
HAL Id: hal-02942695
https://laas.hal.science/hal-02942695

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating the use of a model-based approach to
assess automotive embedded software safety

Yandika Sirgabsou, Claude Baron, Cyril Bonnard, Laurent Pahun, Lorenzo
Grenier, Philippe Esteban

To cite this version:
Yandika Sirgabsou, Claude Baron, Cyril Bonnard, Laurent Pahun, Lorenzo Grenier, et al.. Investi-
gating the use of a model-based approach to assess automotive embedded software safety. 13th In-
ternational Conference on Modeling, Optimization and Simulation (MOSIM20), Nov 2020, AGADIR,
Morocco. �hal-02942695�

https://laas.hal.science/hal-02942695
https://hal.archives-ouvertes.fr

13the International Conference on Modeling, Optimization and Simulation - MOSIM’20 – November 12-14, 2020-
Agadir – Morocco “New advances and challenges for sustainable and smart industries”

1

INVESTIGATING THE USE OF A MODEL-BASED APPROACH TO ASSESS
AUTOMOTIVE EMBEDDED SOFTWARE SAFETY

Yandika SIRGABSOU
LAAS-CNRS, Université de

Toulouse, CNRS, INSA Toulouse
Renault Software Labs

Toulouse, France
yandika.sirgabsou@renault.com

Claude BARON
LAAS-CNRS, Université de

Toulouse, CNRS, INSA Toulouse
ISAE-Supaéro

Toulouse, France
claude.baron@laas.fr

Cyril BONNARD
Groupe Renault

Renault Software Labs
Toulouse, France

cyril.bonnard@renault.com

Laurent PAHUN
Groupe Renault

Renault Software Labs
Toulouse, France

laurent.pahun@renault.com

Lorenzo GRENIER
INSA Toulouse

Université de Toulouse
Toulouse, France

 grenier@etud.insa-toulouse.fr

Philippe ESTEBAN
LAAS-CNRS, Université de Toulouse,

CNRS, Université Toulouse 3
Toulouse, France

philippe.esteban@laas.fr

ABSTRACT: With autonomous driving, vehicles are undergoing tremendous and multiple innovations in a variety of
areas of automotive expertise. In particular, the amount of software used in embedded safety-critical systems is increasing
at a rapid rate to implement new features. It is therefore essential today to guarantee the safety of software by carrying
out safety analyses in accordance with automotive standards. These analyses allow engineers assessing the design with
regard to safety and to determine the modifications if needed to meet safety objectives. However, the traditional approach
to perform these analyses is cumbersome and limited when faced with the complexity of today's automotive software
architectures. Safety analyses are currently performed manually, and the results are dependent on the experience of the
safety expert. As a result, they are highly subjective and are not guaranteed to be exhaustive and error-free. To overcome
these issues, this paper explores the use of a model-based safety approach in the context of safety-critical automotive
embedded software. It makes a methodological proposal that relies on the software architecture model to build a
dedicated safety model from which safety analyses can be automatically derived. The method is experimented on an
automotive case study, an embedded software that assists the driver in following the lane.

KEYWORDS: Automotive, embedded software, safety-critical systems, model, software engineering, MBSA, MBSE

1 INTRODUCTION

In our society undergoing deep technological and societal
changes, vehicles (cars, drones…) are becoming more and
more autonomous. Their architecture involves several
cyber-physical systems that massively embed software
components in order to allow this autonomy. In this con-
text, there is a societal need to ensure and guarantee the
vehicles safety, therefore the systems and software safety.
In the automotive domain, software safety analyses are
currently based on traditional manual techniques. Generic
quality-oriented standards are used as references, and the
quality of the analyses mostly depends on the experience
of safety experts. Safety analyses are not really formal-
ized, do not allow even a partial reuse and sometimes of-
fer approximate guarantees of safety. With regard to this
evolving context, it is therefore necessary to improve cur-
rent industrial practices in order to better respond to the
societal and economic issues.
On another side, the current trend in engineering is to
adopt model-based approaches. They enable formalizing
analyses, a better communication and collaboration be-
tween interdisciplinary teams, rapid prototyping and sim-
ulation, and improve reuse. Using model-based ap-
proaches to assess software safety thus seems promising

as it would help addressing the current issues that are re-
lated to safety-critical software analysis.
Therefore, the objective of this paper is to explore the pos-
sibility of using a model-based approach to perform safety
analyses on embedded automotive software. To this goal,
this paper first gives an overview of model-based methods
and underlines their interest in software engineering and
safety assessment. It compares the state of scientific
knowledge with respect to the state of industrial practices
in the field of automotive software engineering in order to
identify areas for improvement, in the practice of software
safety analysis. We make a methodological proposal,
which consists in automating the production of software
safety analyses from a purposely built safety model. Then
we give the results obtained from the application of the
proposal on a real-world case study, the lateral control
software component which is part of the autonomous driv-
ing software and whose role is to keep the vehicle in lane.
We finally indicate some interesting research avenues to
further develop this work.

