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ABSTRACT: With autonomous driving, vehicles are undergoing tremendous and multiple innovations in a variety of 
areas of automotive expertise. In particular, the amount of software used in embedded safety-critical systems is increasing 
at a rapid rate to implement new features. It is therefore essential today to guarantee the safety of software by carrying 
out safety analyses in accordance with automotive standards. These analyses allow engineers assessing the design with 
regard to safety and to determine the modifications if needed to meet safety objectives. However, the traditional approach 
to perform these analyses is cumbersome and limited when faced with the complexity of today's automotive software 
architectures. Safety analyses are currently performed manually, and the results are dependent on the experience of the 
safety expert. As a result, they are highly subjective and are not guaranteed to be exhaustive and error-free. To overcome 
these issues, this paper explores the use of a model-based safety approach in the context of safety-critical automotive 
embedded software. It makes a methodological proposal that relies on the software architecture model to build a 
dedicated safety model from which safety analyses can be automatically derived. The method is experimented on an 
automotive case study, an embedded software that assists the driver in following the lane. 
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1 INTRODUCTION 

In our society undergoing deep technological and societal 
changes, vehicles (cars, drones…) are becoming more and 
more autonomous. Their architecture involves several 
cyber-physical systems that massively embed software 
components in order to allow this autonomy. In this con-
text, there is a societal need to ensure and guarantee the 
vehicles safety, therefore the systems and software safety. 
In the automotive domain, software safety analyses are 
currently based on traditional manual techniques. Generic 
quality-oriented standards are used as references, and the 
quality of the analyses mostly depends on the experience 
of safety experts. Safety analyses are not really formal-
ized, do not allow even a partial reuse and sometimes of-
fer approximate guarantees of safety. With regard to this 
evolving context, it is therefore necessary to improve cur-
rent industrial practices in order to better respond to the 
societal and economic issues.  
On another side, the current trend in engineering is to 
adopt model-based approaches. They enable formalizing 
analyses, a better communication and collaboration be-
tween interdisciplinary teams, rapid prototyping and sim-
ulation, and improve reuse. Using model-based ap-
proaches to assess software safety thus seems promising 

as it would help addressing the current issues that are re-
lated to safety-critical software analysis. 
Therefore, the objective of this paper is to explore the pos-
sibility of using a model-based approach to perform safety 
analyses on embedded automotive software. To this goal, 
this paper first gives an overview of model-based methods 
and underlines their interest in software engineering and 
safety assessment. It compares the state of scientific 
knowledge with respect to the state of industrial practices 
in the field of automotive software engineering in order to 
identify areas for improvement, in the practice of software 
safety analysis. We make a methodological proposal, 
which consists in automating the production of software 
safety analyses from a purposely built safety model. Then 
we give the results obtained from the application of the 
proposal on a real-world case study, the lateral control 
software component which is part of the autonomous driv-
ing software and whose role is to keep the vehicle in lane. 
We finally indicate some interesting research avenues to 
further develop this work. 

2 MODEL-BASED APPROACHES IN 
SOFTWARE ENGINEERING AND SAFETY 

The growing systems complexity requires the implemen-
tation of development methods to keep costs, time and 
quality under control. Traditional, document-centric and 
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test-based approaches are not sufficient enough for the de-
velopment of multi-disciplinary and distributed smart sys-
tems. Model-based (or model-driven) approaches address 
this complexity with a model-centric, frontloaded engi-
neering methodology that focuses on creating and exploit-
ing domain models as the primary means of information 
exchange between engineers, rather than on document-
based information This section quickly reminds the prin-
ciples and interests of model-based approaches in soft-
ware engineering then presents their use in the context of 
safety analyses. 

