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On Interconnected Observer Design

for Nonlinear System

Mei Zhang, Ze-tao Li, Michel Cabassud and Boutaïeb Dahhou

Abstract This paper investigates the possibility of decomposing a control system

into an interconnection of actuator and process subsystems; this allows monitoring

the properties of the interconnected system globally and locally. For that, observer

for the nonlinear interconnected system is studied. Specially, the interconnection

between the two subsystems is assumed to be inaccessible to measurement. The aim

is then to accurately estimate online the states vector of each subsystem, as well as

the unknown interconnection. Numerical simulations confirm the effectiveness of

the designed observer.

Keywords Interconnected system · Unknown interconnection · States estimation ·
Left invertibility · Actuator subsystem · Process subsystem

1 Introduction

In practice, interconnected dynamical systems appear in many control applications

whether naturally or intentionally due to control design purpose. An interconnected

system consists of a series of interconnected dynamical units, and therefore exhibits

very complicate dynamics [1].
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Over the past years, the topic of states estimation for interconnected system has

received extensively attention in the literature, see e.g. in [1–3]. A large number of

publications focused on this problem with satisfactory results are in a centralized

manner, resulting in various types of observers like high gain observer [3], slid-

ing mode observer [4], adaptive observer [5] etc. However, note that a centralized

observer may not be practical for the interconnected systems due to the complexity

of implementation, and the state or parts of the state cannot be measured due to

uneconomic measurement costs or physical circumstances like high temperatures,

where no measurement equipment is available, for example. A solution to overcome

this difficulty is to decompose the systems into an interconnection of several sub-

systems so that the observers can be designed in a decentralized manner. A typical

approach of state estimation is to design observers for each subsystem individually

and the overall estimator is formed by gathering of all the observers, different kinds

of methodologies are developed, like in [6–9].

With respect to the above mentioned methods, one major challenge is the availabil-

ity of the measurement of the interconnections between subsystems. For example, the

output of the actuator can be either uneconomic or unrealistic to measure its output.

A promising approach was reported in [10] where the problem of state-observation

is addressed for nonlinear systems that modeled by an ODE–PDE series association.

This problem has also been studied for interconnected system formed by a nonlinear

system followed by a linear system, like in [8].

This paper considers the issues of both state and unknown interconnection esti-

mation for the interconnected system represented by two nonlinear associations

connected in series. Two underlying issues are worth to be highlighted to better

understand the nature of the considered estimation problem. Firstly, the measure-

ment output used in the observer of former subsystem is assumed not accessible; the

solution is to replace it by an estimate via observer of latter subsystem. Secondly,

in the latter subsystem, the estimated interconnection that provided for the previous

subsystem is treated as an additional state, forming a new extended subsystem; and

expression for the new state is obtained by computing derivatives of output equation

of the previous subsystem.

2 Motivations and Problem Formulations

The problem of states observation is addressed for nonlinear systems that can be

modeled by two interconnected nonlinear dynamical units, the actuator and the pro-

cess subsystems, as shown in Fig. 1. The aim is to accurately estimate the states

Fig. 1 Interconnected

system structure



vector of both subsystems, as well as the interconnection.

We consider a dynamical process subsystem as an input affine form:

∑

p

:

{

ẋ = f (x) + g(x)ua, x(t0) = x0

y = h(x)
(1)

where x ∈ ℜn is the state of the process subsystem, y ∈ ℜp is the output of the global

system, which is also the output of the process subsystem.ua ∈ ℜm is the input of

process subsystem, which is also the output of the actuator subsystem. ua is assumed

to be inaccessible. f and g are smooth vector field on ℜn and h is smooth vector field

on ℜp.

An input affine structure is also assumed for the actuator subsystem:

∑

a

:

{

ẋa = fa(xa) + ga(xa)u, xa(t0) = xa0

ua = ha(xa)
(2)

where xa ∈ ℜn is the state, u ∈ ℜl is the input, ua ∈ Rm is the output of the actuator

subsystem, which is also the input of the process subsystem. fa and ga are smooth

vector field on ℜn and h is smooth vector field on ℜm.

Considering interconnected system depicted by (1) and (2), it is desirable to

monitor the performance of the interconnected system with aspect to individual

subsystems and the overall system. However, the major difficulty for employing

the existing methods is to satisfy the assumption that inputs and outputs of each

subsystem are available, since the connection point between the two blocks is not

accessible to measurement. This is because the connection is the output of the actuator

subsystem where online measurement is either difficult to obtain due to physical

reasons or the measurement is uneconomical since actuators are often far from the

controller. As shown in Fig. 1, the particular aim in our design is to accurately

estimate online the state vector x and xa of each subsystem, as well as the unmeasured

interconnection vector ua.