2 MODEL-BASED APPROACHES IN
SOFTWARE ENGINEERING AND SAFETY

The growing systems complexity requires the implemen-
tation of development methods to keep costs, time and
quality under control. Traditional, document-centric and

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

2

test-based approaches are not sufficient enough for the de-
velopment of multi-disciplinary and distributed smart sys-
tems. Model-based (or model-driven) approaches address
this complexity with a model-centric, frontloaded engi-
neering methodology that focuses on creating and exploit-
ing domain models as the primary means of information
exchange between engineers, rather than on document-
based information This section quickly reminds the prin-
ciples and interests of model-based approaches in soft-
ware engineering then presents their use in the context of
safety analyses.

 Model-Based Software Engineering

Model-Based Systems Engineering (MBSE) is defined as
“the formalized application of modeling to support system
requirements, design, analysis, verification and validation
activities beginning in the conceptual design phase and
continuing throughout development and later life cycle
phases [1][2]. This definition is also applicable to soft-
ware engineering, where MBSE1 has been proposed as a
promising software development methodology to over-
come limitations of traditional programming-based meth-
odology [3]. MBSE promotes the use of modeling lan-
guages for describing software in an abstract way; it is
used for modeling requirements, functional and physical
architectures, but it also supports simulation, code gener-
ation and verification by providing means for automati-
cally generating different development artifacts, e.g. code
and documentation, from models.

 Model-Based Safety Assessment

According to Joshi et al. [4], Model Based Safety Anal-
yses (MBSA2) is the application of the MBSE techniques
to support safety analysis. However, whereas MBSE
models the nominal (non-failure) functional behavior of a
system, MBSA models its fault (dysfunctional) behavior.
Indeed, safety analyses aim at identifying whether the sys-
tem, as modeled, has weak points. They can be performed
either to analyze if a system component failure can induce
a serious failure at the system level, or to determine what
are the possible root causes of a system failure. To this
goal, the safety engineers draw their conclusions from tra-
ditional models such as respectively FMEA3s or FTA4s
that they manually elaborate from the available system
specification and design artefacts resulting from design
stage.
Adopting a model-based approach in safety engineering
consists in building a dysfunctional model of the system
that shows the system behavior in case of a failure (rea-
soning by failure propagation), from which the traditional
analyses (minimum cuts5, FTAs and FMEAs) can be de-
rived [6]. This notably allows an easy and quick genera-
tion of new safety analyses in case the system architecture

1 In this paper, the S in MBSE would either stand for System or Software.
2 The A in MBSA either means Analyses or Assessment.
3 Failure Modes and Effects Analysis. FMEAs are systematic bottom-up
safety analyses to study the effects of every single failure condition (a
feared event) on the whole system.
4 Fault Tree Analysis. FTA is a graphical tool to explore the causes of
system level failures. It uses Boolean logic to combine a series of lower
level events and it is basically a top-down approach to identify the

evolves, therefore reduces the cost and improves the qual-
ity of the safety analysis process.

2.2.1 MBSA Methods
MBSA methods can be classified according to two main
criteria, the dysfunctional model construction and the se-
mantics of component interfaces.
The first criterion is related to the process for defining the
safety model and its relationship with the system design
model: the dysfunctional model can either be an extension
of the design model or a dedicated model [7]. We find in
[4] an example of an extended model, where a nominal
functional model is first constructed during design to
which failure modes are added for the purpose of safety
analysis. The key advantage of the model extension ap-
proach is the consistency, by construction, of the safety
analyses and the design model of the system. Further-
more, development and safety processes can share a com-
mon modeling environment, languages and tools [7].
However, it has some drawbacks. One is that it does not
allow independence between the system and safety mod-
els. In the case of a dedicated model, a distinct
‘standalone’ dysfunctional model is built by the safety en-
gineer based on his understanding of available infor-
mation from design documents and functional models.
The key advantages of this approach are that it is more
pragmatic to implement, as it ensures independence and
separation of concern (between safety and engineering
disciplines). However, one of its drawbacks is that it re-
quires supplementary means for ensuring consistency
with the design model.
The second criterion is related to the dysfunctional model
semantics (components behavior) and the type of infor-
mation that is conveyed through the component inter-
faces, either nominal or failure flows [7]. This criterion
leads to distinguishing Failure Logic Modeling (FLM)
[6][8] (that uses failure flows) and Failure Effect Model-
ing (FEM) [6] (that uses nominal flows). Early proposals
adopted the FEM approach [4] but, as the discipline
evolved, FLM has gained prevalence and most of the pio-
neering MBSA methods such as FPTN [6], HiP-HOPS [9]
and AltaRica [10] rely on it.
Several modeling languages support MBSA. Some are
dedicated to safety such as AltaRica [13], SAML [14] or
Figaro [15]. Others are multipurpose modeling languages
(such as UML) and architecture description languages
(such as AADL [16] or EAST-ADL [17]) that extend their
core semantics and syntaxes to support safety analyses
trough profiles and error annexes [12] .

