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Abstract
The emergence of the Internet of Things (IoT) in the medical field has led to a myriad of medi-
cal connected objects (MCOs). These MCOs are being developed and implemented for remote
healthcaremonitoring purposes (elderly patientwith chronic diseases, pregnantwoman, patients
with disabilities). Accordingly, different associated challenges are emerging and include the het-
erogeneity of the gathered health data from these MCOs with ever-changing contexts. These
contexts are relative to the continuous change of constraints and requirements of the MCOs
deployment (time, location, state). Other contexts are related to the patient (medical record,
state, age, sex, and so on) that should be taken into account to ensure a more precise and appro-
priate treatment of the patient. These challenges are difficult to address due to the absence of a
reference model for describing the health data and their sources and linking this data with their
contexts. This paper addresses this problem and introduces a semantic-based context-aware sys-
tem (IoT Medicare system) for patient monitoring with MCOs. In fact, this system is based on a
core domain ontology (HealthIoT-O) that is designed to describe the semantic of heterogeneous
MCOs and their data. Moreover, an efficient interpretation and management of this knowledge
in diverse contexts are ensured through SWRL rules such as the verification of the proper func-
tioning of the MCOs and the analysis of the health data for diagnosis and treatment purposes.
A case study of gestational diabetes disease management is proposed to evaluate the effective-
ness of the implemented IoT Medicare system. An evaluation phase is provided and focuses on
the quality of the elaborated semantic model and the performance of the system.
KEYWORDS:
Medical ConnectedObjects; Patient monitoring; Ontology; Context-awareness

1 INTRODUCTION
It has been revealed that IoT enables seamless communication between diverse devices and objects and helps people to interact continuously

with them to establish a large connected network. The IoT is widely applied especially in the healthcare domain. According to Cai et al. (2014)
Fernandez and Pallis (2014) medical care and health care stand as one of themost attractive application areas for the IoT.
Referring to the association of important R&D direction, the IoT with the medical sector applications gave birth to an Internet of Medical Things
(IoMT)1. According to Gatouillat, Badr, Massot, and Sejdić (2018), IoMT designates the interconnection of communication-enabled medical-grade
devices and their integration to wider-scale health networks in order to improve patients’ health. This harmonious relationship paves the way of
various intelligent services such as diagnoses and prevention of illness, decision support for appropriate treatment for patients, and remote patient

1https://www.huffingtonpost.com/josh-stein/the-emergence-of-the-inte_b_6801714.html
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monitoring Islam, Kwak, Kabir, Hossain, and Kwak (2015). Moreover, this use of connected objects makes the disease identification easier since its
appearance and through its evolution. Therefore, this reveals that IoMT changes the medical field from a reactive and fragmented domain that is a
hospital and disease-centered to a preventive and interoperable one that mainly focuses on the patient’s well-being and quality of life.
In thisway, severalmedical connected objects are developed and deployed such as Zio Patch thatmeasures heart rate and electrocardiogram (ECG)
Tung, Su, Turakhia, and Lansberg (2015), smart wearable devices are proposed by Novartis and Google to observe the blood glucose level Senior
(2014), Withings is a wireless blood pressure monitor developed by Nokia Topouchian et al. (2014), mobile devices to monitor the progression and
treatment of Parkinson disease 2 is an ongoing project between Pfizer and IBM, and so on.
Patients use these MCOs to monitor their measurements (temperature, blood pressure, etc). In fact, through the communication technologies,

MCOs are enabled to exchange the detectedmeasurementswith the doctor’smedical object for helping him for continuous and remotemonitoring
of their patients. After the diagnosis of the received measures, the doctor can share the result with the patient or with his family. Accordingly,
since these MCOs are designed by different manufacturers (Google, IBM, Nokia, etc), they are heterogeneous in terms of deployment contexts,
computing capabilities, and communication protocols. Accordingly, the exchanged information is heterogeneous in formats and units and does not
have the same coding format. In this context, ensuring the semantic interoperability between these heterogeneousMCOs becomes difficult.
To deal with this challenge a reference model that defines all of theMCOs, their data, and their formats is required to ensure interoperableMCOs.
This model should define the MCOs, in terms of their characteristics, capabilities, deployment contexts, measurements and so on. It should also
contain knowledge about the observed patient such as symptom, treatment, event, risk.
To this end, Semantic Web Technologies Berners-Lee, Hendler, and Lassila (2001) and especially ontologies are a promising solution. Ontology
allows representing knowledge about the domain in a well structured and comprehensive description. According to Studer Studer, Benjamins, and
Fensel (1998) an ontology is a formal, explicit specification of a shared conceptualization of a domain of interest. Ontology explicitly defines the IoT
domain and the healthcare domain knowledge and their relationship.
On the other hand, to ensure the adequate and correct management of the obtained health data, it is primordial to link them with their various
contexts. In fact, in our work, we focus on two types of contexts: the patient context and the employed device context. For the first one, the patient
health status context can be considered in order to decide the adequate diagnosis and treatment, e.g the blood glucose level of a pregnantwoman is
different from that of a normal one. In addition, the time context is used to define the required time tomonitor the patient and to analyze his health
data. Moreover, we can also focus on the location context to determine the place of the patient and make a suitable intervention. Concerning the
employed device context, it is required to verify and diagnose its state in order to be sure about the reliability of the gathered data and to be able to
easily repair it in case of damage.
From this viewpoint, context-awareness computing Perera, Zaslavsky, Christen, Compton, and Georgakopoulos (2013) is an important research
topic that should be taking into account in the IoMT field. It allows the interpretation of the patient’s health state, avoids misdiagnosis and errors
due to themisunderstanding of the patient state by assigning the clinical signs to their contexts.
Hence, the present paper exploits SemanticWeb Technology (SWT) Berners-Lee et al. (2001) and context-awareness computing Yürür et al. (2016)
and suggests a semantic-based context-aware patient monitoring approach. This approach is composed by four main phases: the data collection
and preprocessing phase, the semantic modeling phase, the analysis phase, and the implementation phase.
Themain novelties of this paper lie in the following aspects:

• Proposing a unified and standard model (HealthIoT ontology) of the obtained data (technical and health data) to be efficiently used by het-
erogeneous healthcare IoT-based systems. This model contains knowledge about the IoT and the healthcare domain and the relationships
between them. At this level, we aim to extend our previous work on HealthIoT in Rhayem,Mhiri, and Gargouri (2017) Rhayem,Mhiri, Salah,
andGargouri (2017),whereweproposed aHealthIoTontology, by implementing newconcepts related to the contexts of themedical devices
and patients respectively.