3 Interconnected Observer Design

The structure of the proposed observer is depicted as a two level interconnected

observer system which consists of two state estimators, the actuator and the process

state estimators. The specific idea of the proposed interconnected observer is as fol-

lows. First, an existing observer is supposed to be already available for the nonlinear

subsystem
∑

a with measured output ua, then we implement that observer using an

estimate of ua, denoted by ũa. In order to produce such an estimate, we extend the

state space of the process subsystem
∑

p to include ua as an additional state. By

computing derivatives of ua in actuator subsystem, we can obtain an expression cor-

responding to times derivatives of the output ua which is a function of u, derivatives



of u and xa. Then an observer is constructed for this extended process subsystem.

State estimator of actuator subsystem, together with state estimator of process sub-

system, a kind of interconnected observer designed method is then proposed for the

studied interconnected nonlinear system.

3.1 Observer Design for the Interconnected System

First, consider a converging observer for actuator subsystem is:

(3)

where ka, Ga are smooth gain functions with respect to their arguments. Ga is a subset

of ℜn. To this end, introduce the state estimation error as:

ea := xa − x̂a

Then subtracting corresponding equation of (2) and (3), we get the following error

dynamics as:

ėa(t, ea) = fa(xa) + ga(xa)u − fa

(

x̂a

)

− ga

(

x̂a

)

u − K
(

u, x̂a, ua

)

(4)

where .

The observer defined by (3) could be implemented on condition that ua is acces-

sible, but it is not the fact in the case. Since ua in our design represents the output of

the actuator subsystem which is assumed unmeasured, therefore we have to replace

ua with an estimated ũa by the available measurements.

(5)

denote

We seek again estimation error by subtracting corresponding equation in (2) and

(5), thus yielding the new error dynamics as follows:

.

ẽ a(t, ẽa) = ėa(t, ea) + K
(

u, x̂a, ua

)

− K
(

u, x̂a, ũa

)

(6)

In order to ensure exponential stability of the error dynamics (6), we need an

assumption regarding the sensitivity of K
(

u, x̂a, ua

)

with respect to changes in ua.

The following Assumption provides a sufficient condition for achieving this purpose.

This subject of following statement is inspired by [8].



Assumption 1 for any u ∈ U,
(

t, x̂a, ûa

)

∈ A.C
(

R
+, R

)

, there exists a real constant

γ3 satisfies:

∥

∥K
(

u, x̂a, ua

)

− K
(

u, x̂a, ũa

)
∥

∥ ≤ γ3‖ua − ũa‖ (7)

Assumption 2 implies that the definition of
.

ẽ a(t, ẽa) in (6) is not affected.

Theorem 1 if Assumption 1 is satisfied, then the observer described in (5) is an

exponential observer for the actuator subsystem described in (2).

3.2 State Estimator Design for Process Subsystem

In order to produce an observer for the process subsystem (1) subject to unknown

inputs, we solve this problem by extending this unknown input as an additional state,

and propose an observer for the extended system.

Let:

xu � ua ẋu = u̇a

According to [8], we define a function ε(u, u̇, xa) with respect to the time derivative

of the output ua in (2).

ẋu = ε(u, u̇, xa) =
∂ha

∂u
(u, xa)u̇ +

∂ha

∂xa

(u, xa)fa(u, xa) (8)

Assumption 2 For any u ∈ U,
(

t, x̂a

)

∈ A.C
(

R
+, R

)

, there exists a real constant γ4

satisfies:

∥

∥ε
(

u, u̇, x̂a

)

− ε(u, u̇, xa)
∥

∥ ≤ γ4

∥

∥xa − x̂a

∥

∥

Similar to Assumptions 1 and 2 implies global Lipchitz-type condition on function

ε, and it can also be replaced by local smoothness condition since u, u̇, xa are bounded

in physical problem.