2.2.2 AltaRica language
AltaRica [19] is a high-level modeling language dedicated
to risk analysis that supports safety, reliability and

component level failures (basic event) that cause the system level failure
(top event) to occur.
5 Minimum cuts represent the smallest combination in which basic
events can possibly cause a system failure; they are used intermediately
in the generation of certain FTAs. Cut sets are the unique combinations
of component failures that can cause system failure. A cut set is said to
be minimal if, when any basic event is removed from the set, the remain-
ing events collectively are no longer a cut set [5].

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

3

performance analyses [10]. In AltaRica, model elements
are expressed in terms of nodes. Each node is composed
of states, events, transitions and assertions [20]. States are
declared using domains. A domain is an enumerate com-
prising several states. Several tools currently support Al-
taRica: OCAS [13], Simfia and SimfiaNeo [23], Open Al-
taRica [24] and AltaRica Studio [25].
In conclusion, among the current MBSA methods, we
found that using a dedicated model and FLM approaches
reveals to be the most interesting, as it adopts a safety ori-
ented modeling; when combined with a dedicated model,
this ensures independence between system design and
safety (which is an important criterion in the certification
of critical systems). For the case study analysis, we chose
AltaRica for its simplicity and proven usefulness in the
system context. However, if AltaRica is well-adapted to
software failure modeling remains to be clarified.

3 AUTOMOTIVE PRACTICES IN SOFTWARE
ENGINEERING AND SAFETY ASSESSMENT

 A document-based software development process

The automotive software development process is centered
around two standards: ASPICE [32] (for quality) and ISO
26262 [33] (for functional safety). ASPICE (Automotive
Software Performance Improvement and Capability dE-
termination) is a standard that provides guidelines to im-
prove software development processes and to assess sup-
pliers. ISO 26262, the “Road Vehicles-Functional safety”
is the standard for functional safety of electrical and/or
electronic systems in automotive production. It provides a
reference for the automotive safety lifecycle. It also de-
fines the Automotive Safety Integrity Level (ASIL), rep-
resenting the degree of automotive hazard and the degree
of rigor to apply in specifying and implementing safety
requirements and safety measures. ASILs range from A to
D, with D representing the most stringent and A the least
stringent level, while QM (Quality Management) is allo-
cated to items that have no impact on safety. ISO26262 is
divided into 11 parts; Part 6 addresses the product devel-
opment at software level (which is more specific to soft-
ware engineering context).
Figure 1 shows the ISO26262 phase model for the product
development at the software level. The left side of the cy-
cle covers the ‘Specification of the software safety re-
quirements’, the ‘Software architectural design’, and the
‘Software unit design and implementation’ phases. The
software safety requirements usually are non-formalized,
expressed in natural language and managed through tools
such as Rational DOORS. At the software architectural
design phase, the use of semi-formal modeling language
(such as UML) to support design and analysis remains
quite immature and unmastered. As a result, the software
architectural design process mostly relies on informal
models and natural language descriptions. However, at
the software unit design phase, tools like Simulink are ef-
fectively used for prototyping, simulation and code gen-
eration.

Figure 1. Reference phase model for the product develop-
ment at the software level from [33]

On the right side of the cycle feature the ‘Software unit
verification”, ‘Software integration and verification’ and
‘Testing of the embedded software’ phases. Each of these
phases aim to verify and validate if the corresponding left
side (design stage) phases are implemented as required.
Traceability is maintained between related phases as
shown by the arrows on Figure 1.

 A document-based safety assessment process

In the current practices in automobile, a document-based
safety assessment process is conducted as the integral part
of the design process and is done in compliance with ISO
26262. The process comprises the manual construction of
safety cases and safety analyses in document templates (in
Excel, Word, PowerPoint format). Unfortunately, these
analyses are highly subjective and dependent on the skill
of the engineer. Their traceability back to design artifacts
is mainly maintained through naming conventions and
sometimes hyperlinks in collaborative tools. The final
FTAs are often produced through a process of review and
consensus building between the system and safety engi-
neers [34]. Even after a consensus is reached, it is unlikely
that the analysis results will be complete, consistent, and
error free due in part to the informal models used as the
basis of the analysis. In fact, the lack of precise models of
the system architecture and its failure modes often forces
the safety analysts to devote much of their effort to gath-
ering information about the system architecture and sys-
tem behavior and embedding this information in the safety
artifacts such as FTAs. In these conditions, it is difficult
to ensure rigorous safety analyses and traceability.
Ideally, this situation could be significantly improved, for
instance if engineers produced formal models of the sys-
tem under development, then extended this model with a
dysfunctional model, and then performed safety analyses
by deriving FMEAs and FTAs from this latter. However,
as currently design models are not formalized enough to
be exploited, we think that a first step to bridge the gap
towards this ideal situation could consist in a manual but
traceable building of the dysfunctional model. The
achievement of this objective constitutes the motivation
for our methodological proposal.

