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This paper presents an observer-based event-triggering strategy for systems with slope-restricted nonlinearities that depend on the state. Both the emulation and codesign problems are addressed. To avoid Zeno Behavior, a minimum dwell time is considered. By using a looped-functional approach and the cone-bounded properties of the nonlinearity, sufficient conditions based on linear matrix inequalities are derived to ensure global asymptotic stability of the origin of the closed-loop system under the proposed event-triggering strategy. These conditions are incorporated into convex optimization problems to optimally determine the event-triggering function parameters and the observer gain (in the co-design case) aiming at reducing the number of control updates. Numerical examples illustrate the potentialities of the approach.

INTRODUCTION

From a practical and technological point of view, event-triggered control strategies have been proposed as effective means to deal with communication and computation constraints in the context of networked control systems, i.e., systems where part or all of the communication is carried over a generic digital communication network (see [START_REF] Postoyan | Triggering mechanism using freely selected sensors for linear time-invariant systems[END_REF][START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and the references therein). Moreover, in the case of wireless networks, reducing the transmissions also reduces energy consumption, which is important for remote battery-operated nodes.

In the event-triggered control paradigm, differently from the classical periodic sampled control case, transmission of data and updating of the control action takes place only when a triggering condition, usually based on the system state or output values, is violated. The design challenges are to compute the control law and the triggering condition aiming at reducing the number of events and consequently the number of plant input control updates while keeping the closed-loop system stable and/or satisfying some performance criteria. Moreover, due to the hybrid nature of the closed-loop system, it should also be guaranteed that no Zeno behavior occurs. A Zeno behavior is characterized by the occurrence of infinitely many events at the same instant or the occurrence of inter-event times that tend to zero as time goes to infinity or to a finite instant, i.e. accumulation points in the event instants sequence (see, for instance, [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] for an explanation of Zeno behavior).

Basically, two approaches for designing event-triggered controllers are found in the literature [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] . The first one is the so-called emulation design, where the controller is given a priori and the task is to design only the triggering condition. Among works addressing emulation design, one can cite [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF][START_REF] Selivanov | Event-Triggered ∞ Control: A Switching Approach[END_REF][START_REF] Selivanov | Observer-based input-to-state stabilization of networked control systems with large uncertain delays[END_REF][START_REF] Borgers | Riccati-Based Design of Event-Triggered Controllers for Linear Systems With Delays[END_REF][START_REF] Abdelrahim | Event-triggered quantized control for input-to-state stabilization of linear systems with distributed output sensors[END_REF] in the context of linear systems while works [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Wang | Event design in event-triggered feedback control systems[END_REF][START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF][START_REF] Jiang | Takagi-Sugeno Model Based Event-Triggered Fuzzy Sliding-Mode Control of Networked Control Systems With Semi-Markovian Switchings[END_REF] consider nonlinear systems. The second approach, referred in the literature as co-design, consists in designing the control law as well as the triggering condition simultaneously. It is addressed, for instance, in the papers [START_REF] Antunes | Dynamic programming formulation of periodic event-triggered control: Performance guarantees and co-design[END_REF][START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF][START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for linear systems[END_REF][START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for the  2 -stabilization of linear systems[END_REF] considering linear systems and in [START_REF] Seuret | Event-triggered sampling for linear closed-loop systems with plant input saturation[END_REF][START_REF] Seuret | LQ-based event-triggered controller co-design for saturated linear systems[END_REF] considering nonlinear ones. Some recent works employ event-triggering techniques to tackle alternative problems as, for instance, multi-agent systems consensus [START_REF] Wang | Distributed Control of Nonlinear Multiagent Systems With Unknown and Nonidentical Control Directions via Event-Triggered Communication[END_REF] , output regulation by means of adaptive controllers [START_REF] Lei | Event-Triggered Adaptive Output Regulation for a Class of Nonlinear Systems With Unknown Control Direction[END_REF] , output regulation and control by means of neural networks and self-learning techniques [START_REF] Wang | Self-Learning Optimal Regulation for Discrete-Time Nonlinear Systems Under Event-Driven Formulation[END_REF][START_REF] Wang | Learning and Guaranteed Cost Control With Event-Based Adaptive Critic Implementation[END_REF] . The approaches followed in these papers cannot be regarded neither as emulation nor as co-design.

