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Abstract

By taking advantages of properties of the Laguerre polynomials, we propose a new inequality called Bessel-Laguerre integral
inequality, which can be applied to stability analysis of linear systems with infinite distributed delays and with general kernels.
The matrix corresponding to the system without the delayed term or the matrix corresponding to the system with the zero-
delay is not necessarily assumed to be non-Hurwitz. Through a Laguerre polynomials approximation of kernels, the advantage
of the method is that the original system is not needed to be transformed into an augmented one. Instead, it is represented as a
system with additional signals that are captured by the Bessel-Laguerre integral inequality. Then, we derive a set of sufficient
stability conditions that is parameterized by the degree of the polynomials. The particular case of gamma kernel functions
can be easily considered in this analysis. Numerical examples illustrate the potential improvements achieved by the presented
conditions with increasing the degree of the polynomial, but at the price of numerical complexity.

Key words: Systems with infinite distributed delays, Bessel-Laguerre integral inequality, Lyapunov method.

1 Introduction

Systems with distributed delays have been extensively
studied in the literature, see e.g., [1], [2], [3], [4] and the
references therein. Most of them were mainly focused on
the class of finite distributed delays. In fact, infinite dis-
tributed delays appear in a wide range of applications,
such as in population dynamics, in traffic flow dynam-
ics of transportation systems, in machine tool vibration
problem, in predator-prey model, see e.g., [5], [6], [7] and
the references therein. Particularly, it was shown in [8]
that gamma-distributed infinite delays with a gap can
be encountered in the control over communication net-
works.

The analytical stability region of the traffic flow dy-
namics was presented in [9] using a frequency domain
approach. Furthermore, necessary and sufficient stabil-
ity condition was found in [6] for linear systems with
gamma-distributed delays. Then consensus problems for
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ural Science Foundation of China (grant no. 61873034,
61503026, 61720106010), the Beijing Natural Science Foun-
dation (grant no. 4182057), and the ANR project SCIDiS
contract number 15-CE23-0014.

a class of linear systems with gamma-distributed delays,
with application to traffic flow dynamics, were analyzed
in [5]. Note that in the traffic flow model on the ring con-
sidered in the above works, the matrix corresponding to
the system without the delayed term is zero and the ma-
trix corresponding to the system with the zero-delay has
a zero eigenvalue. Thus, the infinite distributed delays in
the traffic flow model on the ring have stabilizing effects.

To assess stability of systems with gamma-distributed
infinite delays, a Lyapunov-based method was firstly
provided in [10] by virtue of two kinds of integral in-
equalities with infinite intervals of integration. Further-
more, an efficient condition was proposed in [11] by a
generalized integral inequality and its double integral
extension. It is worth noting that in [10] and [11], if the
matrix corresponding to the system without the delayed
term or the matrix corresponding to the system with
the zero-delay is not Hurwitz, the original system needs
to be transformed into an augmented one, which may
induce undesired additional dynamics and consequently
some possible conservatism.

On the other side, based on Legendre orthogonal poly-
nomials and Bessel inequality, a new set of integral in-
equalities that encompasses Jensen [12] and Wirtinger-
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based [13] inequalities as particular cases, was recently
proposed to analyze the stability of systems with finite
delays, see e.g, [14] and [15] for constant discrete delays,
[16] for distributed delays, [17] for time-varying delays.
The features of these inequalities are integrated into the
construction of new Lyapunov functionals, leading to
highly efficient stability criteria in terms of conservatism
and complexity. It is worth noting that the Legendre
polynomials are restricted to finite delays.