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

4

4 METHODOLOGICAL PROPOSAL

Our proposal consists in building a dysfunctional model
of the software from which minimum cuts, FTAs and
FMEAs could be automatically generated. Referring to
what section 2.2.1 clarified, it relies on the use of a
dedicated model [7] and the use of a failure logic
modeling technique [6] and supporting languages.
A synopsis of the proposal is presented in Figure 2. It
proceeds into 3 steps:  Dysfunctional Modeling, 
Functional to Dysfunctional Logic Translation and 
Safety Analysis.

Figure 2. Synopsis of the proposed methodology

Step  consists in building a dysfunctional hierarchical
architecture of the software from the software functional
architecture. For each software component, Step  trans-
lates the software functional logic into a failure propaga-
tion logic. This step allows writing the output state of each
component taking in consideration not only the internal
state of the components but also the states of the inputs.
Step  results in a dysfunctional model that is used at
Step  to perform safety analysis and generate classical
safety models (such as minimum cut sets, FTAs and
FMEA) from failure conditions and constraints.

 Step 1: Dysfunctional modeling

We propose building a formal dysfunctional model from
the software functional architecture in order to capture the
fault behavior of the software.
Using various information captured from the software
architecture documents (containing informal designs
models as well as their functional description), we define
and assign abstract states (e.g. active, failed or temporarily
failed) and associated transitions6 (e.g. failure, partial
failure, deactivation, cancel) to software components. We
do the same for the interface (inputs and outputs) between
the components to which we assign abstracts states (e.g.
ok, no data, loss, erroneous data). This results in a
dysfunctional model featuring the software components
and how they are connected by failure dependency links.
Thanks to its graphical representation, this model is easy
to understand; as formal, it can be used for simulation,
analysis and evidence. To build this model, several
formalisms can be used, including state/transition
diagrams as well as other dedicated safety modeling
languages such as AltaRica or AADL.

6 A transition is a passage from one state to another.

To illustrate this proposal, an example is given in Figure
3. It shows three software components A, B and C, to
which internal state variables (representing their possible
states) are assigned. Each component has 2 states
(nominal or failed). The inputs and outputs are also
expressed using states (ok, no-data, erroneous). In this
example, if the software component B fails (due to its
internal state or erroneous input), its output can replicate
this failure to the C software component which in turn can
relay it to the Failure Condition.

Figure 3. Illustration of a dysfunctional architecture

The completion of Step  results in a dysfunctional
architecture comprising software components (whose
behavior is modeled using states) and their
interconnections.

 Step 2: Functional to dysfunctional logic transla-
tion

To complete the dysfunctional model, the goal of Step 
is to express the dependencies between the component
inputs and outputs, that is how failures can propagate
through the software architecture. To ensure the
consistency between the functional and dysfunctional
models, we propose to translate the functional logic into a
dysfunctional logic.
Therefore, we proceed by using failure truth tables. We
call ‘failure truth table’ (FTT) one table that
systematically maps the normal flows (from the
functional logic) into failure flows (dysfunctional logic).
To build the failure truth tables, we first analyze the
functional logic of a component. Then using the states
(nominal, erroneous, loss), defined in Step , we set the
inputs (to nominal, erroneous or loss) and deduce the
corresponding output (nominal, erroneous, loss).
Repeating this process allows building the FTT with all
the possible combinations of the inputs and the
corresponding outputs in dysfunctional flows.

Figure 4. Simple functional logic of a software component

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

5

To illustrate the construction of an FTT, Figure 4 presents
a simple example of functional logic of a software
component (in the rectangle). It is a simple function that
returns an output based on the value of two inputs labeled
1 and 2. Using our proposal, we set the internal states to
the inputs and report to the table the corresponding output
states. We reiterate this for all the possible combinations
of the input’s states.

Table 1. Failure truth table

This results in the FTT shown on Table 1. In the case of
this example, if both inputs are ‘nominal’, then the output
is ‘nominal’. If either one of the inputs is ‘loss’ then, the
output state is ‘loss’. Otherwise, the output state is
’erroneous’.