Then new actuator and new process subsystem can be expressed as:

∑

p

:

{

ẋ = f (x) + g(x)xu

ẋu = ε(u, u̇, xa)
(9)

Define z =
[

z1 z2

]

=
[

x xu

]

, then system (9) can be extended as:

{

ż = l(z1)G(z1)z + F(z1) + ε̄(u, u̇, xa)

y = Cx
(10)



where: G(z1) =

(

0 g1(z1)

0 0

)

, F(x1) =

(

f1(z1)

0

)

, C =
(

In 0
)

, ε̄(u, u̇, xa) =

[

0 ε(u, u̇, xa)
]T

,In is n×n identity matrix, l(z1) is a scalar real function with respect

to their arguments and αl ≤ |l(z1)| ≤ βl.

An extended high gain observer for (10) can be given in the following way:

{ .

ẑ = l
(

ẑ1

)

G
(

ẑ1

)

ẑ + F
(

ẑ1

)

+ ε̄
(

u, u̇, x̂a

)

+ H
(

ẑ1

)(

ŷ − y
)

ŷ = Cẑ
(11)

where: H =
[

Hz1
Hz2

]T
= �−1

(

ẑ1

)

S−1
θ CT, �

(

ẑ1

)

=

[

I 0

0 G1

(

ẑ1

)

]

3.3 Interconnected Observer

System (5), together with (11), constitutes the interconnected observer for the studied

interconnected system, as follows:

{ .

x̂a = fa

(

x̂a, u
)

+ ka

(

ga, x̂a

)(

ha

(

x̂a

)

− ẑ2

)

.

ẑ = l
(

ẑ1

)

G
(

ẑ1

)

ẑ + F
(

ẑ1

)

+ ε̄
(

u, u̇, x̂a

)

+ H
(

ẑ1

)(

ŷ − y
)

(12)

where virtual measurement ũa in (6) is replaced by its estimation ẑ2.

4 Numerical Simulations Result

In order to test the performance of the proposed observers, A case study is developed

on an intensified HEX reactor. More relative information could be found in [11].

4.1 System Modelling

The actuator subsystem model is described as: xT
a =

[

xa1 xa2 xa3 xa4

]

=
[

X1
dX1

dt
X2

dX2

dt

]

, uT =
[

u1 u2

]

=
[

pc1 pc2

]

, uT
a =

[

F1 F2

]

=
[

Cv

√

�P1

sg
X1 Cv

√

�P2

sg
X2

]

, C =
[

c1 c2 c3 c4

]

=
[

Cv

√

�P1

sg
0 Cv

√

�P2

sg
0
]

where F is flow rate (m3s−1), �P is the fluid pressure drop across the valve (Pa),

sg is specific gravity of fluid, X is the valve opening, Cv is valve coefficient Aa is

the diaphragm area, pc is the pneumatic pressure, m is the mass of the control valve

stem, µ is the friction of the valve stem, k is the spring compliance, the actuator



subsystem is then described as:



























ẋa =









0 1 0 0

− k1

m
−µ1

m
0 0

0 0 0 1

0 0 − k2

m
−µ2

m









xa +









Aa

m
0

0 0

0 Aa

m

0 0









u

ua=

[

Cv

√

�P1

sg
0 Cv

√

�P2

sg
0
]

xa

(13)

For the process subsystem, define the state vector as xT = [x1, x2]T =
[

Tp, Tu

]T
,

the control input uT
a = [ua1, ua2]T =

[

Fp, Fu

]T
, the output vector of measurable

variables yT =
[

y1, y2

]T
=

[

Tp, Tu

]T
, where ρp, ρu are density of the process fluid

and utility fluid (in kg m−3), Vp, Vu are volume of the process fluid and utility fluid

(in m3), cpp, cpu are specific heat of the process fluid and utility fluid (in J kg−1 K−1),

U is the overall heat transfer coefficient (in J m−2 K−1 s−1). A is the reaction area (in

m2). Fp, Fu are mass flowrate of process fluid and utility fluid (in kg s−1). Tp is the

process fluid temperature. Tu is the utility fluid temperature of previous cell. Tpi, Tui

are the inlet temperature of process fluid and utility fluid.

Then the process subsystem can be described in the following state-space form:







ẋ = f(x) +
2

∑

i=1

gi(x)ua

y = h(x, ua)

(14)

where f(x) =

(

f1(x)

f2(x)

)

=

(

hpA

ρpCp pVp

(

Tp − Tu

)

huA
ρuCp uVu

(

Tu − Tp

)

)

, and g(x) =
(

g1, g2

)

=

(

(Tpi−Tp)
Vp

0

0 (Tui−Tu)

Vu

)

, y1 = x1, y2 = x2.