In the present paper, our objective is to derive less con-
servative stability conditions for linear systems with infi-
nite distributed delays and with general kernels. Thanks
to properties of the Laguerre polynomials, we first pro-
pose a new inequality called Bessel-Laguerre integral in-
equality. It is shown that the Bessel inequality provided
in [15], [16] and [17] is not only relevant to Legendre
polynomials with a particular inner product over a finite
interval but also to Laguerre polynomials with an inner
product over an infinite interval. Through a Laguerre
polynomials approximation of kernels, it is not manda-
tory to transform the original system into an augmented
one done in [10] and [11]. Instead, the original system is
represented as a system with additional signals that can
be captured by the newly introduced Bessel-Laguerre in-
tegral inequality. Then, an appropriate Lyapunov func-
tional leads to a set of linear matrix inequalities (LMIs)
that depends on the degree N of the Laguerre polyno-
mial. The proposed method can easily include the case
of gamma kernel functions. Two illustrative examples,
including the traffic flow model on the ring, are given to
show the potential improvements of the methodology,
especially if one increases N , but at the price of addi-
tional decision variables and higher order of LMIs.

The structure of this paper is as follows. In Section 2,
the system description with general kernel function is
addressed, with the properties of the Laguerre polyno-
mials and kernel approximation. The main results are
presented in Sections 3 and 4, which include the newly
introduced Bessel-Laguerre integral inequality and its
application to stability analysis of infinite distributed
delay systems with general kernels, respectively. Two il-
lustrative examples are discussed in Section 5 and a brief
summary in Section 6 concludes the paper.

Notations: The symbols R, R+, Z+ and N denote the
set of real numbers, non-negative real numbers, non-
negative integers and positive integers, respectively. Rn
denotes the n dimensional Euclidean space with vector
norm | · |, Rn×m is the set of all n × m real matrices,
and the notation P � 0, for P ∈ Rn×n means that P
is symmetric and positive definite. For x : R → Rn, we

denote xt(θ)
∆
= x(t + θ), θ ∈ [−h, 0]. The superscript

‘T ’ stands for matrix transposition. Moreover, for any
square matrix A ∈ Rn×n, we define He(A) = A + AT .
The symmetric entries in a symmetric matrix are de-
noted by ∗. The symbol Lp(a, b;Rn)(p = 1, 2, . . . ) is the

Banach space of functions x: (a, b)→ Rn with ‖x‖Lp =∫ b
a
|x(s)|pe−xds < +∞.

2 Problem formulation and preliminaries

In this section, the considered system model is presented
as well as some preliminaries results on Laguerre poly-
nomials.

2.1 Systems description

Consider the linear continuous-time systems with an in-
finite distributed delay:

ẋ(t) = Ax(t) +A1

∫ +∞

0

K(θ)x(t− θ − h)dθ, (1)

where x(t) ∈ Rn is the instantaneous state vector, A,
A1 ∈ Rn×n are constant system matrices, and h ≥ 0
represents a fixed time gap. It is assumed that the kernel
function K(θ) has a form of

K(θ) = Ψ̃(θ)e−
θ
T ,

where T > 0 is a scale parameter, the function

Ψ̃(θ) ∈ L2(0,+∞;R) and
∫ +∞

0
K(θ)dθ < +∞. The

matrices A and A + A1

∫ +∞
0

K(θ)dθ are not re-
quired to be Hurwitz. The initial condition is given by
φ ∈ C1(−∞, 0], where C1(−∞, 0] denotes the space of
continuously differentiable functions φ : (−∞, 0] → Rn
with the norm ‖φ‖C1 = ‖φ‖C + ‖φ̇‖C < +∞,
‖φ‖C = sups∈(−∞,0] |φ(s)| < +∞.

Let θ
T = u. Then the system (1) can be transformed into

ẋ(t) = Ax(t) +A1

∫ +∞

0

Ψ(u)e−ux(t− Tu− h)du,

(2)
where

Ψ(u) = T Ψ̃(Tu). (3)

2.2 Laguerre polynomials and kernel approximation

In this section, the Laguerre polynomials and some rel-
evant properties are presented. The Laguerre polynomi-
als considered over the interval [0,+∞) are defined as
follows:

∀k ∈ Z+, Lk(u) =

k∑
l=0

(
k

l

)
(−1)l

l!
ul. (4)
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For any functions f, g ∈ L2(0,+∞;R), consider the in-
ner product defined by

< f, g > =

∫ +∞

0

f(θ)g(θ)e−θdθ. (5)

The following properties of the Laguerre polynomials
presented in (4) will be helpful in deriving the main result
of the paper.