• Assisting doctors in the exploitation of the collected data by the technique of automated reasoning based on SWT. We consider here the
use-case of gestational diabetes context andwe develop the related analysis rules that are based on the generic ontology (HealthIoT)

• Verifying and configuring the proper functioning of the employed MCO by exploiting its employment context information, in order to
guarantee the certainty of the detected data.

• Developing a clinical decision support system (IoTMedicare system) to implement theproposedknowledgebasebasedonSWTtechnologies
(SPARQL, JenaAPI) for automatic selection of clinical and configuration services. Thereby, at this level, we define end-users interfaces taking
into account the requirements of three users (patient, doctor, administrator).

2https://www-03.ibm.com/press/us/en/pressrelease/49475.wss
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• Evaluating the semantic quality of the proposed knowledge base (HealthIoT ontology) based on the OQUARE frameworkDuque-Ramos et
al. (2014). In addition, we aim to assess the performance of our system in terms of precision, recall, f-measure and response time.

The rest of this paper is organizedas follows: Section2describesourproposeduse caseabout gestational diabetesmonitoring. Section3provides an
overviewabout IoMT systems and the semantic representation in this domain. Section 4highlights our semantic-based context-aware architecture,
which is composed of fourmain phases: the data collection and preprocessing, the semanticmodeling, the analysis, and the implementation phases.
These phases are described in Section 5, 6, 7 and 8 respectively. The evaluation of our approach is illustrated in Section 9 based on technical and
functional levels and a comparison with existing approaches. Finally, section 10 draws our conclusion and suggests some future perspectives.

2 USE CASE: GESTATIONALDIABETESMONITORING
GestationalDiabetes is a disease that should be continuouslymonitored in order to follow its evolution andmake an adequate decision according

to its behavior. In this context, a pregnant woman needs to communicate and to share her glucose level with the medical staff, receive notifica-
tion from them, accelerate their intervention in difficult cases. On the other hand, medical staff needs easy access to the patient’s data to interpret
them and suggest the appropriate treatment. To alleviate these challenges, themedical sector adopts IoT technology. Thereby, various researchers
Cappon, Acciaroli, Vettoretti, Facchinetti, and Sparacino (2017) Kim, Campbell, andWang (2018)Wang and Lee (2015) have implemented diverse
MCOs tomonitor the state of a pregnantwoman. TheseMCOscontains diverse sensors to detect the patient’s blood glucose, heartbeat, bloodpres-
sure, etc. These objects are heterogeneous in terms of deployment contexts, computing capabilities, and communication protocols. They generate
a huge amount of heterogeneous and ambiguous data that describe various cases. The health data represents the state of the patient and tech-
nical data concerning the state of the medical objects. They generate a huge amount of heterogeneous and ambiguous data that describe various
cases. The health data represents patients’ stateswhile technical data shows the states ofmedical objects.Moreover, this amount of data, including
semantic heterogeneity (synonymy, antonyms, polysemy, etc.), keeps growing. This numeric information can be badly understood and exploited by
users. For instance, if the blood glucose sensor value reaches200, doctors in this case will need further details to understand that this value refers
to the blood glucose level of an ordinary diabetic patient or a pregnant woman that equals to 200 mg/dl. Consequently, information related to the
context of the obtainedmeasurements (source, the type ofmeasurement, unit, patient’s personal information, time of detection, location and so on)
are primordial in both analysis and treatment phases within a reasonable period.
Both doctors and patients use connected objects that are designed by different manufacturers (Google, IBM, Nokia, etc). Accordingly, the gener-
ated data has different coding formats leading to a complex data exchange task.
In the same vein, technical data is incredibly important to configure and manage the state of the used object in order to repair any functional
breakup.
Assuming that the MCO of a pregnant woman fails (discharged battery, ending lifetime, broken connection), the medical staff encounters a big
challenge to remotelymonitor their patient. In this case, these devices should be replaced with anotherof the same type (e.g. blood glucose sensor
should not be replaced with a temperature sensor). Hence, the monitoring task will be assigned to the new available object to perform this new
task. Indeed, this object should be connected to the internet. Therefore, in indoor environments, the object can be connected to the home gateway
as the patient stays at home. In outdoor environments, however, the object can be connected to the internet via the 4G wireless network. In this
respect, verifying the connectivity and availability of this object is a vital stepbefore assigning the new task. Besides, testing theMCOsmobility can
determine the location of the pregnantwoman and consequently facilitate the intervention of healthcare professionals in any emergency case. As a
result, treating information about the crossed trajectory is vital to track theMCOmobility. Once the state of the object is reliable, doctors are able
to treat and diagnose patients’ states. First, the validity of the obtained blood glucose level for possible treatment should be checked. Diagnosing
the blood glucose level during a predefined time interval helps avoid adverse events, like fainting and dyspnea. Second, doctors will diagnose blood
glucose values in pregnancy. Thus, they are permanently diagnosed during the second and third semesters of pregnancy. These values can be rec-
ognized based on one of these two different glucose tests. The Fasting Plasma Glucose (FPG) should be between 92 mg/dl (5.1 mmol/L) and 126
mg/dl (7.0 mmol/l). The Oral Glucose Tolerance Test (OGTT) is greater than or equals to 180 mg/dl (10.0 mmol/L) after one hour and greater than
or equals to 153mg/dl (8.5mmol/L) after two hours according to Association et al. (2018). Third, the diagnostic test results andmedical records of a
pregnant woman (age, weight, historical diseases, tests) help doctors estimate possible health complications and the most dangerous risks. In fact,
according to theWorld HealthOrganization (WHO)Organization et al. (2016), uncontrolled diabetes during pregnancy cause hazardous effects on
both the mother and child, such as the risk of fetal loss, congenital malformations, and stillbirth. Diabetes treatment in pregnancy depends on the
blood-glucose level. In fact,at amedium level, doctors can resort to just a dietary plan.However, at a high glucose level, doctors suggest amedication
therapy (for example: metformin 3 times per day during or after meals, insulin injections) that will be taken only during the pregnancy period. After
that, doctors send notifications of adequate treatments for patients or their families through alarms sent by doctors’connected objects. In an emer-
gency case, when symptoms of fetal loss appeared, an emergency alert should be forwarded to the hospital in order to urgently send an ambulance.
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To treat these cases, it is essential to develop an application in order to assist users to control and configureMCOs regardless of their location (e.g.
a doctor at home can control the remotely-connected medical devices of his patients to verify their reliability and trust; he can send/receive noti-
fications to/from them). Besides, this application will enable users to share knowledge about the state of patients and the appropriate treatments,
via their objects. In this regard, themain goal of this work is to propose a semantic-enabled context-aware approach that consists in:
- Defining a semantic representation of medical objects with their data and contexts to resolve the semantic heterogeneity problem.
- Facilitating the diagnosis of the health states of pregnant women based on the semantic model by taking into account myriad contexts such as,
age, symptoms, hypertension, etc.
- Ensuring the good functioning of the employedmedical objects to guarantee sustainable and effective pregnant women’s monitoring.
- Facilitating the interaction between doctors and users through the development of a semantic-based patient monitoring system. This system
fulfills the following users’ requirements:

• Patient requirements: Patients (pregnant women) can continuously control their states by consulting the collected measurements. Each
patient is also willing to receive and verify any notification sent by his/her doctor.