 Model-Based Software Engineering 

Model-Based Systems Engineering (MBSE) is defined as 
“the formalized application of modeling to support system 
requirements, design, analysis, verification and validation 
activities beginning in the conceptual design phase and 
continuing throughout development and later life cycle 
phases [1][2]. This definition is also applicable to soft-
ware engineering, where MBSE1 has been proposed as a 
promising software development methodology to over-
come limitations of traditional programming-based meth-
odology [3]. MBSE promotes the use of modeling lan-
guages for describing software in an abstract way; it is 
used for modeling requirements, functional and physical 
architectures, but it also supports simulation, code gener-
ation and verification by providing means for automati-
cally generating different development artifacts, e.g. code 
and documentation, from models.  

 Model-Based Safety Assessment 

According to Joshi et al. [4], Model Based Safety Anal-
yses (MBSA2) is the application of the MBSE techniques 
to support safety analysis. However, whereas MBSE 
models the nominal (non-failure) functional behavior of a 
system, MBSA models its fault (dysfunctional) behavior.  
Indeed, safety analyses aim at identifying whether the sys-
tem, as modeled, has weak points. They can be performed 
either to analyze if a system component failure can induce 
a serious failure at the system level, or to determine what 
are the possible root causes of a system failure. To this 
goal, the safety engineers draw their conclusions from tra-
ditional models such as respectively FMEA3s or FTA4s 
that they manually elaborate from the available system 
specification and design artefacts resulting from design 
stage. 
Adopting a model-based approach in safety engineering 
consists in building a dysfunctional model of the system 
that shows the system behavior in case of a failure (rea-
soning by failure propagation), from which the traditional 
analyses (minimum cuts5, FTAs and FMEAs) can be de-
rived [6]. This notably allows an easy and quick genera-
tion of new safety analyses in case the system architecture 

 
1 In this paper, the S in MBSE would either stand for System or Software. 
2 The A in MBSA either means Analyses or Assessment. 
3 Failure Modes and Effects Analysis. FMEAs are systematic bottom-up 
safety analyses to study the effects of every single failure condition (a 
feared event) on the whole system. 
4 Fault Tree Analysis. FTA is a graphical tool to explore the causes of 
system level failures. It uses Boolean logic to combine a series of lower 
level events and it is basically a top-down approach to identify the 

evolves, therefore reduces the cost and improves the qual-
ity of the safety analysis process.  

2.2.1 MBSA Methods  
MBSA methods can be classified according to two main 
criteria, the dysfunctional model construction and the se-
mantics of component interfaces.  
The first criterion is related to the process for defining the 
safety model and its relationship with the system design 
model: the dysfunctional model can either be an extension 
of the design model or a dedicated model [7]. We find in 
[4] an example of an extended model, where a nominal 
functional model is first constructed during design to 
which failure modes are added for the purpose of safety 
analysis. The key advantage of the model extension ap-
proach is the consistency, by construction, of the safety 
analyses and the design model of the system. Further-
more, development and safety processes can share a com-
mon modeling environment, languages and tools [7]. 
However, it has some drawbacks. One is that it does not 
allow independence between the system and safety mod-
els. In the case of a dedicated model, a distinct 
‘standalone’ dysfunctional model is built by the safety en-
gineer based on his understanding of available infor-
mation from design documents and functional models. 
The key advantages of this approach are that it is more 
pragmatic to implement, as it ensures independence and 
separation of concern (between safety and engineering 
disciplines). However, one of its drawbacks is that it re-
quires supplementary means for ensuring consistency 
with the design model. 
The second criterion is related to the dysfunctional model 
semantics (components behavior) and the type of infor-
mation that is conveyed through the component inter-
faces, either nominal or failure flows [7]. This criterion 
leads to distinguishing Failure Logic Modeling (FLM) 
[6][8] (that uses failure flows) and Failure Effect Model-
ing (FEM) [6] (that uses nominal flows). Early proposals 
adopted the FEM approach [4] but, as the discipline 
evolved, FLM has gained prevalence and most of the pio-
neering MBSA methods such as FPTN [6], HiP-HOPS [9] 
and AltaRica [10] rely on it.   
Several modeling languages support MBSA. Some are 
dedicated to safety such as AltaRica [13], SAML [14] or 
Figaro [15]. Others are multipurpose modeling languages 
(such as UML) and architecture description languages 
(such as AADL [16] or EAST-ADL [17]) that extend their 
core semantics and syntaxes to support safety analyses 
trough profiles and error annexes [12] .  