Many works in the literature address event-triggered control assuming that the entire state information is available (e.g. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF][START_REF] Wang | Event design in event-triggered feedback control systems[END_REF][START_REF] Lehmann | Extension and experimental evaluation of an event-based state-feedback approach[END_REF][START_REF] Wu | Event-triggered control for linear systems subject to actuator saturation[END_REF][START_REF] Aranda-Escolastico | A novel approach for periodic event-triggering based on general quadratic functions[END_REF][START_REF] Moreira | Event-triggered state-feedback control for continuous-time plants subject to input saturation[END_REF][START_REF] Moreira | Event-triggered control for nonlinear rational systems[END_REF] ). Unfortunately, in most practical applications, only part of the system state or a measurable output is available and this represents an additional challenge for the design of the event-triggering rules since, in this context, it is harder to eliminate the possibility of Zeno behavior. In the context of limited information, the control system can be implemented considering output-based controllers or observer-based controllers. In the first case, an output-feedback controller and an eventtriggering rule based only on the output information is designed. Among works using this approach we can cite Abdelrahim et al [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] , which consider nonlinear systems and employ a hybrid system formalism [START_REF] Goebel | Hybrid dynamical systems: modeling, stability, and robustness[END_REF] to derive LMI stability conditions alongside with dwell-time techniques to avoid Zeno behavior. Only emulation design is covered and the method needs a priori knowledge of a Lyapunov function for the closed-loop system. Still dealing with output-based feedback for nonlinear systems in an emulation design context, using dwell-time techniques and a hybrid systems formalism, Dolk et al [START_REF] Dolk | Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed  -Gain Performance and Zeno-Freeness[END_REF] consider a dynamic triggering law, disturbances and network delays. The designer needs to find a hybrid system representation for the closed-loop system where the nonlinear terms are linearly-bounded with respect to the networked-induced error and also needs to know a Lyapunov function and a storage function that are suitable for the system. Passivity theory is employed by Yu and Antsaklis [START_REF] Yu | Event-triggered output feedback control for networked control systems using passivity: Achieving ℒ 2 stability in the presence of communication delays and signal quantization[END_REF] to deal with input feed-forward output feedback passive (IF-OFP) nonlinear plants subject to communication delays and quantization. Only the emulation design case is addressed and their method needs the knowledge of a storage function with known passivity indexes. Absence of Zeno behavior is proved using the same arguments as in Tabuada's work [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] . More recently, Abdelrahim et al [START_REF] Abdelrahim | Event-triggered quantized control for input-to-state stabilization of linear systems with distributed output sensors[END_REF] considered the emulation design of output-based event-triggered controllers for linear systems with distributed sensors that feature signal amplitude quantization. The hybrid systems formalism is also employed in this work. The second option to deal with limited information is to incorporate a state observer and use the observed state in the feedback control law and in the evaluation of the event-triggering rule. In this context, Xia et al [START_REF] Xia | Observer based event-triggered control for certain and uncertain linear systems[END_REF] derive LMI stability conditions for linear time invariant systems with norm-bound uncertainties. A relative error triggering criterion is considered. The control law and the observer gains must be given a priori, i.e. only the emulation design is addressed. On the other hand, Feng et al [START_REF] Feng | Design of observer-based event-driven controllers for a class of state-dependent nonlinear systems[END_REF] address the co-design of all system elements (observer gains, controller gains and triggering rule parameters), considering periodic event-triggered control (PETC) and a specific class of nonlinear systems where the sum of the nonlinear components equals unity. This specific property is used to define a Lyapunov function and to derive LMI stability conditions that allow the co-design, as long as a set of constants are previously chosen by the designer. However, no method for choosing these constants is given and one needs to choose them by trial-and-error. Recently, Xing et al [START_REF] Xing | Event-Triggered Output Feedback Control for a Class of Uncertain Nonlinear Systems[END_REF] addressed emulation design considering a specific class of nonlinear systems suitable for modeling, for instance, ship dynamics. To avoid Zeno behavior, a fixed threshold triggering strategy is employed and, therefore, only practical stability can be achieved, i.e. the resulting trajectories do not converge to the origin. In our previous work [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] , linear systems subject to cone-bounded nonlinear inputs were addressed using observer-based techniques. The simultaneous synthesis of the controller gains and of the triggering rule parameters is obtained by numerically solving a convex optimization problem. A relative threshold triggering strategy is used to allow asymptotic stability and a minimum dwell time is introduced to avoid Zeno behavior. Exact discretization of the closed-loop system is employed to cope with the stability issues imposed by the minimum dwell time.

In the current paper, we address event-triggered controllers for systems with slope-restricted (as a consequence, sectorbounded) nonlinearities that depend on the state and are not measurable. Examples of practical nonlinearities that fit in this class include saturations, dead-zones, Chua's diodes [START_REF] Matsumoto | A chaotic attractor from Chua's circuit[END_REF] , some trigonometric functions and generic continuous piecewise-linear nonlinearities, which can also be used to represent more generic functions satisfying sector bound conditions. The major contribution is to propose a design method based on convex optimization problems to compute the event-triggering function and as much as possible the controller and observer parameters. We consider the use of a nonlinear state observer to reconstruct the state from the available output information. This leads to the first challenge: since the nonlinearity value is not measurable and depends on the state, it is not possible to design an observer such that the nonlinearity cancels-out in the observation error dynamics, as can be done in the case of input nonlinearities [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] . This issue will be addressed by the introduction of an auxiliary nonlinear function that depends on the original nonlinearity and has some specific properties. Moreover, as the separation principle does not hold in this case, conditions to certify the stability of the augmented closed-loop system are formally provided. Zeno behavior is avoided by imposing a dwell time [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF] in the triggering condition. The introduction of the dwell time leads to the second challenge: coping with the stability issues imposed by the dwell time. Differently from [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] , exact discretization cannot be applied here because the nonlinearity depends on the state value and thus it is not constant between events. To overcome this issue, a loopedfunctional approach [START_REF] Seuret | Taking into account period variations and actuators saturation in sampled-data systems[END_REF][START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF][START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF] is considered to guarantee that the total variation of a quadratic Lyapunov function over the dwell time is strictly decreasing. Based on this approach and exploring the cone-bounded properties of the nonlinearities, conditions in the form of linear matrix inequalities (LMIs) are devised to ensure the global asymptotic stability of the origin under the proposed event-triggering strategy. These conditions are cast into convex optimization problems allowing to address the emulation design and a co-design case where the triggering condition and the observer gain matrix are computed at the same time. Differently from some aforementioned works on nonlinear systems, the Lyapunov function to certify the closed-loop stability and the parameters of the triggering function are simultaneously computed. Furthermore, as the conditions are given in an LMI form, an explicit optimization criterion on the triggering function parameters is proposed aiming at an effective reduction of the generated events, i.e. the reduction of the control updates. As a side effect of the conditions, the stability of the closed-loop nonlinear system under periodic sampled-data control, with period equal to the considered dwell time is also formally guaranteed.

The remaining of the paper is organized as follows. In Section 2, the system to be considered is described and the problem we intend to solve is formally stated. The proposed event-triggering strategy is introduced in Section 3. Section 4 presents some tools that will be instrumental to derive the main results of this work. In Sections 5 and 6, asymptotic stability conditions in the form of linear matrix inequalities are presented to address the problem in the emulation and in the co-design contexts, respectively. The convex optimization problems proposed as means of computing the triggering function and the observer parameters (in the codesign case) are presented in Section 7. Section 8 illustrates the potentialities of the proposed approach through two numerical examples. Section 9 draws some concluding remarks and directions of future works.

Notation. ℕ, ℝ, ℝ , ℝ × denote respectively the sets of natural numbers, real numbers, -dimensional real-valued vectors and × real-valued matrices. For a given positive scalar , [0, ] denotes the set of differentiable functions from the interval [0, ] into ℝ . For any matrix , ′ denotes its transpose. For any square matrix , tr( ) denotes its trace and He( ) = + ′ . For two symmetric matrices of the same dimensions, and , > means thatis symmetric positive definite. and 0 stand respectively for the identity and the null matrix of appropriate dimensions. The block-diagonal matrix constructed from matrices and is denoted by diag( , ). For a partitioned matrix, the symbol * stands for symmetric blocks.

( ) and ( ) denote, respectively, the smallest and the largest eigenvalues of matrix . ‖ ⋅ ‖ stands for the Euclidean norm.