• Doctor requirements: The doctor is able to monitor a group of patients by analyzing their measurements in a given context; they can
remotely consult the proposed diagnosis report by our system and tomake a change if necessary. In addition, doctors can communicate and
sent the appropriate diagnosis and results for patients through the triggering of alarms.

• Administrator requirements: The administrator can control the proper functioning of the medical connected objects used by the doctors
and their patients. He is able to send notifications for users if he encounters a problem in the object and to automatically resolve it.

3 LITERATURE REVIEW
This section is divided into two sub-sections. In the first one, we give an overview of the most recent applications of the IoT in the healthcare

domain. It is divided into two parts, namelymonitoring system for IoMT and context-awaremonitoring system for IoMT. In the second sub-section,
we will focus on the semantic representation approaches in this domain. First, we study the proposed approaches in the IoT in general. Second, we
interest in approaches that define the semantics of IoT-based healthcare systems. After that, we underline themain contributions of our work.

3.1 IoT-enabled Smart Healthcare
The continuous need of a low-cost remote monitoring system for elderly patients with chronic diseases has encouraged software developers to

adopt IoT technologies in the healthcare field. The works of Mishra and Rasool (2019) and Jayatilleka and Halgamuge (2020) have overviewed the
recently developed IoT devices that guarantee a reliable and secure patient monitoring and treatment delivery in the healthcare domain.
This adoption shows important and adequate results for improving thequality of healthcare services in smart environments Turcu andTurcu (2019),
Meigal, Korzun, Gerasimova-Meigal, Borodin, and Zavyalova (2019).
In the following sub-sections, we will start by displaying the most recently proposed monitoring system in the IoMT. Then, we will focus on the
context-awaremonitoring system in IoMT.

3.1.1 Monitoring System for the IoMT
IoT has been widely used for remote monitoring of cardiovascular diseases Jabeen et al. (2019). In fact, diverse applications have been devel-

oped for diabetes Puri, Kumar, Le, Jagdev, and Sachdeva (2020), heart diseaseKhan (2020), hypertension Sood and Mahajan (2018), Alzheimer
Varatharajan, Manogaran, Priyan, and Sundarasekar (2018) , epileptical patient monitoring Gupta, Chakraborty, and Gupta (2019), and so on.
In what follows, some recent IoT-basedmonitoring systems are detailed.
Diabetes monitoring: The authors in Chatterjee et al. (2018) implemented an IoT-based home monitoring system for diabetic patients. This
approach aims at monitoring the daily activities of these patients to trigger alerts concerning their dietary behavior when necessary. Puri et al.
(2020) havedeveloped an IoT-baseddiabetesmonitoring system that is capable of detecting and analyzing blood sugar, body temperature andother
environmental parameters (temperature, humidity). This system encrypte data to ensure its secure transmission, analysis and storage in the cloud.
Heart ratemonitoring: Liu, Chen, andWang (2018) have applied amedical IoT system based onwireless sensor networks for ECGmonitoring. This
system detect and transmit physiological parameters and image data to the base station. This data can be easily accessed and analyzed by medical
professionals through their PDA and computers to ensure a timely treatment in an abnormal state. Therefore, Khan (2020) have developed and
IoT framework for heart disease prediction. They used a smartwatch and a heart monitor device to monitor blood pressure and electrocardiogram



AhlemRhayem ET AL 5
measurement. These measurements were then analyzed through the modified deep convolutional neural network (MDCNN) for heart disease
prediction. Santos, Trujillo, Portilla, and Rosales (2019) have set forth an e-health system for heart rate monitor in Ecuador. This system supports
continuous care and suggests primary diagnostic assistance service of heart disease. It bases its operation on video processing algorithms, which
are collected throughweb cam andmobile device that communicate with a central data base station viaWANnetwork.
Hypertension monitoring: Sood andMahajan (2018) proposed an IoT-fog health monitoring system to monitor the blood pressure level to predict
real-time hypertension event. In addition, this system focused on predicting health complications and risks based on several machine learning
algorithms and alerts generation.
CoronaVirus monitoring:with the CoronaVirus outbreak, which first appeared in China, several researchers are working on IoT exploitation to be
able to control and prevent this pandemic. Bai et al. (2020) have offered a diagnosis and treatment system for COVID-19 based on the IoT. The
main asset of this system is to remotely monitor outpatients in the containment zone and ensure a fast and reliable intervention if necessary. It
helps doctors, at the early stages of this disease, guarantee timely treatment of confirmed cases and facilitate the interaction between experts and
managers to deeply investigate or expand the diagnosis and treatment of COVID-19. Both a smartphone and a PC, key components of this system,
are used for patient monitoring and cloud computing for data storage, communication, and transmission technologies.
In Table 1, we present a comparison of the above-mentioned works, related to the IoT-based healthcare monitoring system. This comparison
is based on diverse criteria to give a general overview of the main properties of IoT-based systems in the healthcare domain. The used devices
criterion aims to list the different deployed IoT devices. The communication technology identifies the types of the used technologies to connect the
IoT devices. The application criterion determines the application domain of the developed system. The use of the ontologies criterion verifies if the
proposed works addressed the semantic-interoperability challenge or not. The reasoning methods criterion identifies the principal used methods
and technics for data interpretation. The tools criterion verifies if the proposedworks have developed and evaluated their approaches on a real use
case.

TABLE 1A comparison of recent monitoring systems for the IoMT.