2.2.2 AltaRica language 
AltaRica [19] is a high-level modeling language dedicated 
to risk analysis that supports safety, reliability and 

component level failures (basic event) that cause the system level failure 
(top event) to occur. 
5 Minimum cuts represent the smallest combination in which basic 
events can possibly cause a system failure; they are used intermediately 
in the generation of certain FTAs. Cut sets are the unique combinations 
of component failures that can cause system failure. A cut set is said to 
be minimal if, when any basic event is removed from the set, the remain-
ing events collectively are no longer a cut set [5]. 
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performance analyses [10]. In AltaRica, model elements 
are expressed in terms of nodes. Each node is composed 
of states, events, transitions and assertions [20]. States are 
declared using domains. A domain is an enumerate com-
prising several states. Several tools currently support Al-
taRica: OCAS [13], Simfia and SimfiaNeo [23], Open Al-
taRica [24] and AltaRica Studio [25].  
In conclusion, among the current MBSA methods, we 
found that using a dedicated model and FLM approaches 
reveals to be the most interesting, as it adopts a safety ori-
ented modeling; when combined with a dedicated model, 
this ensures independence between system design and 
safety (which is an important criterion in the certification 
of critical systems). For the case study analysis, we chose 
AltaRica for its simplicity and proven usefulness in the 
system context. However, if AltaRica is well-adapted to 
software failure modeling remains to be clarified.  

3 AUTOMOTIVE PRACTICES IN SOFTWARE 
ENGINEERING AND SAFETY ASSESSMENT 

 A document-based software development process  

The automotive software development process is centered 
around two standards: ASPICE [32] (for quality) and ISO 
26262 [33] (for functional safety). ASPICE (Automotive 
Software Performance Improvement and Capability dE-
termination) is a standard that provides guidelines to im-
prove software development processes and to assess sup-
pliers. ISO 26262, the “Road Vehicles-Functional safety” 
is the standard for functional safety of electrical and/or 
electronic systems in automotive production. It provides a 
reference for the automotive safety lifecycle. It also de-
fines the Automotive Safety Integrity Level (ASIL), rep-
resenting the degree of automotive hazard and the degree 
of rigor to apply in specifying and implementing safety 
requirements and safety measures. ASILs range from A to 
D, with D representing the most stringent and A the least 
stringent level, while QM (Quality Management) is allo-
cated to items that have no impact on safety. ISO26262 is 
divided into 11 parts; Part 6 addresses the product devel-
opment at software level (which is more specific to soft-
ware engineering context).  
Figure 1 shows the ISO26262 phase model for the product 
development at the software level. The left side of the cy-
cle covers the ‘Specification of the software safety re-
quirements’, the ‘Software architectural design’, and the 
‘Software unit design and implementation’ phases. The 
software safety requirements usually are non-formalized, 
expressed in natural language and managed through tools 
such as Rational DOORS. At the software architectural 
design phase, the use of semi-formal modeling language 
(such as UML) to support design and analysis remains 
quite immature and unmastered. As a result, the software 
architectural design process mostly relies on informal 
models and natural language descriptions. However, at 
the software unit design phase, tools like Simulink are ef-
fectively used for prototyping, simulation and code gen-
eration.  
 

 
Figure 1. Reference phase model for the product develop-
ment at the software level from [33] 

On the right side of the cycle feature the ‘Software unit 
verification”, ‘Software integration and verification’ and 
‘Testing of the embedded software’ phases. Each of these 
phases aim to verify and validate if the corresponding left 
side (design stage) phases are implemented as required. 
Traceability is maintained between related phases as 
shown by the arrows on Figure 1. 