By using (8), we can obtain a function for the derivatives for ua:

u̇a = ε(u, u̇, xa) =
∂ha

∂u
(u, xa)u̇ +

∂ha

∂xa

(u, xa)fa(u, xa)

=
(

Cv

√

�P1

sg
0 Cv

√

�P2

sg
0
)

xa +

(

Aa

m
Cv

√

�P1

sg
Aa

m
Cv

√

�P2

sg

)

u (15)

Define the state vector as xT
1 = [x11, x12]T =

[

Tp, Tu

]T
, unmeasured state xT

2 =

[x21, x22]T = [ua1, ua2]T =
[

Fp, Fu

]T
, the output vector of measurable variables

yT =
[

y1, y2

]T
=

[

Tp, Tu

]T
, then the Eqs. (14) and (15) can be rewritten in the

following state-space form:









ẋ1 = G1(x1)x2 + g1(x1, u)

ẋ2 = ε(u, u̇, xa)

y = x1

(16)

where, G1(x1) =

(

(Tpi−x11)
Vp

0

0 (Tui−x12)

Vu

)

, and f1(x) =

(

hpA

ρpCp pVp
(x11 − x12)

huA
ρuCp uVu

(x12 − x11)

)

.

4.2 Simulation Results

Numerical simulations were carried out. Considering the actuator and process model

given by (13) and (16), observers (12) were designed for estimating unmeasured

inlet flows Fp, Fu, and monitoring performance final product Tp, Tu. An initial value

Fu = 4.22e−5m3s−1, and Fp = 4.17e−6m3s−1 were considered, then followed by

an abrupt change of Fut = 60 s. After that, at t = 100 s, Fp begins to deteriorate.

Simulation Results are illustrated in Figs. 2, 3, 4 and 5.

From Figs. 2 and 3, after a short transient time, the estimated outlet fluid temper-

ature T̂p and T̂u in dash line give an accurate estimation value to the measurement

Tp and Tu in solid line. At 60 s, the estimated T̂p unexpectedly decrease, and finally

it stabilizes at a new level, a drop of 0.2 °C is occurred, then another drops happens

at t = 100 s before it reaches the new stable level with another 0.9 °C reduction. The

Fig. 2 Outlet temperature of process fluid, solid line denotes measured value Tp while dash line is

the estimated one T̂p

Fig. 3 Outlet temperature of utility fluid, solid line denotes measured value Tu while dash line is

the estimated one T̂u



Fig. 4 The computation and estimation of process fluid flow rate; solid line is the computed value

Fp, dash line is the estimated one F̂p

Fig. 5 The computation and estimation of utility fluid flow rate; solid line is the computed value

Fu, dash line is the estimated one F̂u

similar result is obtained in the estimated T̂u of utility fluid in Fig. 3. It is shown that

the measured Tu drops 0.2 and 0.5 °C at 60 s, 100 s respectively. The estimated T̂u

in dash line tracks Tu after observer converges. The simulation curve indicates that

the observer proposed is proper for tracking system performances.

As shown in Fig. 4, in the first place, the estimated process fluid flow rate F̂p in

dash line converges to the simulated value Fp in solid line after transient response.

After that, at 100 s, the simulated Fp in solid line decrease unexpectedly, fortunately,

the estimated value in dash curve gives a quick response to the variation, and it takes

1.5 s to track Fp again. The decrease implies parameter changes in process fluid

actuator which satisfied the assumption. Figure 5 demonstrates the results for utility

fluid flow rate. At time 60 s, as expected, the simulated utility fluid flow rate in solid

line jumps. It also proves in Fig. 5 that the estimated utility fluid flow rate F̂p in dash

line tracks well Fp in solid line.

Now, it is clear that the proposed interconnected observer is effective even the

unknown connection is time-varying either individually or simultaneously. Therefore

the proposed observer proves the capacity of performance monitoring, as well as

estimation of unknown connection of an interconnected system.



5 Conclusion

The paper considers the issues of both state and unmeasured interconnection esti-

mation for a class of interconnected dynamic system. To achieve this purpose, the

unknown outputs information of the latter subsystem are replaced by their estimation

through the observer proposed in the former subsystem. Moreover, an extended high

gain observer is considered to exactly estimate the states of the former subsystem

subject to unknown inputs. While through computing the derivatives of the output

vectors in the latter subsystem, the unknown input can be expressed as a function of

the inputs, derivatives of the inputs and the states of the actuator subsystem. Numer-

ical simulation examples are given to illustrate the effectiveness of the proposed

methods.
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