PROBLEM STATEMENT

Consider a continuous-time plant represented by the following equations:

̇ ( ) = ( ) + ( ) + ( ( )) ( ) = ( ) (1) 
where ( ) ∈ ℝ , ( ) ∈ ℝ , ( ) ∈ ℝ are the state, the input and the output of the plant, respectively. Matrices , , , and are constant and of appropriate dimensions. Function ∶ ℝ → ℝ is a slope-restricted, decentralized nonlinearity, i.e., each component ∶ ℝ → ℝ, ∈ {1, ..., } satisfies the following assumptions:

(A1) (0) = 0. (A2) ( ) is continuous and differentiable by parts, satisfying 0 ≤ ( ) ≤ ; > 0, ∀ ∈ ℝ
Note that any system where the nonlinearities are cone-bounded and whose variation rate is upper-bounded fulfill assumptions (A1) and (A2). In particular, as it will be seen, a nonlinearity satisfying these assumptions will also verify a classical sector condition. As mentioned in the Introduction, examples of nonlinearities satisfying (A1) and (A2) include saturation, dead-zone, Chua's diodes [START_REF] Matsumoto | A chaotic attractor from Chua's circuit[END_REF] , generic continuous piecewise-linear nonlinearities (which can be used to suitably approximate more complex nonlinearities), etc.

We consider the following observed-based feedback controller to asymptotically stabilize system (1):

⎧ ⎪ ⎨ ⎪ ⎩ ̇̂ ( ) = ̂ ( ) + ( ) + ( ̂ ( )) - ( ) ̂ ( ) = ̂ ( ) ( ) = ̂ ( ) (2) 
where ̂ ( ) ∈ ℝ and ̂ ( ) ∈ ℝ are the state and the output of the observer, respectively, and ( ) = ( ) -̂ ( ) is the output error. ∈ ℝ × and ∈ ℝ × are the observer and the observed state feedback gains, respectively. Since our goal is to implement an event-triggered control strategy, the control action applied to the plant is supposed to be updated only at the instants , ∈ ℕ, determined by the event-triggering algorithm. We assume that 0 = 0. The control action is held constant between two successive trigger events by means of a zero-order holder. Therefore, the actual control signal applied to the plant is given by:

( ) = ̂ ( ), ∀ ∈ [ , +1 ) (3 
) and the closed-loop system can be represented, ∀ ∈ [ , +1 ), by:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ̇ ( ) = ( ) + ( ) + ( ( )) ̇̂ ( ) = ̂ ( ) + ( ) + ( ̂ ( )) - ( ) ( ) = ( ) ̂ ( ) = ̂ ( ) ( ) = ( ) -̂ ( ) ( ) = ̂ ( ) (4) 
Define now the observation error ( ) = ( ) -̂ ( ), the augmented state vector ( ) = ̂ ′ ( ) ′ ( ) ′ ∈ ℝ 2 and the vector of available information to the event generator ( ) = ̂ ′ ( ) ′ ( ) ′ ∈ ℝ + and the following auxiliary nonlinearity:

( , ̂ ) = ( ) -( ̂ ) = ( ̂ + ) -( ̂ )
The closed-loop system can therefore be represented, ∀ ∈ [ , +1 ), ∀ ∈ ℕ, as follows:

⎧ ⎪ ⎨ ⎪ ⎩ ̇ ( ) = ( ) + ( ) + ( 1 ( )) + ( 2 ( ), 1 ( )) ( ) = 0 ( ) ( ) = ( ) (5) 
with

= - 0 + , = 0 , = 0 0 , = 0 , = 0 , 1 = 0 , 2 = 0 , ( 2 ( ), 1 ( )) = ( 1 ( ) + 2 ( )) -( 1 ( )). (6) 
Remark 1. We are assuming that the value of the nonlinearity ( ( )) is not measurable. The observer dynamics consider therefore a term ( ̂ ( )). In this case, the plant nonlinearity is not canceled in the observer error dynamics. Indeed, this dynamics depends on the difference between the values of ( ( )) and ( ̂ ( )), which is given by the auxiliary nonlinearity ( , ̂ ) = ( 1 ( ), 2 ( )). This fact leads to a more involved stabilization problem, since the separation principle is not valid in this case and we have to deal with two nonlinearities in the loop: and . Addressing this issue constitutes one novelty introduced in the present paper. Note that in the particular case in which ( ( )) is considered measurable, this term can be considered in the observer (instead of ( ̂ ( ))) and the error dynamics become linear. This would be similar to the case of input nonlinearities addressed in [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] or to the approach considered in [START_REF] Gomes Da | Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators[END_REF] to design output feedback controllers for Lur'e type systems.

Considering system (5), the following problems are addressed in this work: Problem 1 (Emulation design). Assuming that an observer and a stabilizing state feedback have been designed to ensure the global asymptotic stability of the continuous closed-loop system formed by the direct connection between (1) and ( 2), design an event-triggered control algorithm in order to guarantee the global asymptotic stability of the origin of the closed-loop system (5), while implicitly reducing the control updates (i.e. the number of events).

Problem 2 (Observer co-design). Assuming that only a stabilizing state feedback is given, jointly design the event-triggered control algorithm and the observer gain to ensure the global asymptotic stability of the origin of the closed-loop system.

EVENT-TRIGGERING STRATEGY

The triggering rule defines the instants when events are generated and the value of the control signal is updated. To be able to obtain asymptotic stability, a relative threshold triggering strategy is considered. Differently from the fixed threshold triggering strategy employed in [START_REF] Xing | Event-Triggered Output Feedback Control for a Class of Uncertain Nonlinear Systems[END_REF] , which allows to avoid Zeno behavior at the expense of attaining only practical stability, here we employ a time regularization (introduction of a minimum dwell time [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF] ) to deal with this issue.

Defining the error between the value of the observer state at the last triggering instant and at the current time as

( ) = ̂ ( ) -̂ ( ) (7) 
the considered triggering rule is then given by:

+1 = min{ ≥ + , . . ( ( ), ( )) ≥ 0}, (8) 
where ( ( ), ( )) is defined as follows:

( ( ), ( )) = ( ) ′ ( ) -′ ( ) -1 ( ), (9) 
with and being positive-definite matrices of appropriate dimensions. It should be noticed that the triggering function ( ( ), ( )) in (9), which is also used in our previous work [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] , can be seen as a generalization of the one introduced in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] . Here the relative error components are weighted by the positive definite matrices and , leading to more degrees of freedom and potentially less events generation. The parameters and of the function ∶ ℝ × ℝ + → ℝ and the minimum dwell time > 0 have to be designed such that the asymptotic stability of the origin of system ( 5) is ensured when the event instants are determined by (8). Since ( ) depends only on the observed state ̂ ( ), on its sampled value at and on ( ) = ̂ ′ ( ) ′ ( ) ′ , the triggering rule needs only available information (i.e. the plant output and the observer state). Notice that, after each event, the controller is forced to wait at least units of time before evaluating function again. Thus, rule (8) ensures a minimum inter-event time equal to the minimum dwell time and no Zeno behavior can occur.