References IoT devices Communication
Technology

Application Use of
ontologies

Reasoning
methods

Tools

Chatterjee et
al. (2018)

Ambient sensors (switch, sen-
sor for activity), IoT devices (BG
monitor), Bodywearable devices

WSN Diabetes NO replicator neu-
ral network
(RNN)

Yes

Puri et al.
(2020)

Glucose sensor, transcon-
ductance amplifier, and
microcontroller

WiFi Diabetes NO If-Then rules Yes

Liu et al. (2018) ECG sensor Wireless Sen-
sor Networks
(WSN)

Heart NO image pro-
cessing
techniques

Yes

Khan (2020) smart watch and heart monitor
device

LoRa
technology

Heart NO Modified Deep
Convolutional
Neural Network
(MDCNN)

Yes

Santos et al.
(2019)

Web cam and WANnetwork Heart NO

Sood and
Mahajan
(2018)

Health sensor (Blood pres-
sure sensor, heart arte; etc),
accelerometer, Bio sensor, RFID
tag, etc

Hypertension NO Artificial Neural
Network (ANN)

Yes

Bai et al. (2020) sensors for heart rate, tempera-
ture, respiratory rate, etc

5G technology Coronavirus NO Yes



6 AhlemRhayem ET AL

3.1.2 Context-awareMonitoring System for the IoMT
To ensure reliable and efficient health data analysis and interpretation, an IoT-based system should understand the contextual information of

the obtainedmeasure. Dey, Abowd, and Salber (2001) have defined context as "any information that can be used to characterize the situation of an
entity. An entity is a user, place, or physical or computational object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves". Perera et al. (2013) and Yürür et al. (2016) have surveyed context-awareness from an IoT perspec-
tive.
In this section, we propose an overview of the suggested IoT-based context-aware systems.
Rahman, Rahmani, and Kanter (2017) have put forward amulti-modal context-aware reasoner (CAN) for different IoT applications at the IoT edge.
First, contextual informationwill be extracted from raw data. Second, this informationwill be filtered and then transfered to the reasoner to decide
to which application it may refer.
Chegini and Mahanti (2019) have defined a microservice framework to implement automatic functionalities for IoT-fog-cloud ecosystem, such as
automatic IoT orchestration and collaboration, automatic task workflow, automatic task scheduling, etc. This framework helps developvIoT-based
context-aware intelligent decision-making systems.
To tackle the challenges of heterogeneous data fusion and context-awareness query processing in the IoT health domain, Baloch, Shaikh, and Unar
(2018) have proposed a context-aware data fusion in the IoMTdomain. This approach is composed of context acquisition, data fusion, and inference
and reasoning steps.
Authors in Aborokbah, Al-Mutairi, Sangaiah, and Samuel (2018) have also introduced an SVM-based context-aware decision support system for
healthcare service delivery in smart cities. This system interpreted the patient’s clinical state based on multiple vital signs (heart rate, tempera-
ture, blood pressure) for early prediction of heart failure risks. Furthermore, it could provide real-time analysis of physiological data to continuously
determine the state of the patient and provide optimal health care services.
Barbosa, Tavares, Cardoso, Alves, and Martini (2018) have offered a context-aware system to assist wheelchair users. It recommends accessible
resources in indoor and outdoor environments during their displacement process based on various contexts, like location, time, users’ identity, etc.
To ensure the security of health data transmission between sensors, Arfaoui, Kribeche, and Senouci (2019) have adopted a context-aware and
lightweight anonymous authentication scheme forWearable Body AreaNetworks (WBAN) applications in emergency and normal situations. Their
proposed scheme provides selective anonymous authentication between nodes in WBAN while taking into account the dynamic context changes
(the battery level of sensors, memory capacity, etc).
Table 2, shows a comparative study of the context-aware monitoring systems. We are based on the same criteria as the previous table and we add
another one concerning the type of the treated contexts with the aim to highlight themost important contexts processed by these works.
According to Table 1 and Table 2, diverse types of IoT devices are used in the healthcare domain and connected to various communication technolo-
gies. In addition, they are based on diverse techniques for data interpretation and management tasks. However, approaches in Table 1 put special
focus on context-awareness in the internet of medical things. Several contexts are defined, such as location, time, patient’s state, device’s require-
ment, etc. In fact, contexts related to the device’s functioning are only considered by Arfaoui et al. (2019), who directed their attention to ensure
safe operation of IoT devices during data collection and transmission.
Moreover, approaches presented in Table 2 and 3 have not considered using ontologies to model and manage their contexts and to deal with the
semantic interoperability problem in the IoMT domain. This was our main objective in this paper. From this regard, much attention has been given
to the related works presented in section 3.2

3.2 Semantic Representation in the IoMT domain
In this section, we will focus on the semantic representation of the IoMT knowledge. Accordingly, it is crucial to study at first the proposed

approaches in the IoT field in general and then on the IoMT.

3.2.1 Internet of Things Ontologies
Over the last few years, diverse ontologies are suggested in the IoT field. The most referenced work was suggested by Compton et al. (2012),

who put forward a Semantic Sensor Network (SSN) ontology. It describes sensors in terms of capabilities, measurement processes, observations
and deployments in order to define the semantic interoperability of physical sensor networks. Its core concepts are sensors and their properties,
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TABLE 2Comparison between Context-awareMonitoring systems for the IoMT

References IoT devices Communication
Technology

Application Use of
ontologies

Context type Reasoning
methods

Tools

Rahman et
al. (2017)

sensors, raspberry pi � IoT in
general

No application domain
(smart home,
healthcare, etc)

rules-
based and
Bayesian
network

No

Chegini and
Mahanti
(2019)

� � IoT in
general

No Location, Environ-
mental contexts (air
pollution)

� Yes

Baloch et al.
(2018)

IoT sensors � Healthcare No Location, environe-
ment

� No

Aborokbah
et al. (2018)

� � Healthcare No Considering
multiple vital signs

SVM Yes

Barbosa et
al. (2018)

RFID cards RS-232,
Bluetooth

Healthcare No Indoor, Outdoor
locations, Time

Yes

Arfaoui et
al. (2019)

Wearable Body Area
Network (WBAN)

Healthcare No Device contexts
(battery level,
memory capacity,
etc.)