 A document-based safety assessment process 

In the current practices in automobile, a document-based 
safety assessment process is conducted as the integral part 
of the design process and is done in compliance with ISO 
26262. The process comprises the manual construction of 
safety cases and safety analyses in document templates (in 
Excel, Word, PowerPoint format). Unfortunately, these 
analyses are highly subjective and dependent on the skill 
of the engineer. Their traceability back to design artifacts 
is mainly maintained through naming conventions and 
sometimes hyperlinks in collaborative tools. The final 
FTAs are often produced through a process of review and 
consensus building between the system and safety engi-
neers [34]. Even after a consensus is reached, it is unlikely 
that the analysis results will be complete, consistent, and 
error free due in part to the informal models used as the 
basis of the analysis. In fact, the lack of precise models of 
the system architecture and its failure modes often forces 
the safety analysts to devote much of their effort to gath-
ering information about the system architecture and sys-
tem behavior and embedding this information in the safety 
artifacts such as FTAs. In these conditions, it is difficult 
to ensure rigorous safety analyses and traceability.  
Ideally, this situation could be significantly improved, for 
instance if engineers produced formal models of the sys-
tem under development, then extended this model with a 
dysfunctional model, and then performed safety analyses 
by deriving FMEAs and FTAs from this latter. However, 
as currently design models are not formalized enough to 
be exploited, we think that a first step to bridge the gap 
towards this ideal situation could consist in a manual but 
traceable building of the dysfunctional model. The 
achievement of this objective constitutes the motivation 
for our methodological proposal. 
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4 METHODOLOGICAL PROPOSAL 

Our proposal consists in building a dysfunctional model 
of the software from which minimum cuts, FTAs and 
FMEAs could be automatically generated. Referring to 
what section 2.2.1 clarified, it relies on the use of a 
dedicated model [7] and the use of a failure logic 
modeling technique [6] and supporting languages.  
A synopsis of the proposal is presented in Figure 2. It 
proceeds into 3 steps:  Dysfunctional Modeling,  
Functional to Dysfunctional Logic Translation and  
Safety Analysis.  

 
Figure 2. Synopsis of the proposed methodology  

Step  consists in building a dysfunctional hierarchical 
architecture of the software from the software functional 
architecture. For each software component, Step  trans-
lates the software functional logic into a failure propaga-
tion logic. This step allows writing the output state of each 
component taking in consideration not only the internal 
state of the components but also the states of the inputs. 
Step  results in a dysfunctional model that is used at 
Step  to perform safety analysis and generate classical 
safety models (such as minimum cut sets, FTAs and 
FMEA) from failure conditions and constraints. 

 Step 1: Dysfunctional modeling 

We propose building a formal dysfunctional model from 
the software functional architecture in order to capture the 
fault behavior of the software.  
Using various information captured from the software 
architecture documents (containing informal designs 
models as well as their functional description), we define 
and assign abstract states (e.g. active, failed or temporarily 
failed) and associated transitions6 (e.g. failure, partial 
failure, deactivation, cancel) to software components. We 
do the same for the interface (inputs and outputs) between 
the components to which we assign abstracts states (e.g. 
ok, no data, loss, erroneous data). This results in a 
dysfunctional model featuring the software components 
and how they are connected by failure dependency links.  
Thanks to its graphical representation, this model is easy 
to understand; as formal, it can be used for simulation, 
analysis and evidence. To build this model, several 
formalisms can be used, including state/transition 
diagrams as well as other dedicated safety modeling 
languages such as AltaRica or AADL. 

 
6 A transition is a passage from one state to another. 

To illustrate this proposal, an example is given in Figure 
3. It shows three software components A, B and C, to 
which internal state variables (representing their possible 
states) are assigned. Each component has 2 states 
(nominal or failed). The inputs and outputs are also 
expressed using states (ok, no-data, erroneous). In this 
example, if the software component B fails (due to its 
internal state or erroneous input), its output can replicate 
this failure to the C software component which in turn can 
relay it to the Failure Condition.   