The stability analysis should therefore be split into two intervals: [ , + ) and [ + , +1 ). From a Lyapunov perspective, the basic idea consists in considering a Lyapunov candidate function that verifies the following conditions for all ∈ ℕ:

(i) ( ( + )) < ( ( )) (ii) ̇ ( ( )) < 0, ∀ ∈ [ + , +1 ).
This approach has been applied in [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF] . However, in that case, as the nonlinearity was on the input, an exact discretization of the system considering a period was possible and (i) reduced to a discrete-time test of stability. In the present problem, as the nonlinearity affects the state, exact discretization is not possible. Thus, in order to ensure (i), considering that the control signal is kept constant during the interval [ , + ), we propose in the present work an approach based on the use of a looped-functional, which has been successfully applied to the stability analysis of sampled-data linear systems [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] . It should be emphasized that condition (i) does not imply that ( ( )) is strictly decreasing in the interval ( , + ), i.e. ̇ ( ( )) is not required to be negative during this interval.

INSTRUMENTAL TOOLS

In this section we provide two instrumental lemmas to tackle the nonlinearities and in the stability conditions. The first one is a classical sector condition that is satisfied by the system nonlinearity . . Therefore, ( ) ( ( ) -) ≤ 0, ∀ ∈ ℝ, ∀ > 0. Since is decentralized, relation (10) directly follows with = diag( 1 , ..., ).

To handle the nonlinearity ( 2 ( ), 1 ( )) = ( 1 ( ) + 2 ( )) -( 1 ( )), defined in (6), the following result is stated.

Lemma 2. Consider the nonlinearity ( 1 , 0 ) = ( 0 + 1 ) -( 0 ) as defined in (6). If each component of satisfies the assumptions (A1) -(A2), then

′ ( 1 , 0 ) ( ( 1 , 0 ) -Λ 1 ) ≤ 0 (11) 
where Λ = diag( 1 , ..., ) and is any diagonal positive-definite × matrix, is satisfied ∀ 1 , 0 ∈ ℝ .

Proof. Consider each component of and its corresponding arguments 1 and 0 , which are scalars. If 1 ≥ 0, the assumptions on the lower-bound of the derivative of imply that is monotonically increasing, i.e., ( 0 + 1 ) ≥ ( 0 ), or, equivalently, ( 0 + 1 ) -( 0 ) ≥ 0, leading to ( 1 , 0 ) ≥ 0. The upper-limit of the derivative leads, by applying the Mean Value Theorem, to

( 0 + 1 ) -( 0 ) ≤ 1 , i.e. ( 1 , 0 ) - 1 ≤ 0. If 1 < 0, a similar analysis brings ( 1 , 0 ) ≤ 0 and ( 1 , 0 ) - 1 ≥ 0. Hence, ( 1 , 0 ) ( ( 1 , 0 ) - 1 )
≤ 0, ∀ > 0 and relation (11) directly follows with = diag( 1 , ..., ).

EMULATION DESIGN

In this section, the emulation case is addressed. Considering a given dwell time , the goal is to propose a way to design the parameters and of the triggering function given in ( 9) assuming the controller and observer gains, and respectively, have been computed a priori in order to ensure that the origin of the continuous-time system (1)-( 2) is globally asymptotically stable. In such a case, the following theorem establishes conditions for the global asymptotic stability of the closed-loop system origin under the event-triggering strategy.

Theorem 1. Considering , and given, if there exist symmetric positive definite matrices , , and , a symmetric matrix 1 , matrices 1 , 2 , 1 , 2 , 2 , and and positive definite diagonal matrices , , and satisfying the LMIs

Π 1 + (Π 2 + Π 3 ) < 0 (12) Π 1 -Π 3 * - < 0 (13) 
Π Π ′ * - < 0 (14) 
with 1

Π 1 = He ′ 1 3 - 12 -′ 12 2 2 + ( ′ 1 ′ 1 + ′ 3 ′ 2 ) 1 + 0 2 -3 + 4 + 5 -′ 4 ( 4 -Λ 1 1 ) -′ 5 ( 5 + Λ 2 1 ) -′ 12 1 12 , Π 2 = He{ ′ 3 ( 1 12 + 2 2 )} + ′ 3 3 , Π 3 = ′ 2 2 , Π = He ′ 1 2 -′ 4 ( 4 -Λ 1 1 ) -′ 5 ( 5 -Λ 2 1 ) +( ′ 1 ′ 1 + ′ 2 ′ 2 ) ( + 0 ) 1 -2 + 3 + 4 + 5 -′ 3 3 , Π = 1 , 1 = 0 0 0 0 , 2 = 0 0 0 0 , 3 = 0 0 0 0 , 4 = 0 0 0 0 , 5 = 0 0 0 0 , 12 = 1 -2 , ( 15 
)
then the origin of system (5) with the triggering rule defined by ( 8) and ( 9) is globally asymptotically stable. [START_REF] Postoyan | Triggering mechanism using freely selected sensors for linear time-invariant systems[END_REF] Notice that the selector matrices in ( 12) and ( 13) differ from those in (14) in the dimensions of the third element.

Proof. Consider a quadratic function ( ( )) = ( ) ′ ( ). The stability analysis is carried out considering two intervals, namely [ , + ) and [ + , +1 ). The first interval corresponds to the dwell time, in which the triggering function is not evaluated. We are going to show that conditions ( 12)-( 14) ensure ( ( + ))-( ( )) < 0, ∀ ∈ ℕ and ̇ ( ( )) < 0, ∀ ∈ [ + , +1 ), ∀ ∈ ℕ.