observations, systems, measuring capabilities, operational and survival restrictions, and deployments.
The SSN ontology is then extended to wireless sensor networks (wireless sensor network ontology) by Bendadouche, Roussey, De Sousa, Chanet,
andHou (2012). It is also used later tomodel sensor clouds (sensor cloud ontology) byMüller, Cabral, Morshed, and Shu (2013) andmultimedia sen-
sor by Angsuchotmetee, Chbeir, and Cardinale (2018).
Nonetheless, the IoT domain does not only include sensors, but also other concepts that have to be addressed, namely the actuator, the physical
object. The former is responsible for generating actions while the latter is connected to the internet and integrates sensors, actuators, devices,
amongothers. For that reason, diverse approacheswere realized in the last fewyears in order to represent the IoTdomain knowledge. Among these
approaches, wewill present themost common and cited ones.
To achieve this purpose, Bauer et al. (2013) have defined an IoT-A architecture in IoT. This model defines the core concepts of this domain, such as
physical entity, virtual entity, sensor, tag, actuator, service, and user.
In addition, to represent the semantics of actuators and their capabilities and roles, the SOSA ontology was suggested by Janowicz, Haller, Cox,
Le Phuoc, and Lefrancois (2018). It was proposed by both the joint group World Wide Web Consortium (W3C) and the Open Geospatial Consor-
tium (OGC) in order to elucidate the interactions between sensors, observations, actuators and sample concepts.
Therefore, in the context of the ADREAMproject, Seydoux, Drira, Hernandez, andMonteil (2016) proposed amodular ontology (IoT-O)3 to ensure
a semantic interoperability between IoT components. IoT-Ocontains severalmodules, like sensing, actuation, life cycle, service and energymodules.
Ma, Wang, and Chu (2014) set forth a semantic information model for IoT applications, known as OntoIoT ontology. In fact, the latter describes
(i) real word entities (objects being monitored, sensor devices, and network infrastructure), (ii) spatial and temporal dimensions, (iii) the captured
(dynamic and static) data, (iv) services including applications (e.g. in the areas of healthcare or traffic), functions, and interfaces.
In the context of both the EU FP7 FIWARE project4 and the EU H2020 FIESTA-IoT project5 Bermudez-Edo, Elsaleh, Barnaghi, and Taylor (2016)
developed an IoT-lite ontology with the aim of describing IoT concepts in three different classes: Objects, systems or resources, and services. This
ontology is a lightweight instantiation of the SSN ontology.
In the same context, Agarwal et al. (2016) proposed a unified ontology, which reuses a number of core concepts from several ontologies, such as
Semantic Sensor Network (SSN), M3-lite,WGS84, IoT-lite, Time, and DUL in the IoT domain.

3https://www.irit.fr/recherches/MELODI/ontologies/IoT-O/
4https://www.fiware.org/
5http://fiesta-iot.eu/
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TABLE 3Comparison of Semantic-IoT related works

Reference Links to other ontologies Contextual information Reasoning
Time Location Connectivity Trajectory Device Device

Manage-
ment

Data Man-
agement

Compton et al.
(2012)

SemSOS, Ontonym-
Sensor, CESN,
O&M

X X � � � � �

Bendadouche
et al. (2012)

SSN X X X � � � �

Müller et al.
(2013)

SSN X X X � � � X

Angsuchotmetee
et al. (2018)

SSN, SOSA,MA-Ont X X � X � � X

Bauer et al.
(2013)

SSN � � X � � � �

Janowicz et al.
(2018)

SSN X X � � � � �

Seydoux et al.
(2016)

SSN, DUL, PowerOnt X � � � X � X

Maet al. (2014) � X X � � � � X

Bermudez-Edo
et al. (2016)

SSN, Geoname, SAO X X � � � � �

Agarwal et al.
(2016)

SSN, IoT-lite, M3, Time X X � � � � �

We present a comparative table, of the different approaches mentioned above, that shows the use of ontologies to resolve the semantic
heterogeneity in the IoT domain. The comparison is based on the following criteria:

• Links to other ontologies: within this criterion, we aim to identify if the proposed ontology reuses concepts from a previous one and to check
whether these ontologies are built from scratch.

• Contextual information: This criteriondetermines thepresented contexts in theproposedontologies.Wehave identifiedfivemajor contexts
that are important in the IoT domain, namely time, location, inter-connectivity, trajectory and objects’ requirements.

• Reasoning: This criterion verifies whether the proposed approaches suggested rules for either devicemanagement or datamanagement.

According to Table 11, we notice that most of these approaches take advantage of reusing existing ontologies instead of building new ones from
scratch. SSN was one of the most referenced ontologies in these approaches as it presents a pivotal component for each IoT-based system. Fur-
thermore, the main modeling contexts in these works are time and location with little emphasis on interconnectivity, requirement, and trajectory
contexts. Concerning the reasoning phase, none of these approacheswas interested inmanaging the state of the employed object, such as checking
its availability, connectivity, and task allocation. Therefore, reasoning about the obtained data from IoT devices was addressed by only someworks,
likeMüller et al. (2013), Angsuchotmetee et al. (2018), Seydoux et al. (2016), Ma et al. (2014).
The next sub-section will be devoted to the semantic representation of the adoption of IoT in the healthcare domain.’
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3.2.2 Semantic-based IoMT systems
Ensuring the semantic interoperability in the IoT and the healthcare fields gave rise to diverse research issues. Therefore, numerous ontologies

are available in the medical domain. SNOMED-CT6 is the most known thesaurus, in which medical terms and their synonyms, are treatable with
machines.
The Open Biomedical and Biological Ontology (OBO), according to Smith et al. (2007), was developed in the field of biomedical informatics. It is
based on the upper-level ontology Basic Formal Ontology (BFO).
UFO (ECG) ontology Gonçalves, Zamborlini, and Guizzardi (2009) is an ontology for the electrocardiogram diagnosis based on the UFO ontology.
This model proposed a reference and a standardmodel of the ECG data.
Therefore, several researchers have addressed the semantic interoperability issue in the IoMTdomain. Authors in Lasierra, Alesanco, O’Sullivan,