 
Figure 3. Illustration of a dysfunctional architecture  

The completion of Step  results in a dysfunctional 
architecture comprising software components (whose 
behavior is modeled using states) and their 
interconnections.  

 Step 2: Functional to dysfunctional logic transla-
tion  

To complete the dysfunctional model, the goal of Step  
is to express the dependencies between the component 
inputs and outputs, that is how failures can propagate 
through the software architecture. To ensure the 
consistency between the functional and dysfunctional 
models, we propose to translate the functional logic into a 
dysfunctional logic.  
Therefore, we proceed by using failure truth tables. We 
call ‘failure truth table’ (FTT) one table that 
systematically maps the normal flows (from the 
functional logic) into failure flows (dysfunctional logic). 
To build the failure truth tables, we first analyze the 
functional logic of a component. Then using the states 
(nominal, erroneous, loss), defined in Step , we set the 
inputs (to nominal, erroneous or loss) and deduce the 
corresponding output (nominal, erroneous, loss). 
Repeating this process allows building the FTT with all 
the possible combinations of the inputs and the 
corresponding outputs in dysfunctional flows. 

 
Figure 4. Simple functional logic of a software component 
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To illustrate the construction of an FTT, Figure 4 presents 
a simple example of functional logic of a software 
component (in the rectangle). It is a simple function that 
returns an output based on the value of two inputs labeled 
1 and 2. Using our proposal, we set the internal states to 
the inputs and report to the table the corresponding output 
states. We reiterate this for all the possible combinations 
of the input’s states.  

Table 1. Failure truth table 

 
This results in the FTT shown on Table 1. In the case of 
this example, if both inputs are ‘nominal’, then the output 
is ‘nominal’. If either one of the inputs is ‘loss’ then, the 
output state is ‘loss’. Otherwise, the output state is 
’erroneous’. 

In order to obtain a computable expression of this logic, 
we then translate the information of the FTT into a 
dysfunctional logical expression of outputs: 
if (input_1 = Nominal AND input_2 = nominal) then 
 {Output := Nominal ;}  
else if (input_1 = Loss OR input_2 = loss) then 
 {Output := loss;}  
else  
 {Output := Erroneous;} 
end if; 

The advantage of this FTT is that it allows changing the  
point of view (from functional to dysfunctional) and 
expressing the failure behavior in a syntactic and formal 
manner that can be used to write logical expression of the 
output (for software engineers) as well as in natural 
language (to communicate). Furthermore, when the 
design logic evolves, the FTT can be updated accordingly, 
helping in this way to maintain consistency. They could 
also be reused in the long run to capture more complex 
logics. 
The completion of Step  produces a well-expressed fail-
ure logic resulting from the FTTs and a complete dysfunc-
tional model that can be used in Step  to perform safety 
analyses. 

 Step 3: Safety analysis 

This step consists in exploiting the dysfunctional model 
resulting from Step  for simulation and generation of 
safety analyses such as FMEAs, Minimum cut sets and 
FTAs. To this goal, failure conditions, that represent the 
violation of safety software associated goals, are added to 
the architecture.  
In conclusion, Step  can help in the evaluation of the 
system safety through simulations and the generation of 

 
7 There are 6 levels of autonomy ranging from 0 (no automation) to 5 
(full automation) 

classical models (Minimum cut sets, FTAs, FMEAs). This 
saves time and helps the safety engineers in their task. 