For ∈ [ , + ), we represent the system trajectories in a lifted domain [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF][START_REF] Yamamoto | New approach to sampled-data control systems -a function space method[END_REF][START_REF] Briat | A looped-functional approach for robust stability analysis of linear impulsive systems[END_REF] by defining = -, with ∈ [0, ), and a function  ( ) = ( + ) = ( ), leading from (5) to the following equation:

 ( ) =  ( ) + 0  (0) + ( 1  ( )) + ( 2  ( ), 1  ( )), ∀ ∈ [0, ). (16) 
Moreover, for ∈ [ , + ), we have:

( ( )) = ( ( )) =  ′ ( )  ( ), ∈ [0, ). (17) 
Consider now the solution to ( 16) for ∈ [0, ] given by  ∈ 2 [0, ] and define:

( ,  ) = ( ( )) + 0 ( ,  ), (18) 
with 0 ( ,  ) ∶ [0, ] → 2 [0, ] being a looped-functional borrowed from [START_REF] Seuret | Taking into account period variations and actuators saturation in sampled-data systems[END_REF][START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] , defined as follows:

0 ( ,  ) = ( -)( ( ) - (0)) ′ 1 ( ( ) - (0)) + 2 2  (0) + ( -)  ′ (0)  (0) + ( -) ∫ 0 ′ ( )  ( ) . ( 19 
)
Observe that 0 verifies a looping condition; i.e. 0 ( ,  ) = 0 (0,  ) = 0, ∀ ∈ 2 [0, ] . Besides that, we have:

̇ ( ,  ) = 2 ′ ( )  ( ) + ( -) ′ ( )  ( ) + 2 1 ( ( ) - (0)) + 2 2  (0) -( ( ) - (0)) ′ 1 ( ( ) - (0)) + 2 2  (0) + ( -2 ) ′ (0)  (0) -∫ 0 ′ ( )  ( ) . ( 20 
)
We show now that ( 12) and ( 13) imply ̇ ( ,  ) < 0. With this aim, consider the following augmented vector:

( ) =  ′ ( )  ′ (0) ′ ( ) ′ ( ) ′ ( ) ′ (21) 
where we are using the shortcuts ( ) = ( 1  ( )) and ( ) = ( 2  ( ), 1  ( )) for simplicity. The coupling relation between the components of ( ) imposed by ( 16) leads to the following relation, valid for any matrices 1 and 2 of appropriate dimensions:

2  ′ ( ) ′ 1 + ′ ( ) ′ 2 0 ( ) = 0, (22) 
with 0 = 0 -. Therefore, this null term can be added to the inequality (20). Combining (20) and ( 22)

leads to ̇ ( ,  ) = 2 ′ ( )  ( ) + ( -) ′ ( )  ( ) + 2 1 ( ( ) - (0)) + 2 2  (0) -( ( ) - (0)) ′ 1 ( ( ) - (0)) + 2 2  (0) + ( -2 ) ′ (0)  (0) -∫ 0 ′ ( )  ( ) + 2( ′ ( ) ′ 1 + ′ ( ) ′ 2 ) 0 ( ). (23) 
Now taking into account that for any matrix of appropriate dimensions the following inequality is verified 37,41

∫ 0 ′ ( )  ( ) ≥ 2 ′ ( ) ( ( ) - (0)) -′ ( ) -1 ′ ( ), (24) 
one obtains that

̇ ( ,  ) ≤ 2 ′ ( )  ( ) + ( -) ′ ( )  ( ) + 2 1 ( ( ) - (0)) + 2 2  (0) -( ( ) - (0)) ′ 1 ( ( ) - (0)) + 2 2  (0) + ( -2 ) ′ (0)  (0) -2 ′ ( ) ( ( ) - (0)) + ′ ( ) -1 ′ ( ) + 2( ′ ( ) ′ 1 + ′ ( ) ′ 2 ) 0 ( ). (25) 
Moreover, considering that Lemma 1 and Lemma 2 ensure ′ ( )

( ′ ( )-Λ 1  ( )) ≤ 0 and ′ ( ) ( ( )-Λ 2  ( )) ≤ 0, one obtains that ̇ ( ,  ) ≤ 2 ′ ( )  ( ) + ( -) ′ ( )  ( ) + 2 1 ( ( ) - (0)) + 2 2  (0) -( ( ) - (0)) ′ 1 ( ( ) - (0)) + 2 2  (0) + ( -2 ) ′ (0)  (0) -2 ′ ( ) ( ( ) - (0)) + ′ ( ) -1 ′ ( ) + 2( ′ ( ) ′ 1 + ′ ( ) ′ 2 ) 0 ( ) -′ ( ) ( ′ ( ) -Λ 1  ( )) -′ ( ) ( ( ) -Λ 2  ( )). (26) 
Performing some algebraic manipulations, (26) can be rewritten as

̇ ( ,  ) ≤ ′ ( ) Π 1 + ( -)Π 2 + ( -2 )Π 3 + -1 ′ ( ). (27) 
Now, notice that the matrix expression in the right-hand side of ( 27) is affine with respect to . Thus, as ∈ [0, ], by convexity, it suffices to ensure that the right-hand-side of ( 27) is negative for = 0 and for = to guarantee that ̇ ( ,  ) < 0, ∀ ∈ [0, ]. Applying the values = 0 and = to (27) leads to the following conditions:

Π 1 + (Π 2 + Π 3 ) < 0, (28) 
Π 1 -Π 3 + -1 ′ < 0. (29) 
Applying now the Schur complement to (29), one retrieves condition (13) and concludes that satisfaction of conditions ( 12) and ( 13) ensures ̇ ( ,  ) < 0, ∀ ∈ [0, ]. This, in turn, ensures that

∫ 0 ̇ ( ,  ) = ( ( )) -( (0)) + 0 ( ,  ) -0 (0,  ) < 0. ( 30 
)
Since 0 ( ,  ) = 0 (0,  ) = 0, we conclude that satisfaction of conditions ( 12) and ( 13) ensures that

( ( )) -( (0)) = ( ( + )) -( ( )) < 0, ∀ ∈ ℕ. (31) 
For ∈ [ + , +1 ), we can consider the signal ( ), defined in (7) to re-write system (5) as follows:

̇ ( ) = + 0 ( ) + ( ) + 1 ( ) + 2 ( ), 1 ( ) (32) 
Now, consider the following expression where ̇ ( ) is combined with the negative terms ′ ( ) ( ( ) -Λ 1  ( )), ′ ( ) ( ( ) -Λ 2  ( )) and ( ( ), ( )):

 = ̇ ( ) -( ( ), ( )) -2 ′ ( ) ( ( ) -Λ 1 ( )) -2 ′ ( ) ( ( ) + Λ 2 ( )) (33) 
If we ensure  < 0, since relations ( 10) and ( 11) hold, and relation ( ( ), ( )) ≤ 0 is ensured by the triggering condition (8) for any ∈ [ + , +1 ), then it follows that ̇ ( ) < ( ( ), ( )) -2 ′ ( ) ( ( ) -Λ 1 ( )) -2 ′ ( ) ( ( ) + Λ 2 ( )) ≤ 0 for any ∈ [ + , +1 ) .