In order to obtain a computable expression of this logic,
we then translate the information of the FTT into a
dysfunctional logical expression of outputs:
if (input_1 = Nominal AND input_2 = nominal) then
 {Output := Nominal ;}
else if (input_1 = Loss OR input_2 = loss) then
 {Output := loss;}
else
 {Output := Erroneous;}
end if;

The advantage of this FTT is that it allows changing the
point of view (from functional to dysfunctional) and
expressing the failure behavior in a syntactic and formal
manner that can be used to write logical expression of the
output (for software engineers) as well as in natural
language (to communicate). Furthermore, when the
design logic evolves, the FTT can be updated accordingly,
helping in this way to maintain consistency. They could
also be reused in the long run to capture more complex
logics.
The completion of Step  produces a well-expressed fail-
ure logic resulting from the FTTs and a complete dysfunc-
tional model that can be used in Step  to perform safety
analyses.

 Step 3: Safety analysis

This step consists in exploiting the dysfunctional model
resulting from Step  for simulation and generation of
safety analyses such as FMEAs, Minimum cut sets and
FTAs. To this goal, failure conditions, that represent the
violation of safety software associated goals, are added to
the architecture.
In conclusion, Step  can help in the evaluation of the
system safety through simulations and the generation of

7 There are 6 levels of autonomy ranging from 0 (no automation) to 5
(full automation)

classical models (Minimum cut sets, FTAs, FMEAs). This
saves time and helps the safety engineers in their task.

 Discussion

The proposal offers several interests and significantly im-
proves current practices, mainly thanks to the adoption of
a model-based approach. By automating the generation of
safety analyses from a dysfunctional model of the soft-
ware, it allows quickly processing new analyses if ever a
modification occurs on the model, at low effort. Assuming
that the dysfunctional model is correctly established from
the functional model, this methodology prevents from the
introduction of bias in manually building FTAs or FMEAs
due to potential interpretations of the safety analyst. To
perform the functional to dysfunctional model transfor-
mation at best, the consistency and traceability between
models is ensured thanks to the failure truth tables. In ad-
dition, the methodology allows maintaining the safety
analyses whenever the design evolves.
However, the proposal still has some limitations. First the
manual modeling could be improved if some behavioral
attributes of the software component had already been
elucidated in the design model. In this case, a partial im-
port could be considered. This highlights the need of im-
proving model-based practices on the design side. A sec-
ond limitation lies in the manual logic translation through
failure truth tables, that could be improved if a form of
automation was used, based on a kind of automatic model
transformation.

5 CASE STUDY

In an automobile, the Advance Drivers Assistance System
(ADAS) and Autonomous Driving (AD) implement soft-
ware-based functions that assist the driver and improve
their driving experience. The chosen case study is a sub-
system of the AD software system. As presented in Figure
5, it consists of three main software components: The
Hands-Off Detection (HOD), the Longitudinal Control
and the Lateral Control. This case study being part of a
broader system, we also consider other components of the
system (such as the Status Input) that must be included to
perform the analysis and to position the software compo-
nents with respect to their environment.

Figure 5 Synopsis of the case study software architecture

At autonomy level 1 (corresponding to assisted driving7),
the drivers are required to keep their hands on the wheels
even though AD features are activated. In this context, the
role of the Hands-Off Detection (HOD) is to detect if the

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

6

driver has taken their hands off the steering wheel. To en-
sure an effective and reliable detection, two redundant
strategies are used, a capacitive HOD detection based on
a capacitive sensor and a torque based HOD based on a
measure of the force the driver applies on the steering
wheel. Both strategies provide a consolidated HOD status
for lateral and longitudinal control. The Longitudinal
Control manages the acceleration, deceleration and brak-
ing. The Lateral Control keeps the vehicle in lane. It takes
part in critical functions, steering and user alert. Its acti-
vation depends on both the HOD and the Longitudinal
Control statuses as well as on various environmental and
vehicle data (lane, steering wheel angle, vehicle speed)
through the Status Input (a software component that pro-
vides data to the HOD, Longitudinal and Lateral Control).

 Choosing tools to support the methodology

Let us remember that we chose using a dedicated
dysfunctional model and the FLM approach. This allows
us to have a more safety-oriented point of view of the
system and enforces independence and separation of
concern (functional features vs safety considerations).
We chose AltaRica based solution for its simplicity but
also for its formal aspects. AltaRica allows expressing a
dysfunctional behavior through a well-defined semantic.
Moreover the language has been proven useful in many
contexts (for instance for systems safety assessments in
aeronautics) as outlined in [13]. Among AltaRica based
tools we chose SimfiaNeo for its more innovative features
and friendly eclipse-based user interface. SimfiaNeo has
a built-in step-simulator offers an FMEA generator, and a
built-in model checker that is used to directly generate
minimum cut sets and FTAs from the dysfunctional
architecture.

 Applying the methodology

We then applied the different steps of the methodology:
first, in Step , we defined and modeled the software
components states and basic failures, then in Step , we
modeled the failure propagation using logical expressions
linking outputs to inputs as well as internal states; finally
in Step , we used the resulting dysfunctional architec-
ture to perform safety analysis.