 Discussion 

The proposal offers several interests and significantly im-
proves current practices, mainly thanks to the adoption of 
a model-based approach. By automating the generation of 
safety analyses from a dysfunctional model of the soft-
ware, it allows quickly processing new analyses if ever a 
modification occurs on the model, at low effort. Assuming 
that the dysfunctional model is correctly established from 
the functional model, this methodology prevents from the 
introduction of bias in manually building FTAs or FMEAs 
due to potential interpretations of the safety analyst. To 
perform the functional to dysfunctional model transfor-
mation at best, the consistency and traceability between 
models is ensured thanks to the failure truth tables. In ad-
dition, the methodology allows maintaining the safety 
analyses whenever the design evolves. 
However, the proposal still has some limitations. First the 
manual modeling could be improved if some behavioral 
attributes of the software component had already been 
elucidated in the design model. In this case, a partial im-
port could be considered. This highlights the need of im-
proving model-based practices on the design side. A sec-
ond limitation lies in the manual logic translation through 
failure truth tables, that could be improved if a form of 
automation was used, based on a kind of automatic model 
transformation.    

5 CASE STUDY 

In an automobile, the Advance Drivers Assistance System 
(ADAS) and Autonomous Driving (AD) implement soft-
ware-based functions that assist the driver and improve 
their driving experience. The chosen case study is a sub-
system of the AD software system. As presented in Figure 
5, it consists of three main software components: The 
Hands-Off Detection (HOD), the Longitudinal Control 
and the Lateral Control. This case study being part of a 
broader system, we also consider other components of the 
system (such as the Status Input) that must be included to 
perform the analysis and to position the software compo-
nents with respect to their environment. 

  
Figure 5 Synopsis of the case study software architecture 

At autonomy level 1 (corresponding to assisted driving7), 
the drivers are required to keep their hands on the wheels 
even though AD features are activated. In this context, the 
role of the Hands-Off Detection (HOD) is to detect if the 
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driver has taken their hands off the steering wheel. To en-
sure an effective and reliable detection, two redundant 
strategies are used, a capacitive HOD detection based on 
a capacitive sensor and a torque based HOD based on a 
measure of the force the driver applies on the steering 
wheel. Both strategies provide a consolidated HOD status 
for lateral and longitudinal control. The Longitudinal 
Control manages the acceleration, deceleration and brak-
ing. The Lateral Control keeps the vehicle in lane. It takes 
part in critical functions, steering and user alert. Its acti-
vation depends on both the HOD and the Longitudinal 
Control statuses as well as on various environmental and 
vehicle data (lane, steering wheel angle, vehicle speed) 
through the Status Input (a software component that pro-
vides data to the HOD, Longitudinal and Lateral Control).  

 Choosing tools to support the methodology  

Let us remember that we chose using a dedicated 
dysfunctional model and the FLM approach. This allows 
us to have a more safety-oriented point of view of the 
system and enforces independence and separation of 
concern (functional features vs safety considerations).  
We chose AltaRica based solution for its simplicity but 
also for its formal aspects. AltaRica allows expressing a 
dysfunctional behavior through a well-defined semantic. 
Moreover the language has been proven useful in many 
contexts (for instance for systems safety assessments in 
aeronautics) as outlined in [13].  Among AltaRica based 
tools we chose SimfiaNeo for its more innovative features 
and friendly eclipse-based user interface. SimfiaNeo has 
a built-in step-simulator offers an FMEA generator, and a 
built-in model checker that is used to directly generate 
minimum cut sets and FTAs from the dysfunctional 
architecture. 

 Applying the methodology  

We then applied the different steps of the methodology: 
first, in Step , we defined and modeled the software 
components states and basic failures, then in Step , we 
modeled the failure propagation using logical expressions 
linking outputs to inputs as well as internal states; finally 
in Step , we used the resulting dysfunctional architec-
ture to perform safety analysis. 

5.2.1 Step 1: Dysfunctional modeling  
We used the information from the AD software functional 
architecture (documents and informal models) to build 
our basic dysfunctional model. First, using SimfiaNeo 
graphical modeling interface, we modeled the software 
components with model bricks.  

 
Figure 6. Top level view of the case study model 

Then, using AltaRica, we defined domains (cf. section 
2.2.2) for components and inputs / outputs, states and as-
sociated transitions (expressed as events in AltaRica) for 
each component. A top-level view of the model is shown 
in Figure 6. The red rectangle delimits the perimeter of the 
case study. 
We now need to complete this dysfunctional model with 
a failure propagation logic to be able to perform safety 
analysis. 