Defining the vector

( ) = ′ ( ) ̇ ′ ( ) ′ ( ) ′ ( ) ′ ( )) ′ ( 34 
)
where the shortcuts ( ) = ( 1 ( )) and ( ) = ( 2 ( ), 1 ( )) are used for simplicity, we can rewrite (33) as:

 = ′ ( ){He{ ′ 1 2 -′ 3 3 + ′ 1 ′ -1 1 -′ 4 ( 4 -Λ 1 1 ) -′ 5 ( 5 + Λ 2 1 )}} ( ). ( 35 
)
Using the coupling between the components of imposed by (32), the following relation is satisfied for any matrices 1 and 2 of appropriate dimensions:

2 ′ ( ) ′ 1 + ̇ ′ ( ) ′ 2 0 ( ) = 0 ( 36 
)
with 0 = + 0 -. Hence, the left-hand side of (36) can be added to  without changing its value, leading to:

 = ′ ( ) He ′ 1 2 -′ 3 3 + ′ 1 ′ -1 1 -′ 4 ( 4 -Λ 1 1 ) -′ 5 ( 5 + Λ 2 1 ) + ( ′ 1 ′ 1 + ′ 2 ′ 2 ) 0 ( ) = ′ ( ) Π + Π ′ -1 Π ( ). (37) 
Therefore, satisfying Π + Π ′ -1 Π < 0 ensures  < 0 and thus ̇ ( ) < 0, ∀ ∈ [ + , +1 ) when ( ( ), ( )) is given as in (9). Applying the Schur complement to this last inequality we recover (14). Hence, satisfaction of ( 14) effectively ensures that ̇ ( ) < 0, ∀ ∈ [ + , +1 ).

To conclude the proof, we need to show that the trajectories of the system in any interval [ , + ) are bounded and converge to the origin as → ∞. To do this, let us define the set = { = ′ ′ ′ ∈ ℝ 2 ∶ 0 ≤ ≤ 1 and 0 ≤ ≤ 1, = 1, ..., }, where and are the i-th components of and , respectively. Since ( 10) and ( 11) are verified, note that there exists ( ) ∈ , such that

( 1 ( )) = ( )Λ 1 ( ) ( 2 ( ), 1 ( )) = ( )Λ 2 ( ) ∀ = 1, ...,
Hence, the trajectories of ( 5) can be represented by the following time-varying linear differential inclusion:

̇ ( ) = ( + Θ ( )Λ 1 + Θ ( )Λ 2 ) ( ) + 0 ( ) (38) 
with Θ ( ) = diag( 1 ( ), ..., ( )) and Θ ( ) = diag( 1 ( ), ..., ( )).

For each admissible function ( ) ∈ , since ( 38) is a linear time-varying system, we can define a transition matrix Ψ ( , 0 ) for it. Defining Ψ ( ) = Ψ( + , ) as the restriction of function Ψ ( , 0 ) to the interval [ , + ], it follows that

 ( ) = Ψ ( ) (0) + ∫ 0 Ψ ( ) 0  (0)
and thus we can write

‖ ‖  ( ) ‖ ‖ ≤ ⎛ ⎜ ⎜ ⎝ ‖ ‖ ‖ Ψ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ‖ ‖ ‖ ‖ ∫ 0 Ψ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ 0 ‖ ‖ ‖ ⎞ ⎟ ⎟ ⎠ ‖ ‖  (0) ‖ ‖ .
Considering all the possible functions ∈ 2 [0, ] such that ( ) ∈ , ∀ ∈ [0, ], there exists a scalar

Ψ = sup ∈ 2 [0, ] , ( )∈ , ∈[0 , ] ⎧ ⎪ ⎨ ⎪ ⎩ ‖ ‖ ‖ Ψ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ‖ ‖ ‖ ‖ ∫ 0 Ψ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ 0 ‖ ‖ ‖ ⎫ ⎪ ⎬ ⎪ ⎭ such that ‖ ( )‖ ≤ Ψ ‖ (0)‖ or, equivalently: ‖ ( + )‖ ≤ Ψ ‖ ( )‖, ∀ ∈ [0, ], ∀ ∈ ℕ (39) 
As ( 12) and ( 13) ensure that ( ( + )) < ( ( )) and ( 14) ensures that ̇ ( ( )) < 0, ∀ ∈ [ + , +1 ), it follows that lim →∞ ( ) = 0 and thus from (39), we have that the trajectories are uniformly bounded and lim →∞ ( ) = 0.

Remark 2. Notice that the proof of Theorem 1 does not require the positive definiteness of the looped-functional 0 ( ,  ). As discussed in [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] , this is an advantage (in terms of conservatism reduction) with respect to the use of classical Lyapunov-Krasovskii functionals that are required to be positive definite.

Although the focus in this paper is on event-triggered controllers, as a side effect of the conditions in Theorem 1, the asymptotic stability of the origin of the closed-loop system under periodic sampled control with a period equal to the dwell time can be formally guaranteed. The following corollary states this.

Corollary 1 (Periodic sampled control). Considering , and given, if there exist symmetric positive definite matrices and , a symmetric matrix 1 , matrices 1 , 2 , 1 , 2 , 2 , and and positive definite diagonal matrices , , and satisfying ( 12) and ( 13), then the origin of system ( 5) is globally asymptotically stable considering a periodic control updating policy, with period , i.e = , ∀ ∈ ℕ.

Proof. It directly follows from Theorem 1. Just notice that for periodic sampling, one needs to consider only the time interval [ , + ], therefore condition ( 14) is not needed.

CO-DESIGN

In this section, we assume that a stabilizing state feedback control law was previously designed using, for instance, the techniques presented in [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF] . From this starting point, the co-design of the observer gain matrix and the event-triggering function parameters and is addressed.

OPTIMIZATION PROBLEMS

To compute the triggering function parameters in the emulation context and, additionally, the observer gains in the co-design context, we propose to use the following optimization problems based respectively on the stability conditions of Theorems 1 and 2.