Property 1 The Laguerre polynomials form an or-
thonormal sequence with respect to the inner product (5)
and satisfy, for all (k, l) ∈ Z+ × Z+,

∫ +∞

0

Lk(u)Ll(u)e−udu =

{
0, k 6= l,

1, k = l.
(6)

Property 2 For all k ∈ Z+, the Laguerre polynomials
possess the following boundary conditions

Lk(0) = 1,

lim
θ→0

Lk(θ)e−θ = 1,

lim
θ→+∞

Lk(θ)e−θ = 0.

(7)

Property 3 The Laguerre polynomials satisfy the fol-
lowing differentiation rule

L̇k(u) =


0, if k = 0,

−
k−1∑
i=0

Li(u), if k ≥ 1, k ∈ N.
(8)

Consider the polynomial approximation of the kernel
function Ψ(u). For a given integerN , Ψ(u) can be rewrit-
ten as

Ψ(u) =

N∑
k=0

< Ψ(θ), Lk(θ) >

< Lk(θ), Lk(θ) >
Lk(u) + rN (Ψ, u)

=

N∑
k=0

ΨkLk(u) + rN (Ψ, u),

(9)

where

Ψk = < Ψ(u), Lk(u) > =

∫ +∞

0

Ψ(u)Lk(u)e−udu,

rN (Ψ, u) = Ψ(u)−
N∑
k=0

ΨkLk(u).

(10)

The term
∑N
k=0 ΨkLk(u) represents the projection of

Ψ(u) to the polynomial set {Lk, k = 0, . . . , N} with re-
spect to the inner product (5). The function rN (Ψ, u)

stands for the remainder of the approximation and is or-
thogonal to the first N + 1 Laguerre polynomials since
from Property 1 we have for any k = 0, . . . , N ,∫ +∞

0

rN (Ψ, θ)Lk(θ)e−θdθ =

∫ +∞

0

Ψ(θ)Lk(θ)e−θdθ

−
∫ +∞

0

N∑
i=0

ΨiLi(θ)Lk(θ)e−θdθ

=

∫ +∞

0

Ψ(θ)Lk(θ)e−θdθ −
∫ +∞

0

ΨkL
2
k(θ)e−θdθ

= Ψk −Ψk = 0.

(11)
Let βN denote the square of norm of rN associated with
the inner product (5), i.e.,

βN (Ψ) = < rN (Ψ, θ), rN (Ψ, θ) > =

∫ +∞

0

r2
N (Ψ, θ)e−θdθ.

(12)

The properties of βN are provided in the following
lemma.

Lemma 1 For Ψ(u) given by (3), the following inequal-
ities hold

βN (Ψ) =

∫ +∞

0

Ψ2(θ)e−θdθ −
N∑
k=0

Ψ2
k ≥ 0, (13)

βN+1(Ψ)− βN (Ψ) = −Ψ2
N+1 ≤ 0. (14)

Proof 1 The proof of (13) follows the definition of
βN (Ψ) and Property 1 of the Laguerre polynomials. The
inequality (14) results directly from (13).

2.3 Modeling of systems with infinite distributed delays

Using the Laguerre polynomials approximation (9) of
the kernel function Ψ(u), system (2) is equivalent to

ẋ(t) = Ax(t) +A1

N∑
k=0

ΨkΩk(xt) + βN (Ψ)A1ΞN (Ψ, xt),

(15)
where

Ωk(xt) =

∫ +∞

0

Lk(θ)x(t− Tθ − h)e−θdθ,

ΞN (Ψ, xt) =


0, if βN (Ψ) = 0,

1
βN (Ψ)

∫ +∞

0

rN (Ψ, θ)x(t− Tθ − h)e−θdθ,

if βN (Ψ) > 0.