and García (2013) provided an ontology representing the management procedure MAPE-Loop (monitoring, analysis, planning, and execution) of
technical data in the case of a patient monitoring.
Authors in Alirezaie et al. (2017) came up with an ontology-based system called "E-care@home". It consists of three different parts, namely E-
care@homedatabase, IoTdevices, and software andprotocols. This SmartHomeOntology is proposed to describe and interpret the heterogeneous
sensor data.
The work achieved by Forkan, Khalil, and Tari (2014) proposed a cloud-based real-time context-aware framework in ambient assisted living. This
framework dealswith the aggregation andmanagement of heterogeneous sensor data in different contexts. InD. Chen, Jin, Goh, Li, andWei (2016),
the authors proposed an Antihypertensive Drugs Personalized Recommendation Service Context Ontology (HyRCO). This model is divided into
seven core classes, namely:User,Activity,Environment,Device, Service, Location andAnti-hypertensive. It defines context rules to provide adrug recom-
mendation service for the hypertension disease based on SWRL language. Recently, the SAREF ontology was extended for the healthcare domain
Moreira, Pires, van Sinderen, and Daniele (2018) and specifically for monitoring ECG data.
Esposito et al. (2018) have implemented an ontology-based context-aware architecture for personal monitoring that can be deployed in mobile
devices. This architecture has addressed the challenge of self-configuring IoT devices, contextual information extraction related to patients for
later analysis and interpretation, the fusion of contextual informationwith sensor data in order to detect suspicious anomalies and supply adequate
alerts. This architecture comprises four distinct layers, namely the sensing layer, the perceptual layer, the reasoning layer and the actuating layer.
Rubí and Gondim (2020) have developed an interoperable IoMT platform by the alignment between the SSN ontology and the Electronic Health
Record (EHR). This platform is based on theM2Marchitecture that enables communication between the different components of the IoT platform.
Table 4 displays a comparison of the developed ontologies in the IoMT domain based on some criteria. First, the IoT devices criterion determines
themodeled IoT devices in the proposed ontologies. Second, the interoperability criterion verifieswhether the proposed ontologywas either devel-
oped from scratch or based on reusing other ontologies. Third, the context-aware criterion demonstrates if the ontology contains concepts related
to both the deployed medical context, such as time, location, and trajectory, and patients’ contextual information, like diseases, symptoms, historic
data. Fourth, the reasoning criterion determines whether the proposed works were interested in not only diagnosing the patients’ state, anticipat-
ing possible risks for prevention purposes, and proposing treatment but also checking the connected objects’ states. Finally, the users’ criterion aims
to identify to whom the proposed systemwas addressed.

3.3 Synthesis
After examining Table 4, we can still recognize some shortcomings in applying SWT in IoMT, as described below.
• None of the aforementioned works proposed an ontology that covers the essential concepts in both the IoT and Healthcare domains. The
majority of the suggested approaches in the healthcare field ignored reusing the already defined IoT models. That is to say, they limited
health data source description to only one sensor concept.

• Little attention was paid to the semantic relationships between IoT and healthcare components that can provide a comprehensivemodel to
analyze health data gathered from IoT devices.

• The semantic context modeling is limited to time, location and users in the almost of approaches. It does not represent a specific context
(e.g. capability, network, trajectory) for medical connected objects that affects their functioning. In addition, health care contexts were not
considered in these approaches.

6http://www.snomed.org/
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TABLE 4Criteria andHealth care ontologies comparison

References
Criterion

IoT devices Interoperability Context-aware Reasoning goals Users

Lasierra et al.
(2013)

sensors No No Device management: ON,
OFF

Patient

Alirezaie et al.
(2017)

sensors SSN Time, Loca-
tion, Patient’s
activity

Activity recognition Patient

Forkan et al.
(2014)

sensors No Device, Envi-
ronment, Place,
Person

Diagnosis Patient

D. Chen et al.
(2016)

sensors No Patient Treatment for hypertension
disease

Patient

Moreira et al.
(2018)

sensors SSN/SOSA, UFO
ECG

No No Patient

Esposito et al.
(2018)

sensors No Patient’s
activity

Diagnosis Doctor and
Patient

Rubí and
Gondim
(2020)

Sensors SSN No No Doctor

• The reasoning task is conceived to analyze thepatient’s health care state in a simple case. Researchers havenot treated contexts in a detailed
way. Additionally, to the best of our knowledge, none of these approaches have been interested in managing and interpreting the states of
medical connected devices.

• Except for the study in Y. Chen, Zhou, andGuo (2016), all the proposals do not take into account thewhole diagnosis processwhich starts by
detecting health data from heterogeneous sources followed by analyzing the occurring event, then, anticipating risks and finally suggesting
the suitable service in order to provide real time notifications to patients.

From this perspective, our purpose was to address these problems. First, in order to increase the interoperability of our ontology, we reused some
concepts extracted from diverse IoT ontologies, such as SSN, IoT-O, and IoT-lite. Second, diverse contexts were presented in our model that deals
with the functioning of the used objects and the patients’ states. Third, in the reasoning step, we focused on the remote monitoring of both med-
ical objects and patients. To this end, we put forward and emphasized the M-E-R-T-A process which started by analyzing the obtained data with a
special emphasis on other factors (symptoms, historical diagnosis, age, sex), predicting the potential health risks and finished with the treatment
proposition.

4 SEMANTIC-BASEDCONTEXT-AWAREAPPROACH FOR IOMT
In this section, we detail our proposed semantic-based approach as depicted in Figure 1 for patient monitoring through MCOs. This approach

is based on four mains phases. The first phase describes the data collection process via the MCO and the patient medical records. In order to
understand this data, a semantic modeling representation is suggested by defining their sources and their contexts in relation with either theMCO
or patient. As a result, we obtain a HealthIoT ontology that will be analyzed by proposing three categories of SWRL rules. The first ones are used
to configure and manage the MCO function state. The second ones are highlighted to diagnose the patient state and to predict possible health
complication risks. The last category is defined tonotify end-users by sending suitable alerts. These threeprevious phases represent the knowledge-
base that will be exploited in our implementation phase to provide the appropriate services for end-users through a friendly user interfaces. These
phases will be well detailed in the next sections.
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FIGURE 1 Semantic-based context-aware approach

5 DATACOLLECTIONANDPREPROCESSING PHASE
Heterogeneous health data is required to understandmore themedical system features. Accordingly, comprehensible and reliable data analysis

will be easily performed that enables seamless and efficient communication between healthcare professionals and patients. In our work, we use
two different data sources such asmedical connected objects andmedical reports that provide dynamic and static health data, respectively.

5.1 Data frommedical connected objects
In managing and monitoring gestational diabetes, doctors pay attention to patient information that comes from several sources. Blood glucose

monitoring devices are exploited for continuous monitoring of blood glucose levels. Therefore, to avoid health complications during pregnancy,
diverse othermeasurements should be taken into account, such as blood pressure, heart rate, cholesterol, patients’ activity. In this context, patients
considerothermedical objects, namelyECGmonitoringdevices, bloodpressuremonitoringdevices and smartphones containing sensors for activity
tracking. Furthermore, according to Abu-Elkheir, Hayajneh, and Ali (2013), data captured through connected objects are classified into two distinct
categories: technical datawhich describes the general context of the data collection process (time, Id sensor, space,MCOs properties, etc.) and data
relative to the monitored patient (measurement, unit of measurement, etc). Figure 2 represents an example of temperature data obtained from
medical object in JSON format, where the red color designates the technical data and the blue color designates the health data. In this study,we use
various data sets (CSV format) from the physiobank7, namely temperature, cholesterol, blood pressure, blood glucose, and heart rate. PhysioBank
is a large and growing archive of well-characterized digital recordings of physiologic signals and related data for use by the biomedical research
community. It is one of the resources of the National Institutes of Health8, which is intended to stimulate current research and new investigations
in cardiovascular studies and other complex biomedical signals Goldberger et al. (2000). These data sets contain numeric and string data type.