5.2.1 Step 1: Dysfunctional modeling
We used the information from the AD software functional
architecture (documents and informal models) to build
our basic dysfunctional model. First, using SimfiaNeo
graphical modeling interface, we modeled the software
components with model bricks.

Figure 6. Top level view of the case study model

Then, using AltaRica, we defined domains (cf. section
2.2.2) for components and inputs / outputs, states and as-
sociated transitions (expressed as events in AltaRica) for
each component. A top-level view of the model is shown
in Figure 6. The red rectangle delimits the perimeter of the
case study.
We now need to complete this dysfunctional model with
a failure propagation logic to be able to perform safety
analysis.

5.2.2 Functional to dysfunctional logic translation
A logic translation is used to assist in the building of the
failure propagation and ensure a better consistency of the
dysfunctional model with the design model. For that, logic
retrieved from Simulink models are translated into Al-
taRica logic using FTTs.
Figure 7 illustrates this transformation. The functional
logic is from a subcomponent of the HOD software com-
ponent. From a functional point of view, this logic returns
a status (HODConsolidationHandsOn) based on whether
the two signals (HandsOff and HandOff_mirror) are
equal. The output (HandsOffState) captures this status.

Figure 7. Functional to dysfunctional logic translation us-
ing truth failure tables

The goal of the functional to dysfunctional logic transla-
tion is to go from this functional point of view to a dys-
functional point of view. For that, we assign the states
(predefined in Step ) to the inputs (on the functional
logic), and we write the corresponding output states on the
FTT. We reiterate this process for all possible combina-
tions of input states. This creates the corresponding failure
table, with all possible output states, as shown in Fig. 7.
Using the FTT, we can now write the output expression
(of the corresponding dysfunctional brick) in AltaRica.
This step is repeated for all the software components of
AD. The tables can be used as templates to model more
complex components and systems. This can help save
time through reuse. Overall, Step  completes the dys-
functional model initiated in Step . Thanks to this, the
dysfunctional model is more consistent with the func-
tional model and can be used for safety analysis in
Step .

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

7

5.2.3 Step 3: Safety Analysis
This step consists in generating classical safety models
such as FMEAs, minimum cut sets and FTAs from the
dysfunctional model, using the SimfiaNeo model check-
ing capabilities. To this goal, we used the dysfunctional
model from Step  and the failure conditions identified
in earlier stages of the safety lifecycle. We proceeded by
adding failures conditions using AltaRica observers8 via
direct connections from the software components outputs
or through a combination of assertions expressed in Al-
taRica. Once this is done, we can now perform safety
analysis. First, we performed simulations. Then we di-
rectly generate FMEAs from the dysfunctional architec-
ture. After that, we compute the minimum cuts sets, from
which we were able to immediately generate FTAs.
To perform simulation, we used the SimfiaNeo built-in
step simulator. It allows us to interactively assess the dys-
functional behavior of the system. For that, we manually
trigger basic failure events (at component level) and ob-
serve their effect, through change in colors, on other com-
ponents and failure conditions (earlier added through Al-
taRica observers).
SimfiaNeo offers the automatic generation and export of
FMEA tables directly from the software dysfunctional
model. Given the complexity of the software architecture
and the multiple basic failures (at component level), this
results in a plethoric number of failure modes (in FMEA
tables). For this reason, we found that in our case, the
FMEA tables were less pertinent in comparison to mini-
mum cuts and FTAs, that are more compact and synthetic.
However, whereas generating FMEA is immediate, gen-
erating FTAs requires a (somehow quick and easy) con-
figuration. Preliminary to the creation of FTAs, minimum
cut sets are first generated. To generate a minimum cut,
we specify the failure condition for the top event, the max-
imum order (of the computation) and a few other param-
eters such as the type of generation (stochastic, permuta-
tion or combination). We can also add to the configuration
some constraints representing any conditions we want to
check (e.g. ‘No single point of failure’). Once the compu-
tation is launched, it returns a table (as shown in Figure 8)
listing the basic failure events (‘Elements’ column), the
order (number of basic events contributing to the top
event) as well as their probabilities.

Figure 8. Loss of lateral control minimum cut set

FTAs basically contain the same information as minimum
cut sets but have the advantage of presenting them in a
more visual and intuitive way. Figure 9 shows an example

8 An AltaRica observer is an indicator that can be associated to failure
condition that we want to watch out for.

of FTA. It is constructed from the minimum cut sets of
events leading to the ADAS ‘Lateral control loss’ feature.