(16)
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Remark 1 In [10] and [11], to assess stability of systems
with particular gamma-distributed delays, whose model
is given in (1) with K(θ) having a form of

K(θ) =
θM−1e−

θ
T

TM (M − 1)!
, (17)

where M ≥ 2, M ∈ N, is a scaling parameter of the
distribution and T > 0 is a scale parameter, one needs
to transform the original system (1) with (17) into the
following augmented one:

ẋ(t) = Ax(t) +A1y(t),

ẏ(t) = − 1
T y(t) + ρ(t),

(18)

where

y(t) =

∫ +∞

0

K(θ)x(t− θ − h)dθ,

ρ(t) =

∫ +∞

0

Q(θ)x(t− θ − h)dθ,

Q(θ) =
θM−2e−

θ
T

TM (M − 2)!
.

This may lead to conservatism (smaller stability region
in the (T, h) plane) because the stability of the augmented
system (18) implies the stability of the original system
(1) with (17), but not vice versa [10].

In the present paper, the original system (1) is not neces-
sary to be transformed into an augmented one. Instead
it is represented as a system with additional signals Ωk,
k = 0, . . . , N, and ΞN that can be captured by the newly
introduced Bessel-Laguerre integral inequality proposed
in the next section.

3 Bessel-Laguerre integral inequality

In this section, taking advantages of the properties of La-
guerre polynomials and applying Bessel inequality [18],
we provide an integral inequality, which includes the ad-
ditional signals of system (15) and then allows us to de-
velop efficient stability criterion.

Lemma 2 (Bessel-Laguerre integral inequality) For a
given n × n matrix R � 0, and x(θ) ∈ L2(0,+∞;Rn),
the following inequality

∫ +∞

0

xT (θ)Rx(θ)e−θdθ ≥
N∑
k=0

ΩTk (x)RΩk(x)

+ρ(βN (Ψ))ΞTN (Ψ, x)RΞN (Ψ, x)

(19)

holds, where the notations Ωk(x) and ΞN (Ψ, x) are de-
fined in (16) and

ρ(βN (Ψ)) =

{
βN (Ψ), if βN (Ψ) > 0,

1, if βN (Ψ) = 0.
(20)

Proof 2 For x ∈ L2(0,+∞;Rn), Ψ ∈ L2(0,+∞;R)
and Laguerre polynomials Lk, k = 0, . . . , N, define a
function fN (θ) for all θ ∈ [0,+∞) by

fN (θ) = x(θ)−
N∑
k=0

Ωk(x)Lk(θ)︸ ︷︷ ︸
xN (θ)

− rN (Ψ, θ)ΞN (Ψ, x)︸ ︷︷ ︸
νN (θ)

.

(21)
The above definition indicates that function fN (θ) be-

longs toL2(0,+∞;Rn), and thus,
∫ +∞

0
fTN (θ)RfN (θ)e−θdθ

exists. In the next developments and for the sake
of simplicity, we will denote by I(f) the integral∫ +∞

0
fT (θ)Rf(θ)e−θdθ, for any appropriate function f .

Since matrix R is positive definite it is clear that I(fN )
is non-negative. Expanding the expression of fN yields

0 ≤ I(fN ) = I(x) + I(xN ) + I(νN )

−2

∫ +∞

0

xT (θ)RxN (θ)e−θdθ − 2

∫ +∞

0

xT (θ)RνN (θ)e−θdθ

+2

∫ +∞

0

xTN (θ)RνN (θ)e−θdθ.

(22)
Our objective is to simplify this expression. Consider the
case that βN (Ψ), and consequently, rN are not zero. Let
us first note that

I(xN )=

N∑
k=0

N∑
j=0

(∫ +∞

0

Lk(θ)Lj(θ)e
−θdθ

)
ΩTk (x)RΩj(x).

Using the orthonormal property (6), the previous expres-

sion simplifies to I(xN ) =
∑N
k=0 ΩTk (x)RΩk(x).Similarly,

we note that

I(νN ) =

(∫ +∞

0

r2
N (Ψ, θ)e−θdθ

)
ΞTN (Ψ, x)RΞN (Ψ, x)

= βN (Ψ)ΞTN (Ψ, x)RΞN (Ψ, x).

