant t, causing the next trigger after instant t̄k. The inequality in (6) can be written as

e′(t)C ′F11Ce(t) + e′w(t+ τ)F22ew(t+ τ) + e′(t)C ′(F12 + F ′
21)ew(t+ τ) > 0 (31)

According to the definition of ew(t), one can get

ėw(t) = CAe(t− τ) (32)

Thus, one obtains

∥ew(t+ τ)∥2 = ∥ew(t̄k + τ) +

∫ t+τ

t̄k+τ
CAe(t− τ)dt∥2

= ∥
∫ t+τ

t̄k+τ
CAe(t− τ)dt∥2

≤
(∫ t+τ

t̄k+τ
∥CAe(t− τ)∥dt

)2

≤
(∫ t+τ

t̄k+τ
∥CA∥∥e(t− τ)∥dt

)2

≤ ∥CA∥2Λ2(t− t̄k)
2

(33)

According to (33), the left hand of (31) can be deduced as

e′(t)C ′F11Ce(t) + e′w(t+ τ)F22ew(t+ τ) + e′(t)C ′(F12 + F ′
21)ew(t+ τ)

≤ αF11maxρ+ ∥F22∥∥CA∥2Λ2(t− t̄k)
2 + Λ2∥F12 + F ′

21∥∥CA∥∥C∥(t− t̄k)
(34)
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Thus, if (31) is satisfied for trigger, then according to (34), the following inequality
is also satisfied:

ā(t− t̄k)
2 + b̄(t− t̄k) + c̄ > 0 (35)

where

ā = ∥F22∥∥CA∥2Λ2 (36)

b̄ = Λ2∥F12 + F ′
21∥∥CA∥∥C∥ (37)

c̄ = αF11maxρ (38)

From (36)-(38), one can get

ā > 0; b̄ > 0; c̄ < 0 (39)

which means the solution of inequality (35) is an open interval, with two sections on
the positive and negative axis respectively. Because of t > t̄k , ignore the negative
part, the inequality (35) has the following solution:

t− t̄k > T (40)

which means if the condition in (6) is satisfied for time instant t, and then lead to the
next trigger at time instant t after the last trigger instant t̄k (i.e. t = t̄k+1), then the
above inequality (40) is satisfied, which exclude the zeno behaviour.

Theorem 5.3. With the event-triggered mechanism (6), if all conditions in Theo-
rem 5.1 and 5.2 are satisfied, then the state x̂ of the proposed observer (3) and (4)
asymptotically converges to a small neighborhood (depending on the ρ) of the state x
of system (2) without Zeno behavior.

Proof. With the above result Theorem 5.2 and the previous Theorem 5.1, one can
easily get the Theorem 5.3.
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Remark 4. Actually, it is because of the precision of sensor, which leads to no trans-
missions when ∥Ce(t)∥2 < ρ, that a practical convergence of the observer exists.

Remark 5. Although the delay in this paper has no bounds, but if it is too large,
it may lead to insolubility of LMIs (11). Actually, if the delay is too large, we may
not find a good enough parameter L to make LMIs solvable. In systems with network
constraints, because of the time-delays and sampling, we usually can’t find a very
good or accurate parameter L by set the poles of A− LC. Fortunately, in this paper
a prediction (4) is used to compensate for the effect of sampling, which may be useful
to find a better L. Besides, the compensation for the effect of delay is also important,
but it is now not considered in this paper and will be done in the further work. And
for the compensation of time-delays, a prediction method mentioned in (Gawthrop &
Wang, 2009a, 2009b) can be used.

6. Application to a visual servoing mobile cart system

Refer to literatures (Wang, Tian, & Christov, 2016; Wang, Tian, & Vasseur, 2015),
the considered example is a mobile cart which moves along a horizontal and straight
line segment. The cart is moved through a notched belt powered by an electric motor.
This referred mobile cart system can be modeled as

 ẋ(t) =

[
0 1
0 − 1

τc

]
x(t) +

[
0
kc

τc

]
u(t)

y(t) = [1 0]x(t)

(41)

where x(t) = [px(t) vx(t)]
′ is the state which is composed of the cart position

px(t) ∈ R and the speed vx(t) ∈ R. The parameters τc = 0.83s, kc = 2.9m · s/V are the
system time constant and overall gain respectively. And y(t) is the system output.