Figure 9. Loss of lateral control status Fault Tree

At the top of the tree stands the top event (Lateral control
loss). In the leaves, we see the basic failure events and
their probabilities (that are not useful in our case). The
FTA graphically shows that the lateral control loss can be
caused by the single failure of the lateral control compo-
nent (Lateral_Ctrl.failure) or a combination of the HOD
(HOD.HODStateFinal) with either the Fusion (Fu-
sion.failure) or Statut Input (Status_IN.failure) software
component failures. Additionally, the FTA can be useful
in capturing inconsistencies in the ASIL decomposition
that are not visible through the functional view. For exam-
ple, the lateral control component is rated ASIL B whereas
one of the contributing basic events (Status_IN.failure) in
this FTA does not bear any ASIL requirement. So, using
FTA can be useful to check if, for a given safety goal, the
ASIL of the combination of the triggering event is incon-
sistent.
This step showed how the classical safety models can be
generated from the dysfunctional architecture we built in
Step  and Step .

 Case study conclusion

The results from the case study show that using the
methodology we propose, it is possible to apply and
benefit from a model-based safety analysis approach for
software in the automotive industry. It also demonstrates
the usefulness and efficiency of using basic and pragmatic
tools features such as simulation and failure cause and
consequence that are available in tools. Additionally, this
approach makes safety analysis more accessible to
engineers through a tool-based generation of traditional
safety analyses. Overall, the methodology enforces safety
by allowing engineers to focus on getting a right model
and spending less effort in generating analyses, therefore
improving the quality of these automatically generated
analyses. The possibility to generate FTA in one click is
interesting. Indeed, if the software functional model
changes, the dysfunctional model can be updated, and
FTAs can be regenerated without additional effort. This
means that the dysfunctional model should be maintained.
However, given that the dysfunctional model construction
and logic translation are done manually, there are some

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

8

limitations. First, the manual modeling and logic
translation make impractical the application of the
methodology to large and complex software systems. This
manual modeling approach can certainly be improved to
ensure a better consistency of our model with the design
model. Secondly, the AltaRica language is system
oriented and lacks semantics for certain categories of
software failures. It was difficult to express and simulate
failures related to timing and values. For example, we
were not able to model and observe failures such as the
temporary deactivation of lateral control or out-of-range
values. In this regard, we consider that the use of AltaRica
needs to be reassessed. Nevertheless, the proposed
methodology answers our current needs as it is a clear
improvement from the manual techniques.

6 PERSPECTIVES AND CONCLUSION

This paper made a methodological proposal for using
MBSA for automotive software safety analysis. It consists
in building a dysfunctional architecture of the automotive
software from the functional high-level software nominal
architecture, using compatible semantics and syntaxes,
and a translation of a functional to a dysfunctional logic.
Then, from this dysfunctional model, the safety engineer
can automatically generate minimal cut sets, FTAs and
FMEAs for interpretation and as safety proofs if required.
We applied this methodology on a real-world industrial
case study that involved the use of SimfiaNeo and Al-
taRica. We concluded on the implementability and useful-
ness of the methodology. Coupled with the languages and
tools we used, it brings added value and improves current
manual safety analysis practices. Limitations that we
identified will be addressed in future work. This will in-
clude improving the dysfunctional modeling for which we
will consider a partial automation of the model building
and logic translation. We will also explore languages that
have better semantics for software failures (AADL EMV2
for example). Finally, we will work on aligning the pro-
posed model-based software safety analysis methodology
with model-based software development to ensure better
consistency and higher quality of safety analysis.

ACKNOWLEDGEMENTS
This work was sponsored by Renault Software Labs and
the ANRT (Association National de la Recherche et de la
Technologie). We thank them for their financial support.

REFERENCES
[1] “SEVision2020_20071003_v2_03.pdf.” Accessed:

Jun. 09, 2020. [Online]. Available:
http://www.ccose.org/media/upload/SE-
Vision2020_20071003_v2_03.pdf.

[2] J. A. Estefan, “Survey of Model-Based Systems En-
gineering (MBSE) Methodologies,” p. 70, 2008.

[3] van C. Pham, “Model-Based Software Engineering:
Methodologies for Model-Code Synchronization in
Reactive System Development,” phdthesis, Univer-
sité Paris-Saclay, 2018.

[4] A. Joshi, S. P. Miller, M. Whalen, and M. P. E. Heim-
dahl, “A proposal for model-based safety analysis,”
in 24th Digital Avionics Systems Conference, Oct.
2005, vol. 2, p. 13 pp. Vol. 2-,

[5] D. Kececioglu, Reliability Engineering Handbook, 1
edition. Englewood Cliffs, N.J: Prentice Hall, 1991.

[6] P. Fenelon and J. A. McDermid, “An integrated tool
set for software safety analysis,” J. Syst. Softw., vol.
21, no. 3, pp. 279–290, Jun. 1993.

[7] O. Lisagor, T. Kelly, and R. Niu, “Model-based
safety assessment: Review of the discipline and its
challenges,” in The Proceedings of 2011 9th Interna-
tional Conference on Reliability, Maintainability and
Safety, Guiyang, China, Jun. 2011, pp. 625–632.

[8] O. Lisagor, “Failure logic modelling: a pragmatic ap-
proach,” phd, University of York, 2010.