Then, the fourth term of the right-hand-side of (22) can
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be rewritten by expanding the expression of xN

−2

∫ +∞

0

xT (θ)RxN (θ)e−θdθ

= −2

N∑
k=0

(∫ +∞

0

Lk(θ)e−θx(θ)dθ

)T
RΩk(x)

= −2

N∑
k=0

ΩTk (x)RΩk(x)

= −2I(xN ).

Similarly, we get that

−2

∫ +∞

0

xT (θ)RνN (θ)e−θdθ

= −2

(∫ +∞

0

rN (Ψ, θ)e−θx(θ)dθ

)T
RΞN (Ψ, x)

= −2βN (Ψ)ΞTN (Ψ, x)RΞN (Ψ, x)

= −2I(νN ).

It remains to express the last term of the right-hand-side
of (22). This yields

2

∫ +∞

0

xTN (θ)RνN (θ)e−θdθ

= 2

N∑
k=0

(∫ +∞

0

rN (Ψ, θ)Lk(θ)e−θdθ

)
ΩTk (x)RΞN (Ψ, x).

In light of the construction of rN in (11), we straightfor-
wardly obtain that this term is zero. Hence, re-injecting
the previous expressions into (22) yields

0 ≤ I(x)− I(xN )− I(νN ),

which concludes the proof for the case βN (Ψ) > 0. Fur-
thermore, in the case where βN (Ψ), and consequently,
rN are zero, from (22) it follows that

∫ +∞

0

xT (θ)Rx(θ)e−θdθ ≥
N∑
k=0

ΩTk (x)RΩk(x),

which yields (19) due to ΞN (Ψ, x) given by (16) is zero
when βN (Ψ) = 0.

Remark 2 The well-known Jensen inequality was gen-
eralized in [10] from finite intervals of integration to in-
finite ones: given an n × n matrix R � 0 and a scalar
function K : [0,+∞) → R+ such that the integrations
concerned are well defined, the following inequality∫ +∞

0

K(s)xT (s)Rx(s)ds

≥ K−1
0

∫ +∞

0

K(s)xT (s)dsR

∫ +∞

0

K(s)x(s)ds

(23)

holds, where K0 =
∫ +∞

0
K(s)ds. Recently, the inequality

(23) was extended in [11] to a more general form:

∫ +∞

0

K(s)xT (s)Rx(s)ds

≥ K−1
0

∫ +∞

0

K(s)xT (s)dsR

∫ +∞

0

K(s)x(s)ds

+
(
K2 − K2

1

K0

)−1

Ω̃TRΩ̃,

(24)

where K1 =
∫ +∞

0
sK(s)ds, K2 =

∫ +∞
0

s2K(s)ds and

Ω̃ = K1

K0

∫ +∞
0

K(s)x(s)ds−
∫ +∞

0
sK(s)x(s)ds. Note that

the Bessel-Laguerre inequality (19) with ΞN (Ψ, x) = 0
for N = 0 and N = 1 allows retrieving inequalities (23)
and (24) with K(s) = e−s, respectively. This remark
demonstrates the generality of the Bessel-Laguerre in-
equality.

4 Stability analysis

In this section, the new integral inequality (19) in
Lemma 2 will be employed for the stability analysis of
system (1) with infinite distributed delays. For the sake
of simplicity, we will use in this section the following
notations:

GN =

[
In 0n,n 0n,n(N+1)

0n(N+1),n 0n(N+1),n In(N+1)

]
,

FN =
[
A 0n,n A1Ψ0 A1Ψ1 · · · A1ΨN

]
,

WN =
[
FTN ΥT

N (0) ΥT
N (1) · · · ΥT

N (N)
]T
,

ΥN (k) =
[
0n,n

1
T In r

0
NkIn r

1
NkIn · · · rNNkIn

]
,

riNk =

{
− 1
T , if i ≤ k,

0, if i ≥ k + 1.