7https://physionet.org/data/
8https://www.nih.gov/



12 AhlemRhayem ET AL

{
        "messageID": "urn:uuid:be422ea8-289d-49fa-bd39-6a48f4711c75",
        "messageTime": "2014-08-20T14:32:56.125Z",
        "message": {
            "SensorID": "urn:uuid:8f5308d5-a1ca-4ad4-9a7f-3a70d4177551",
            "SensorName": "Sensor1",
            "Battery-state": "50%",
            "Sensor-Type": "Temperature-Sensor"
            "measureName": {"Temperature"},
            "measureType" : "numeric",
            "measureAcquire" : "sample",
            "measureUnit" : "°C",
            "value" : ["29.3"],
            "valueMax": ["45"],
            "valueMin": ["26"]
            "valueTime" : ["2014-08-20T14:32:56.125Z"]
        }
    }

FIGURE 2Obtained data from sensors

5.2 Data frommedical rapport
To provide a precise and suitable treatment for patients, doctors should not only rely on data from mobile objects. In this regard, they need to

refer to patients’ medical records as another source of healthcare data. This source contains basic patient information (age, sex, name, address),
laboratory test data, symptoms, patient medical record, and medical family history. In our work, these valuable information are provided by three
domain experts (doctors) from their patients’ personal health records (PHR). In that phase, the SNOMED-CT terminology is recommended by our
experts to represent this clinical information as it contains the largest clinical terminology.

5.3 Data Preprocessing
Due to the ambiguous, heterogeneous and noisy data acquired from the MCOs, a preprocessing phase should be performed to reduce and

remove erroneous and unusual data. First, we apply a data cleaning phase that consists in removing datawith values outside the IoT devices thresh-
olds. In fact, each device has amaximumand aminimumrange.Healthcare datawith values outside this range are considered as erroneous data that
will be removed. Missing data are also removed. Second, we carry out a normalization phase before integrating this data in the ontology to avoid
such inconsistencies. For example we have changed the time format (from "YYYY/MM/DD hh:ss:mm" to "YYYY-MM-DDThh:ss:mm") using the ISO
8601 standard adopted by SNOMED-CT.
In order to make this data understandable and interpretable by MCO and IoMT-systems, the next section will be devoted to the formal represen-
tation of theMCO and the healthcare domain knowledge and their relationships. The OWL2Motik et al. (2009) is used for the formalization of the
knowledge domain.

6 SEMANTICMODELINGPHASE
In this phase, a HealthIoT ontologyFigure 3 is proposed for the following reasons:

• Defining a standard and unified model of the collected data and linked it with their contexts. This model will be shareable and exploited
between objects as well as between humans.

• Facilitating the discovery, integration, manipulation, and configuration of clinical devices.
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• Supporting reasoningmechanism on the defined context to infer intelligent decision.

For this end, we aim to extend our proposedHealthIoT ontology Rhayem,Mhiri, andGargouri (2017) in order to cover and express diverse contexts
that affect the diagnosis andmonitoring of bothMO’s and patients’ states missed in the previous version.
Furthermore, to build the present ontology, we relied to some relevant existing one such as SSN Compton et al. (2012) through the ssn prefix, IoT-
OSeydouxet al. (2016), IoT-liteBermudez-Edoet al. (2016)with the iot-liteprefix, TimeontologyHobbsandPan (2006)with theToprefix,Geonames-
ontology through the geo prefix andMOOontologyWannous, Malki, Bouju, and Vincent (2013) through themoo prefix.
Formally, we define our ontology as 3-tuples: O= (C, A, I) where :

• C : set of concepts
• A : set of axioms between concepts
• I : set of instances of each concept

 

Medical Objects Knowledge 

Context  Knowledge 

Health care Knowledge 

FIGURE 3HealthIoTOntology

The main concepts of our ontology are classified into three categories: concepts that represent the knowledge about MCO, the knowledge about
the patient states and that about their contexts.

6.1 MCOKnowledge
This step is conceived tomodel the heterogeneousmedical connected objects and their specificities. Themain defined concepts are as follows:

HIoT:Medical-object represents the semantic of heterogeneous medical connected objects used for remote patient monitoring. For example, the
blood glucose monitoring device, blood pressure monitoring device, smartphone, and the medical box represent the MCOs used to monitor preg-
nant womanwho has a gestational diabetes disease.
HIoT: virtual-resource class is proposed to define one of the main IoT goals, which is the virtualization of real-world objects in order to facilitate
their management and configuration.
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ssn:Device it is a concept extended from the SSN ontology and has two sub-classes: ssn:Sensing-device and iot-lite:actuating-device. The first rep-
resentsmedical-sensor andRFIDs tagswhich are responsible for the detection of the occurring event and the second describes the actuators acting
on the environment. The sensors used for gestational diabetes monitoring such as the blood glucose sensor, the blood pressure sensor, the ECG
sensors, and so one, are presented as instances of the sensing device concept. The vibrator, screen, alarm represent the instances of the actuating
device concept.
HIoT:properties represents the properties of the used connected-objects. Thereby, we extend some properties from cloud resource that are
satisfied by IoT resources such as shareable/non-shareable, elastic/non-elastic, limited and not-limited. Other properties that we can take into con-
sideration in the IoT are "moving" and "stop". These properties are modeled as sub-classes of "HIoT:IoT-properties" concept. Details about these
properties are given in Table 5.

TABLE 5 Internet of Things resources properties

Properties Definition
Shareable IoT resources can perform two task at the same time.
non-shareable IoT resources is capable to execute just one task at a given time
limited In almost of cases IoT resources have a maximum capacity as for instance with battery life time and

energy consumption that if it is reached than the IoT resource is no longer working
non limited IoT resources have unlimited capacity
elastic it’s possible to add/remove resources in order to increase their capability (memory, lifetime, response

time, etc)
non-elastic there is no possibility to change the capability of IoT resources
stop IoT resources are deployed in a specific environement during a predefined period.
move IoT resources are in moving state if their environment of deployment change during time.

HIoT:Task: it allows the description of the allocated task by the connected objects and the embedded devices (e.g. sensing blood glucose level,
triggering treatment alerts).