• For the emulation case: min(tr( ) + tr( ))

subject to: (12), ( 13), ( 14), > 0

• For the co-design case: min(tr( ) + tr( ))

subject to: (40), ( 41), ( 42), > 0

The reasoning behind the optimization criterion in (43) and ( 44) is as follows: According to the triggering rule (8), no events can be generated while ( ( ), ( )) < 0. Taking the definition of ( ( ), ( )) from ( 9), we can rewrite this inequality to conclude that no events can occur while

1 ( ( ), ( )) = ( ) ′ ( ) ′ ( ) -1 ( ) < 1. (45) 
Moreover, from the definition of ( ) in ( 7), we see that at each event time we have ( ) = 0. Hence, to trigger a new event,

1 ( ( ), ( )) needs to evolve from 0 to 1. On the other hand, we have

1 ( ( ), ( )) ≤ ( )‖ ‖ 2 ( -1 )‖ ‖ 2 . ( 46 
)
The optimization criterion aims at indirectly minimizing the eigenvalues ratio ( ) ( -1 ) (and thus, maximize the time 1 ( ( ), ( )) takes to go from 0 to 1, maximizing the time between events) by minimizing the sum of the traces of and . Notice that this effectively minimizes the trace of and maximizes the trace of -1 , indirectly minimizing the mentioned ratio. To select the scalars that appear in the co-design case, we propose to use a grid search. The dwell-time parameter is also a design parameter and can be chosen according to the processing and network communication constraints. The designer can choose, for instance, the smallest dwell time that is suitable given the infrastructure at hand.

NUMERICAL EXAMPLES

In this section, we illustrate the use of the methodology by means of two numerical examples.

Example 1

Consider system (1) with:

= 0 1 4 0 , = 0 1 , = 0 0.5 , = 1 0 ′ , = 0 1 
′ and ∶ ℝ → ℝ being a logarithmic function with dead-zone:

( ) = ⎧ ⎪ ⎨ ⎪ ⎩ 0, if | | ≤ 1 ln( ), if > 1 -ln(-), if < -1 (47) 
which leads to Λ = 1. We choose the controller gain = -6.321 -3.944 , which stabilizes the origin of the system in continuous time. One can see that the states of the closed-loop systems indeed converge to the origin. The middle plots depict the control signal.

The bottom plots depict the instants where the events occurred. The heights of the bars in the bottom plot represent the interevent times --1 and the horizontal line represents the dwell time . The numbers of events in these plots are 20, 19 and 16, respectively. One can see that the event-triggering mechanism effectively postpones the occurrence of events with respect to the dwell time (i.e. there is an improvement with respect to a periodic implementation with period ). To confirm this improvement, we calculated the average number of samples for simulations of the closed-loop systems considering 100 initial conditions along the unit circle on the plane containing the plant state variables, i.e., considering various initial conditions of the plant and zero-initialized observers, and the time interval [0, 10]. The results are summarized in Table 1, which also shows the number of events generated by a periodic implementation with a sampling period equal to the dwell time . For = 0.5, the optimization problem becomes unfeasible. A periodic implementation of the controller with a sampling period of 0.5 is still stable, but it would be outperformed by any of the event-triggered control implementations considering dwell times less than or equal to 0.4, as shown in Table 1. Periodic implementations with sampling periods of 0.57 and above are unstable, as shown in Figure 2. Therefore, the event-triggered control implementation with = 0.4 outperforms any periodic implementation for the example at hand.

Co-design

Considering the dwell times = 0.1, = 0.3 and = 0.4, we solve the co-design optimization problem (44) with additional conditions ( ) < 10 3 ( ) and ( ) < 10 3 ( ) to prevent and from becoming ill-conditioned. Simulations of the resulting closed-loop systems considering the initial condition (0) = -4 -3 ′ , ̂ (0) = 0 0 ′ are depicted in Figure 3. The numbers of events generated were 18, 17 and 15. As in the emulation case, Table 2 shows the average number of events obtained for each value of the dwell time, considering the time interval [0, 10] and 100 initial conditions distributed along the unit circle in the plane of the plant states with zero-initialized observers. The number of events generated by a periodic implementation with a sampling period equal to the dwell time is also shown for comparison. As in the emulation case, the event-triggering mechanism effectively postponed the occurrence of events with respect to the dwell time, representing an improvement with respect to a periodic implementation with period . For = 0.5, the optimization problem becomes unfeasible. In this case, it makes no sense to compare to a periodic implementation since the observer gain matrix is not defined when the optimization problem is unfeasible. 

Example 2

In this section we consider a one-link robotic manipulator with flexible joints driven by a DC motor, as presented in [START_REF] Böhm | Predictive control for lure systems subject to constraints using LMIs[END_REF] and [START_REF] Rajamani | Existence and design of observers for nonlinear systems: Relation to distance to unobservability[END_REF] .

The system admits a representation as given in (1) with:

= ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 1 0 0 -48.6 -1.25 48.6 0 0 0 0 1 19.5 0 -16.7 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 21.6 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 -3.33 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , ′ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 0 1 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , ′ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ with ∶ ℝ → ℝ defined as ( ) = sin( ) + (48) 
It follows that ( ) satisfies assumptions (A1) and (A2) with = 2. In this representation, 1 and 2 are the motor axis angular position and velocity, respectively, while 3 and 4 are the arm angular position and velocity. As in [START_REF] Rajamani | Existence and design of observers for nonlinear systems: Relation to distance to unobservability[END_REF] , we assume that only the motor axis variables are measurable and that we are interested in steering the state to zero. We are specifically interested in the arm variables 3 and 4 .

For the controller, we choose the gain = -9.044 -1.385 3.810 -1.140 , which globally stabilizes the origin of the system in continuous time. (43), with additional conditions ( ) < 10 3 ( ) and ( ) < 10 3 ( ) to prevent and from becoming ill-conditioned, for = 0.02 and = 0.04. Simulations of the resulting closed-loop systems for these cases, considering the initial conditions (0) = 1.2 0 0 0 ′ , borrowed from [START_REF] Böhm | Predictive control for lure systems subject to constraints using LMIs[END_REF] , and ̂ (0) = 0 0 0 0 ′ are depicted in Figure 4.

The upper plots in the figure depict the angular position and velocity of the arm, in solid lines, as well as the corresponding observed state variables, in dashed lines. One can see that the state variables indeed converge to the origin. The numbers of events in these plots are 80 and 72, respectively. It can be seen again that the event-triggering mechanism effectively postpones the occurrence of events with respect to the dwell time. 