(25)

We propose to adopt the following Lyapunov functional:

VN (xt) = ζTN (xt)PNζN (xt)+h

∫ 0

−h

∫ t

t+θ

ẋT (s)Sẋ(s)dsdθ

+

∫ +∞

0

∫ t

t−Tθ−h
e−θxT (s)Rx(s)dsdθ,

(26)
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where PN � 0, S � 0, R � 0 and the augmented vector
ζN (xt) is given by

ζN (xt) =



xt(0)∫ +∞

0

L0(θ)x(t− Tθ − h)e−θdθ

...∫ +∞

0

LN (θ)x(t− Tθ − h)e−θdθ



=


xt(0)

Ω0(xt)
...

ΩN (xt)

 .
(27)

We now state the main result of this paper:

Theorem 1 Given h > 0, assume that there exist
(n(N + 2)) × (n(N + 2)) positive definite matrix PN
and n × n positive definite matrices S,R such that the
following matrix inequality

ΦN0 βN (Ψ)GTNPNJNA1 h2FTNS

∗ −ρ(βN (Ψ))R h2βN (Ψ)AT1 S

∗ ∗ −h2S

 ≺ 0 (28)

is satisfied, where

ΦN0 = He(GTNPNWN ) + ΠN − ETNSEN −RN ,
ΠN = diag(R, 0n(N+2),n(N+2)),

RN = diag(02n,2n, R, . . . , R︸ ︷︷ ︸
N+1

),

EN =
[
In −In 0n,n(N+1)

]
,

JN =
[
In 0n,n(N+1)

]T
(29)

with the other notations given in (25). Then system (1)
is asymptotically stable for the time gap h.

Proof 3 Differentiating VN (xt) along (1) and applying
Jensen inequality, we have

V̇N (xt) ≤ 2ζTN (xt)PN ζ̇N (xt)

+xT (t)Rx(t) + h2ẋT (t)Sẋ(t)

−[x(t)− x(t− h)]TS[x(t)− x(t− h)]

−
∫ +∞

0

xT (t− Tθ − h)Rx(t− Tθ − h)e−θdθ.

(30)

The objective of the next developments consists in find-
ing an upper bound of V̇N (xt) using ΞN (Ψ, xt) and the
augmented vector ξN (xt) given by

ξN (xt) = col{x(t), x(t− h),Ω0(xt), · · · ,ΩN (xt)}. (31)

Consider the first term of the right hand side of (30). It
is easy to see that

ζ̇N (xt) =


ẋt(0)

Ω̇0(xt)
...

Ω̇N (xt)

 =


ẋt(0)

Ω0(ẋt)
...

ΩN (ẋt)

 .

From (15) and the definition of FN , it follows that

ẋt(0) = FNξN (xt) + βN (Ψ)A1ΞN (Ψ, xt).

Then, an integration by parts ensures that for any k =
{0, . . . , N},

Ωk(ẋt) = − 1
T [ lim
θ→+∞

(Lk(θ)x(t− Tθ − h)e−θ)]

+ 1
T [ lim
θ→0

(Lk(θ)x(t− Tθ − h)e−θ)]

+
1

T

∫ +∞

0

L̇k(θ)x(t− Tθ − h)e−θdθ

− 1

T

∫ +∞

0

Lk(θ)x(t− Tθ − h)e−θdθ.

Thanks to Properties 2 and 3 of the Laguerre polynomials,
the following expression is derived

Ωk(ẋt) =
1

T
x(t−h)− 1

T

k∑
i=0

∫ +∞

0

Li(θ)x(t−Tθ−h)e−θdθ

=
1

T
x(t− h)− 1

T

k∑
i=0

Ωi(xt)

= ΥN (k)ξN (xt).

Collecting all the components of ζ̇N (xt), we have

ζ̇N (xt) = WNξN (xt) + βN (Ψ)JNA1ΞN (Ψ, xt),

where the matrices WN and JN are given in (25) and
(29), respectively. Next, applying Lemma 2 to the last
term of (30), we obtain the following inequality

−
∫ +∞

0

xT (t− Tθ − h)Rx(t− Tθ − h)e−θdθ

≤ −
N∑
k=0

ΩTk (xt)RΩk(xt)−ρ(βN (Ψ))ΞTN (Ψ, xt)RΞN (Ψ, xt)