[9] Y. Papadopoulos and J. A. McDermid, “Hierarchi-
cally Performed Hazard Origin and Propagation
Studies,” in Computer Safety, Reliability and Secu-
rity, Sep. 1999, pp. 139–152.

[10] G. Point and A. Rauzy, “AltaRica: Constraint autom-
ata as a description language.” Accessed: Nov. 28,
2019. [Online]. Available: http://www.altarica-asso-
ciation.org/ressources/ARBib/PointRauzy1999-Al-
taRicaConstraintLanguage.pdf.

[11] Y. Papadopoulos and M. Maruhn, “Model-based
synthesis of fault trees from Matlab-Simulink mod-
els,” in 2001 International Conference on Dependa-
ble Systems and Networks, Jul. 2001, pp. 77–82.

[12] J. Delange and P. Feiler, “Architecture Fault Model-
ing with the AADL Error-Model Annex,” in 2014
40th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, Aug. 2014, pp.
361–368.

[13] P. Bieber, C. Bougnol, C. Castel, J.-P. H. Christophe
Kehren, S. Metge, and C. Seguin, “Safety Assess-
ment with Altarica,” in Building the Information So-
ciety, Boston, MA, 2004, pp. 505–510.

[14] M. Gudemann and F. Ortmeier, “A Framework for
Qualitative and Quantitative Formal Model-Based
Safety Analysis,” in 2010 IEEE 12th International
Symposium on High Assurance Systems Engineering,
Nov. 2010, pp. 132–141.

[15] M. Bouissou, H. Bouhadana, M. Bannelier, and N.
Villatte, “Knowledge Modelling and Reliability Pro-
cessing: Presentation of the Figaro Language and As-
sociated Tools,” IFAC Proc. Vol., vol. 24, no. 13, pp.
69–75, Oct. 1991.

[16] P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An
Overview of the SAE Architecture Analysis & De-
sign Language (AADL) Standard: A Basis for
Model-Based Architecture-Driven Embedded Sys-
tems Engineering,” in Architecture Description Lan-
guages, Boston, MA, 2005, pp. 3–15.

[17] H. Blom et al., “EAST-ADL: An Architecture De-
scription Language for Automotive Software-inten-
sive Systems in the Light of Recent use and Re-
search,” Int. J. Syst. Dyn. Appl., vol. 5, no. 3, pp. 1–
20, Jul. 2016.

MOSIM’20 – November 12-14, 2020 - Agadir - Morocco

9

 [19]“AltaRica Association.” http://www.altarica-associ-
ation.org/ (accessed May 25, 2020).

[20] M. Bozzano et al., “Symbolic Model Checking and
Safety Assessment of Altarica models,” vol. 35, p.
16, 2010.

[21] M. Boiteau, Y. Dutuit, and A. Rauzy, “The AltaRica
Data-Flow Language in Use: Modeling of Produc-
tion Availability of a MultiStates System,” p. 22.

 [23]M. Machin, L. Sagaspe, and X. de Bossoreille, “Sim-
fiaNeo, Complex Systems, yet Simple Safety,” p. 4.

[24] “OpenAltaRica.” https://www.openaltarica.fr/ (ac-
cessed May 27, 2020).

[25] “AltaRica Project | MEthods and Tools for AltaRica
Language.” https://altarica.labri.fr/wp/

[26] “Architecture Analysis and Design Language.”
https://www.sei.cmu.edu/research-capabilities/all-
work/display.cfm?cus-
tomel_datapageid_4050=191439.

[27] “Welcome to OSATE — OSATE 2.7.1 documenta-
tion.” https://osate.org/# (accessed May 25, 2020).

[28] “EAST-ADL Association.” https://www.east-
adl.info/Specification.html (accessed Apr. 16, 2020).

[29] B. Bittner et al., “The xSAP Safety Analysis Plat-
form,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2016, vol. 9636, pp. 533–
539.

[30] M. Sango, F. Vallée, A.-C. Vié, J.-L. Voirin, X.
Leroux, and V. Normand, “MBSE and MBSA with
Capella and Safety Architect Tools,” in Complex
Systems Design & Management, Cham, 2017, pp.
239–239.

[31] N. M. Inc, “MagicDraw.”
https://www.nomagic.com/products/magicdraw (ac-
cessed May 27, 2020).

[32] “Automotive_SPICE_PAM_30.pdf.” Available:
http://www.automotivespice.com/fileadmin/soft-
ware-download/Automotive_SPICE_PAM_30.pdf.

[33] 14:00-17:00, “ISO 26262-1:2018,” ISO.
https://www.iso.org/cms/render/live/en/sites/iso-
org/contents/data/standard/06/83/68383.html (ac-
cessed Jun. 10, 2020).

[34] A. Joshi, M. Whalen, and M. P. E. Heimdahl, “Mod-
elBased Safety Analysis: Final Report,” 2005.