6.1. Simulation results

The initial value of system state is set as x0 = [10; 8]. The fixed time-delays induced
by network transmission can be set as τ = 0.05s. Select the poles of A − L ∗ C at
(−3.1974 − 1.9074), one can get L = [3.9; 1.4]. We set u(t) = 2 sin(t − 0.125π). The
precision is set as ρ = 10−5 for both Section 6.1 and 6.2. By using the LMI tools in
matlab, one can get the solutions
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[
P Q
Q′ T

]
=


2.1876 −2.5339 −3.8387 −0.5509
−2.5339 7.2595 1.1962 −0.3117
−3.8387 1.1962 10.3500 1.1703
−0.5509 −0.3117 1.1703 3.3424


S =

[
2.8722 −1.7927
−1.7927 7.5555

]
R =

[
0.3681 0.0473
0.0473 0.1152

]
∗ 10−3

M =

[
0.9126 −134.7785 −154.0436 −0.1419 −1.4777 −0.6934 0.4801
−1.1666 −106.1954 430.8560 0.0719 0.6035 1.4605 109.7414
−111.3094 155.4215
2.6586 −430.5870

]
Pw = 2.7110

F =

[
−1.2347 0.0769
−3.1524 13.4835

]
(42)

The following figures 2-3 show the estimation results and the trigger signals. For
comparison, we also give the results of classical event-triggered mechanism (classical
ETM) in form of t̄k+1 = min

{
t̄ ≥ t̄k, s.t.∥y(t) − y(t̄k)∥2 ≥ σ1∥y(t)∥2 + σ2

}
with

σ1 = 0.03, σ2 = 0.02 which is used in literatures Li et al. (2019), and the results of
periodic time-triggered mechanism (TTM) with the period setted as 0.9s. Seeing from
figures 2-3 and table 1, one can find that, compared with the other two methods, the
method based on the new event-triggered mechanism proposed in this paper leads to
both better estimation performance and larger average transmission period.
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Figure 2. State estimation based on different methods
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Figure 3. Trigger signal based on different methods

Table 1. Average transmission period in 10s based on different methods.

Methods TTM classical ETM This paper

Average transmission period 0.9 1.11 1.43

6.2. The maximum value of τ under a certain value of L

Even through in this paper no bound of the time-delays is given on the level of
theoretical analysis, it is still necessary in the practical application. Thus, in this
part, we would like to find the maximum value of τ under the certain value of L for
the special mobile cart system. We only change the value of the time-delay τ and
keep the other parameters the same as above. Through some calculations, based on
the certain parameter L = [3.9; 1.4], the maximum value of the time-delay is obtained
as τ = 0.29s (if τ is set as 0.3s, then the LMIs have no solutions), and in this case
one can get the follwing solutions by using the LMI tools in matlab:



[
P Q
Q′ T

]
=


1.9549 −2.5382 −3.0440 −0.6840
−2.5382 5.3806 3.2954 0.0472
−3.0440 3.2954 6.4256 0.8009
−0.6840 0.0472 0.8009 3.9687

 ∗ 103

S =

[
1.7812 −1.6297
−1.6297 4.7525

]
∗ 103

R =

[
128.5937 29.2567
29.2567 42.9055

]
M =

[
0.0045 1.9928 2.3397 0.0014 −0.0065 −0.0105 0.0048
−0.0051 1.6987 −6.5079 −0.0009 0.0266 0.0322 −1.6753

1.6596 −2.3294
0.0238 6.4959

]
∗ 105

Pw = 407.3784

F =

[
−0.0539 −1.0153
0.7992 0.7729

]
∗ 104

(43)
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So, with the above calculated parameters, the method can be applied to the mobile
cart system with the maximum time-delay τ = 0.29s if we set L = [3.9; 1.4], and the
corresponding simulation results when τ = 0.29s are as follows:
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Figure 4. State estimation under τ = 0.29s
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Figure 5. Trigger signal under τ = 0.29s

7. conclusion

An event-triggered observer for linear time-invariant systems is proposed in this
paper. Different from the most used classical kind, a new event-triggered mechanism is
designed based on an appropriate storage function, which is larger than the derivative
of Lyapunov function. This novel event-triggered mechanism is designed to guarantee
the storage function non-positive, leading to the decrease of the Lyapunov function,
further guaranteeing convergence of the observer system. Compared with a kind of
classical event-triggered mechanism and the periodic time-triggered mechanism, the
observer based on the new designed event-triggered mechanism brings both better
estimation performance and larger average transmission period.
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