= −ξTN (xt)RNξN (xt)− ρ(βN (Ψ))ΞTN (Ψ, xt)RΞN (Ψ, xt).
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Since ζN (xt)=GNξN (xt) and xT (t)Rx(t)=ξTN (xt)ΠNξN (xt)
and (x(t)−x(t−h))TS(x(t)−x(t−h))=ξTN (xt)E

T
NSENξN (xt),

it follows that

V̇N (xt) ≤2ξTN (xt)G
T
NPN[WNξN (xt)+βN (Ψ)JNA1ΞN (Ψ, xt)]

+h2ẋT (t)Sẋ(t)+ξTN (xt)(ΠN−RN−ETNSEN )ξN (xt)

−ρ(βN (Ψ))ΞTN (Ψ, xt)RΞN (Ψ, xt)

= ηTN (xt)

[
ΦN0 βN (Ψ)GTNPNJNA1

∗ −ρ(βN (Ψ))R

]
ηN (xt)

+h2[FNξN (xt) + βN (Ψ)A1ΞN (Ψ, xt)]
TS

×[FNξN (xt) + βN (Ψ)A1ΞN (Ψ, xt)],

(32)
where ηN (xt) = col{ξN (xt), ΞN (Ψ, xt)} and other nota-
tions are given by (25) and (29). Hence, by Schur com-

plements, (28) guarantees V̇N (xt) ≤ −ε|x(t)|2 for some
ε > 0, which implies the asymptotic stability of sys-
tem (1) with infinite distributed delays.

Remark 3 In some situations, the stability analysis of
time-delay systems introduces additional dynamics that
may introduce conservatism. Let us point out that the
Bessel-Laguerre and more generally Bessel methods do
not introduce any additional dynamics to the original sys-
tems. It only corresponds to manipulations, that allows
providing more accurate analysis and less conservative
results than existing ones.

Remark 4 The stability condition of Theorem 1 is pa-
rameterized by the degree N of the Laguerre polynomial
, which indicates the precision of the polynomial approx-
imation. Note that the order of LMIs and the number of
decision variables increase with N . As shown in the ex-
amples below, the improvements may be achieved by in-
creasing N , but at the price of additional decision vari-
ables, showing a classical tradeoff between the reduction
of the conservatism and the numerical complexity.

5 Illustrative examples

Two numerical examples from the literature will illus-
trate the efficiency of the proposed conditions.

5.1 Application to gamma-distributed delays

The previous method can be easily applied to systems
with gamma kernel functions, whose model is given by
(1) with (17). Let θ

T = u, then system (1) with (17) can
be transformed into system (2) with Ψ(u) having a form
of

Ψ(u) =
uM−1

(M − 1)!
. (33)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

No Consensus

Consensus

[10]

[11]

Theorem 1 with N=1

Theorem 1 with N=2

Theoretical Bound

Fig. 1. Example 1: tradeoff curves between maximal allow-
able T and h by different methods

Consider system (1) with (17). Following [6] and [10], we
give an example of two cars on a ring, where

A = 0 and A1 =

[
−2 2

2 −2

]
.

Here neither A nor A+ A1 is Hurwitz. The objective is
to find the stability region in the (T, h) plane that pre-
serves the asymptotic stability. Taking the scaling pa-
rameter of distribution M = 2 we have Ψ(u) = u and

then
∫ +∞

0
Ψ2(u)e−udu = 2. Further, simple computa-

tion shows

Ψ0 =

∫ +∞

0

Ψ(u)L0(u)e−udu = 1,

Ψ1 =

∫ +∞

0

Ψ(u)L1(u)e−udu = −1,

Ψ2 =

∫ +∞

0

Ψ(u)L2(u)e−udu = 0.

From (13) and (14), it follows readily that βi(Ψ) = 0,
and therefore, ρ(βi(Ψ)) = 1, i = 1, 2.