Co-design

Considering the dwell times = 0.02 and = 0.04, we solve the co-design optimization problem (44), also with the additional conditions ( ) < 10 3 ( ) and ( ) < 10 3 ( ) to prevent and from becoming ill-conditioned. Simulations of the resulting closed-loop systems with the same initial conditions (0) = 1.2 0 0 0 ′ and ̂ (0) = 0 0 0 0 ′ are depicted in Figure 5. The number of events are 81 and 55, respectively. As one can see, the event-triggering strategy resulting from the co-design process also effectively postponed the occurrence of events with respect to the dwell time in this example.

CONCLUSION

In this paper we addressed the design of observer-based event-triggered control for systems with slope-restricted nonlinearities that depend on the system state. Emulation design as well as the co-design of the triggering function parameters and the observer gain matrix have been addressed. From a practical perspective, the proposed approach is based only on available information: the control strategy depends only on the measurable output of the plant and the triggering rule depends only on this measure and the observer states. In particular, as the nonlinearity of the system is supposed to be non-measurable, the proposed observer contains a nonlinearity that depends only on the estimated state. The mismatch between the nonlinearities of the system and the observer leads to a nonlinear behavior for the observation error. To tackle this issue, a "sector-like" relation is considered for the mismatched term. Thus, sufficient conditions in the form of LMIs associated to convex optimization problems have been proposed to design the triggering function parameters and the observer gains (in the co-design case) to ensure the global asymptotic stability of the closed-loop system while aiming at reducing the number of events. The approach allows to design the event-triggering strategy with a dwell time imposing a minimum inter-events time, which prevents the Zeno behavior occurrence. To ensure asymptotic stability in the presence of this dwell time, a looped-functional approach was considered. This approach ensures that the trajectories remain bounded during the dwell time and that the total variation of a quadratic Lyapunov function over this time is negative. The looped-functional approach also permits to derive conditions that ensure the asymptotic stability of a periodic sampled implementation of the controller, which was presented as a corollary to the main result. Two numerical examples illustrated the effectiveness and potential of the proposed methods in reducing the number of control updates. The simultaneous design of the event-triggering strategy, the observer and the control gains is still an open problem and subject of ongoing work. Future work directions also include extending the proposed design method to take into consideration usual network-induced constraints such as time delays, packet losses and loss of packet ordering.

Lemma 1 .

 1 If each component of satisfies the assumptions (A1) -(A2), then ′ ( ) ( ( ) -Λ ) ≤ 0(10) where Λ = diag( 1 , ..., ) and is any diagonal positive-definite × matrix, is satisfied ∀ ∈ ℝ .Proof. Consider each component of and its corresponding argument, . If ≥ 0, application of the Mean Value Theorem and the assumptions imply ( ) ≥ (0) = 0 and ( ) ≤ . If < 0, similar arguments lead to ( ) ≤ (0) = 0 and ( ) ≥

4 .

 4 Simulations of the resulting closed-loop systems for these cases, considering the initial condition (0) = -4 -3′ , ̂ (0) = 0 0 ′ are depicted in Figure1. The upper plots in the figure depict the states of the plant and of the observer.
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 2 FIGURE 2Example 1 -Periodic implementation with sampling period of 0.57.
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 4 FIGURE 4 Example 2 -Emulation design -Simulations for some values of .
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 5 FIGURE 5 Example 2 -Co-design -Simulations for some values of .

TABLE 1

 1 Example 1 -Average number of control updates for 100 different initial conditions and a simulation of 10 s (emulation case)

		Event-triggered Periodic
	0.1	18.26	100
	0.3	17.54	33
	0.4	15.50	25
	0.5	unfeasible	20
	0.57	unfeasible	unstable

TABLE 2 Example

 2 

	1 -Average number of control updates for 100 different initial conditions and a simulation of 10 s (co-design
	case)		
		Event-triggered Periodic
	0.1	16.36	100
	0.3	18.08	33
	0.4	14.18	25
	0.5	unfeasible	-
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The following theorem establishes sufficient conditions for the global asymptotic stability of system (5) in the co-design case.

Theorem 2. Considering and given, if there exist positive scalars , , , symmetric positive definite matrices , , and , a non-singular matrix 11 , a symmetric matrix 1 , matrices , 2 , and and positive definite diagonal matrices , , and satisfying

with

1 , 2 and the matrices as defined in ( 6) and ( 15), respectively, then the origin of system (5) with = ( ′ 11 ) -1 and the triggering rule defined by ( 8) and ( 9) is globally asymptotically stable.

Proof. The proof follows the same steps as for Theorem 1. The differences arise from the fact that the conditions in Theorem 1 are not linear if is a decision variable, due to the terms 2  ′ ( ) ′ 1 + ′ ( ) ′ 2 0 in ( 22) and 2 ′ ( ) ′ 1 + ̇ ′ ( ) ′ 2 0 in (36). To linearize the conditions, one needs to isolate the terms depending on in and consider

which readily leads to the conditions ( 40)- (42).

It should be noticed that the co-design conditions provided by Theorem 2 present additional degrees of freedom, as the observer gain matrix is a free variable. The co-design approach has therefore the advantage of providing a suitable observer gain matrix that is somewhat optimized for the use in the event-triggered control context. In an emulation context, the designer has no means to take the event-triggering mechanism into account in the design of the observer. Therefore, it is plausible that in many situations co-design will outperform emulation in terms of number of generated events. On the other hand, it should be noticed that to obtain convex conditions, we need to restrict 2 = 2 and also impose a block diagonal structure on these matrices. Due to these constraints, which are not present in the emulation conditions (Theorem 1), in some particular cases, emulation with a particular pre-computed observer can lead to better results. Remark 3. Theorem 2 provides a condition to co-design only and the triggering function parameters and . It would be interesting to have given by the co-design process as well. Unfortunately, from the considered techniques, it was not possible to obtain a convex condition involving the synthesis of along with and the triggering function parameters, i.e. expressed in LMI form. It should however be noticed that while there are methods in the literature to design a stabilizing for the class of the continuous-time systems at hand (see for instance [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF] ), as the separation principle is not valid for nonlinear systems, there is no systematic methods for designing the observer gain ensuring the closed-loop stability, even in the continuous-time case. Hence, our co-design condition provides a useful method for that, provided a stabilizing gain has been previously computed.