5.2.2 Functional to dysfunctional logic translation 
A logic translation is used to assist in the building of the 
failure propagation and ensure a better consistency of the 
dysfunctional model with the design model. For that, logic 
retrieved from Simulink models are translated into Al-
taRica logic using FTTs.  
Figure 7 illustrates this transformation. The functional 
logic is from a subcomponent of the HOD software com-
ponent. From a functional point of view, this logic returns 
a status (HODConsolidationHandsOn) based on whether 
the two signals (HandsOff and HandOff_mirror) are 
equal. The output (HandsOffState) captures this status.  
 

 
Figure 7. Functional to dysfunctional logic translation us-
ing truth failure tables 

The goal of the functional to dysfunctional logic transla-
tion is to go from this functional point of view to a dys-
functional point of view. For that, we assign the states 
(predefined in Step ) to the inputs (on the functional 
logic), and we write the corresponding output states on the 
FTT. We reiterate this process for all possible combina-
tions of input states. This creates the corresponding failure 
table, with all possible output states, as shown in Fig. 7. 
Using the FTT, we can now write the output expression 
(of the corresponding dysfunctional brick) in AltaRica. 
This step is repeated for all the software components of 
AD. The tables can be used as templates to model more 
complex components and systems. This can help save 
time through reuse. Overall, Step  completes the dys-
functional model initiated in Step . Thanks to this, the 
dysfunctional model is more consistent with the func-
tional model and can be used for safety analysis in 
Step . 
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5.2.3 Step 3: Safety Analysis 
This step consists in generating classical safety models 
such as FMEAs, minimum cut sets and FTAs from the 
dysfunctional model, using the SimfiaNeo model check-
ing capabilities. To this goal, we used the dysfunctional 
model from Step  and the failure conditions identified 
in earlier stages of the safety lifecycle. We proceeded by 
adding failures conditions using AltaRica observers8 via 
direct connections from the software components outputs 
or through a combination of assertions expressed in Al-
taRica. Once this is done, we can now perform safety 
analysis. First, we performed simulations. Then we di-
rectly generate FMEAs from the dysfunctional architec-
ture. After that, we compute the minimum cuts sets, from 
which we were able to immediately generate FTAs.   
To perform simulation, we used the SimfiaNeo built-in 
step simulator. It allows us to interactively assess the dys-
functional behavior of the system. For that, we manually 
trigger basic failure events (at component level) and ob-
serve their effect, through change in colors, on other com-
ponents and failure conditions (earlier added through Al-
taRica observers). 
SimfiaNeo offers the automatic generation and export of 
FMEA tables directly from the software dysfunctional 
model. Given the complexity of the software architecture 
and the multiple basic failures (at component level), this 
results in a plethoric number of failure modes (in FMEA 
tables). For this reason, we found that in our case, the 
FMEA tables were less pertinent in comparison to mini-
mum cuts and FTAs, that are more compact and synthetic. 
However, whereas generating FMEA is immediate, gen-
erating FTAs requires a (somehow quick and easy) con-
figuration. Preliminary to the creation of FTAs, minimum 
cut sets are first generated. To generate a minimum cut, 
we specify the failure condition for the top event, the max-
imum order (of the computation) and a few other param-
eters such as the type of generation (stochastic, permuta-
tion or combination). We can also add to the configuration 
some constraints representing any conditions we want to 
check (e.g. ‘No single point of failure’). Once the compu-
tation is launched, it returns a table (as shown in Figure 8) 
listing the basic failure events (‘Elements’ column), the 
order (number of basic events contributing to the top 
event) as well as their probabilities. 

 
Figure 8. Loss of lateral control minimum cut set 

FTAs basically contain the same information as minimum 
cut sets but have the advantage of presenting them in a 
more visual and intuitive way. Figure 9 shows an example 

 
8 An AltaRica observer is an indicator that can be associated to failure 
condition that we want to watch out for. 

of FTA. It is constructed from the minimum cut sets of 
events leading to the ADAS ‘Lateral control loss’ feature.  