For different values of h given in Table 1, by applying
Proposition 3 of [10] , Proposition 1 of [11], and using
Theorem 1, we obtain the maximum allowable values of
T that guarantee the stability. Figure 1 illustrates trade-
off curves between maximal allowable T and h by ap-
plying the above Lyapunov-based methods and by the
frequency domain technique proposed in [6] for the theo-
retical bounds. One can see that the conditions of Theo-
rem 1 with N = 1 essentially achieve better results than
those of [10] and [11]. As expected in Remark 4, with
additional decision variables, Theorem 1 with N = 2
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Table 1
Example 1: maximum allowable value of T for different h.

[maxT ]\ h 10−5 0.01 0.03 0.05 0.08 0.1 0.15 0.2 0.35 Decision

variables

[10] 0.274 0.265 0.248 0.229 0.199 0.179 0.140 0.102 - 22

[11] 0.305 0.296 0.276 0.256 0.226 0.205 0.158 0.110 0.002 16

Th 1(N = 1) 0.495 0.467 0.432 0.390 0.325 0.289 0.213 0.147 0.002 27

Th 1(N = 2) 0.499 0.477 0.433 0.390 0.333 0.301 0.223 0.148 0.002 42

Re 5(N = 2) 0.499 0.477 0.433 0.390 0.333 0.301 0.223 0.151 0.002 45

slightly improves the results, which are very close to an-
alytical ones except for smaller values of T .

Remark 5 The method of [10] and [11] for stability
analysis of system with gamma-distributed delays re-
quires one more triple integral term in Lyapunov func-
tional, which is not essential in our analysis. However,
following [10] and [11], we can insert one additional term

VU (xt)=

∫ +∞

0

∫ Tθ+h

0

∫ t

t−λ
e−θẋT (s)Uẋ(s)dsdλdθ, U � 0,

into Lyapunov functional (26). Differentiation of VU and
applying the double integral inequality (see e.g., [10] and
[11]) yield

V̇U (xt)≤(T+h)ẋT (t)Uẋ(t)− 1

h+ 1
ξTN (xt)Y

T
N UYNξN (xt),

where ξN (xt) is given by (31) and YN = [In 0n,n −
In 0n,nN ]. The stability result derived by VN (xt)+VU (xt)
almost coincides with the one by Theorem 1 (see the Ex-
ample 1).

Remark 6 The stability analysis in [11] for linear sys-
tems with gamma-distributed delays was based on a gen-
eralized integral inequality and its double integral exten-
sion. Note that the method of [11] is efficient only for
systems with gamma kernel functions (M ≥ 2) and not
suitable for systems with more general kernels. It is worth
mentioning that compared with [11], the proposed method
in this paper can not only deal with systems with more
general kernels but also lead to less conservative results
for systems with gamma-distributed delays (larger stabil-
ity region in the (T, h) plane).

5.2 Example 2

Consider system (1) from [10], where

A = 0 and A1 = −41.8.

The kernel function Ψ̃(θ) ∈ L2(0,+∞;R) is given by

Ψ̃(θ) = 3+20θ+700θ2

2−20θ+800θ2 and T = 1
10 . As noted in Remark 6,

the method of [11] is not applicable to this example since

the kernel function is not a gamma distribution. Apply-
ing Proposition 1 of [10], the maximum value of h is
found to be 0.128. The conditions of Theorem 1 with
N = 0, 1, 2 and 3 improve the results and yield the max-
imum values of h to be 0.146, 0.167, 0.174 and 0.175,
respectively. It is demonstrated that the results become
better with the increase of degree of the polynomial N .

6 Conclusions

In this paper, we have studied the stability of linear
systems with infinite distributed delays and with gen-
eral kernels. The analysis is based on a Laguerre poly-
nomials approximation of kernels and the newly intro-
duced Bessel-Laguerre integral inequality. By using a
Lyapunov method, a set of sufficient conditions has been
derived that is dependent on the degree N of the poly-
nomial. The suggested framework can easily include the
case of gamma kernel functions. Numerical examples il-
lustrate the potential improvements achieved by pro-
posed conditions with increasing N , but at the price of
additional decision variables. In particular, for the traffic
flow models on the ring, the proposed results are shown
to be very close to analytical ones. Future research in-
cludes other applications of this novel inequality.
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