 
Figure 9. Loss of lateral control status Fault Tree 

At the top of the tree stands the top event (Lateral control 
loss). In the leaves, we see the basic failure events and 
their probabilities (that are not useful in our case). The 
FTA graphically shows that the lateral control loss can be 
caused by the single failure of the lateral control compo-
nent (Lateral_Ctrl.failure) or a combination of the HOD 
(HOD.HODStateFinal) with either the Fusion (Fu-
sion.failure) or Statut Input (Status_IN.failure) software 
component failures. Additionally, the FTA can be useful 
in capturing inconsistencies in the ASIL decomposition 
that are not visible through the functional view. For exam-
ple, the lateral control component is rated ASIL B whereas 
one of the contributing basic events (Status_IN.failure) in 
this FTA does not bear any ASIL requirement. So, using 
FTA can be useful to check if, for a given safety goal, the 
ASIL of the combination of the triggering event is incon-
sistent.  
This step showed how the classical safety models can be 
generated from the dysfunctional architecture we built in 
Step  and Step .  

 Case study conclusion  

The results from the case study show that using the 
methodology we propose, it is possible to apply and 
benefit from a model-based safety analysis approach for 
software in the automotive industry. It also demonstrates 
the usefulness and efficiency of using basic and pragmatic 
tools features such as simulation and failure cause and 
consequence that are available in tools. Additionally, this 
approach makes safety analysis more accessible to 
engineers through a tool-based generation of traditional 
safety analyses. Overall, the methodology enforces safety 
by allowing engineers to focus on getting a right model 
and spending less effort in generating analyses, therefore 
improving the quality of these automatically generated 
analyses. The possibility to generate FTA in one click is 
interesting. Indeed, if the software functional model 
changes, the dysfunctional model can be updated, and 
FTAs can be regenerated without additional effort. This 
means that the dysfunctional model should be maintained.  
However, given that the dysfunctional model construction 
and logic translation are done manually, there are some 
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limitations. First, the manual modeling and logic 
translation make impractical the application of the 
methodology to large and complex software systems. This 
manual modeling approach can certainly be improved to 
ensure a better consistency of our model with the design 
model. Secondly, the AltaRica language is system 
oriented and lacks semantics for certain categories of 
software failures. It was difficult to express and simulate 
failures related to timing and values. For example, we 
were not able to model and observe failures such as the 
temporary deactivation of lateral control or out-of-range 
values. In this regard, we consider that the use of AltaRica 
needs to be reassessed. Nevertheless, the proposed 
methodology answers our current needs as it is a clear 
improvement from the manual techniques. 

6 PERSPECTIVES AND CONCLUSION 

This paper made a methodological proposal for using 
MBSA for automotive software safety analysis. It consists 
in building a dysfunctional architecture of the automotive 
software from the functional high-level software nominal 
architecture, using compatible semantics and syntaxes, 
and a translation of a functional to a dysfunctional logic. 
Then, from this dysfunctional model, the safety engineer 
can automatically generate minimal cut sets, FTAs and 
FMEAs for interpretation and as safety proofs if required.  
We applied this methodology on a real-world industrial 
case study that involved the use of SimfiaNeo and Al-
taRica. We concluded on the implementability and useful-
ness of the methodology. Coupled with the languages and 
tools we used, it brings added value and improves current 
manual safety analysis practices. Limitations that we 
identified will be addressed in future work. This will in-
clude improving the dysfunctional modeling for which we 
will consider a partial automation of the model building 
and logic translation. We will also explore languages that 
have better semantics for software failures (AADL EMV2 
for example). Finally, we will work on aligning the pro-
posed model-based software safety analysis methodology 
with model-based software development to ensure better 
consistency and higher quality of safety analysis. 
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