6.2 Patient Knowledge
In order to represent the health state of themonitored patient, it is necessary to represent someknowledge from themedical sector. At this level,

we adopt the SystematizedNomenclature ofMedicineClinical Terms (SNOMED-CT) 9 standard. These concepts can bebriefly described as follows:
HIoT:Measurement is designed to represent the semantics of massive quantity of health data obtained frommedical connected objects. It has two
sub-classesHIoT:signs andHIoT:Activity. TheHIoT:signs defines thedetected vital signs of thepatient such as thebloodglucose, thebloodpressure,
heartbeat, and so on which are modeled as sub-classes of this concept. HIoT:Alert contains different categories of alerts that can be generated by
the actuator device. These alerts can be for objectsmanagement or for patientmonitoring (treatment adjsutement, emergency call for ambulance).
HIoT:Event represents an abnormal detected event from theMCO. It refers to the healthcare event such as hyperglycemia, hypertension, etc.
HIoT:Risk: represents the health complications of uncontrolled disease that may happen.
HIoT:Actor determines the principal actors in the healthcare domain, such as HIoT:Patient, HIoT:medical-staff.
HIoT:Service describes various services that can be generated by the medical connected objects. These services can be classified into several
categories such as treatment services (HIoT:treatment), emergency services when the patient’s state is critical (HIoT:emergency-service) and con-
figuration services which contain the state of the connected objects and the proposed solution.
HIoT:Symptom defines the changes in patient behavior and sensations about the disease.

9http://bioportal.bioontology.org/ontologies/SNOMEDCT/
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6.3 Context Knowledge
HIoT:Context characterizes the MCOs and the obtained data about the monitored patient. In fact, the state of both MCOs and the patient’s

health changes continuously according to several factors. It is fundamental to consider these factors during the configuration of theMCO state and
during the diagnosis of the patient’s state in order to propose a precise and suitable services.

6.3.1 Context related to themedical objects deployment
• To:Time: describes the medical connected objects’ employment time and the temporal validity of their captured data stream. It has several
sub-classes extended from the time ontology as for instnace with To:duration, To:instant, To:interval.

• goe:Location: describes the surrounding environment of the employed objects. This concept has two subclasses, including the Indoor-
Location andOutdoor-Location in order to express the functioning of the connected objects in a large scale.

• Moo:Trajectory: extended from MOO ontology Wannous et al. (2013). It allows representing the mobility characteristics of the connected
objects. Trajectory refers to a list of locations that the object crosses during a predefined period. This concept is related to the Location
concept with "has-source" and "has-destination" object properties and to the Time concept with "starts" and "ends" properties.

• Capability: is defined by the HIoT:Capability class. It represents the network context, the resource context, and the sensing and actuating
capability context (e.g. energy capability, memory capability, life cycle capability). HIoT:Capability has several sub-classes HIoT:Sensing-
Capability, san:Actuating-Capability, HIoT: Tags-capability, HIoT:network, and HIoT:MO-Capability concepts.

• Environment: is modeled with the HIoT:Environment concept, which determines different factors (humidity, temperature, etc.) that can
influence the state of the connected objects and the validity of the detectedmeasurement.

6.3.2 Context related to themonitored patient
To facilitate the management of complex state and provide the suitable treatment, modeling the context relative to the patient is a promising

solution. Themain proposed classes in ourmodel are described below.

• HIoT:Disease: in the health care domain, it is intrinsic to take into account several contexts like the patient disease. For example, in the general
case, a person who has a temperature value greater than 37 �C, he has a fever, but for a patient suffering from hypertension disease, he has
a fever when the temperature value is greater than 36:5 �C.

• HIoT:Historic: represents medical information about patients such as their diseases, their causes, symptoms, historic treatments, and so on.
This knowledge helps to provide correct diagnosis, and

• HIoT:Patient: is a primordial context in the healthcare domain. It is a sub-class of "ssn:FeatureofInterset" concept, which refers to the
observed and controlled element. This concept defines personal information such as age, sex, weight, etc. that play a primordial role during
the diagnosis phase.

• HIoT:Activity: defines the patient’s activity (e.g. sleeping, running, walking), which are detected by specific sensors such as cameras,
accelerometers during healthmeasurements monitoring.

6.4 AxiomsModeling
A set of axioms, between HealthIoT ontology concepts, which cover the union, the disjoint and the specialization relations are illustrated in

Table 6. Therefore, in order to represent how these concepts are related to each other, we define several semantic relationships, some of them are
highlighted in Table 7.
As example, the Patient class has the relation "has-object"with theMedical-object.Medical-object class is associated with the concept Device via the
object property "contains". To define the role of the Medical-Object class, which is the surveillance of a Patient, we propose the object property
"monitors"with the range domain ssn:FeatureofInterest and Patient concepts. The objects properties ("has-location" and "has-time") are associated
between theMedical-object and both Location and Time concepts respectively. The object property "analysis" is assigned between theDoctor concept
and theMeasurement concept.
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TABLE 6HealthIoT’s axioms

Axiom
Sensing-device�Device ; Actuating-device�Device
Patient�Actor ; Medica-staff�Actor; Patient� ssn: Feature-of-interest
context� Time t Location t Trajectory t Capability t Environment t Disease t
PatienttActivitytHistoric
Service� Treatment-servicet Emergency-servicetConfiguration-service
contains� embedded-in
OutdoorLocation� Location ; IndoorLocation� Location
Instant� Time; Interval� Time

TABLE 7HealthIoT’s objects properties

Object-property Domain Range
contains Medical-Object Device
monitors Medical-Object Feature-of-interest
has-location Medical-Object Location
detect Medical-Object Measurement
worn-by Device Patient
has-object Patient Medical-Object
has-risk Patient Risk
allocate Medical-object Task
has-activity Patient Activity
analysis Doctor Signs
propose Doctor Treatment
has-treatment Patient Treatment
has-symptom Patient Symptom
starts Medical Object instant
finish-at Medical Object instant

7 ANALYSIS PHASE
After the data collection and the semantic knowledge modeling phases, proposing a rule base in order to interpret and exploit this knwoledge is

a necessary step. Thereby during this phase, we propose and implement a reasoning process as detailed in Figure 4. It is basically composed of two
main steps detailed below.

• Initial diagnosis and data collection step: this phase is carried out by the doctor and theMCOs. Firstly, the doctor diagnoses the patient and
recommends the suitable object to be used. Then, the detectedmeasurements of this object are stored in the HealthIoT ontology.

• Reasoning step: here, the collected data are analyzed. In fact, several rules are developed based on the SWRL language. These rules consists
of an antecedent part specifying the condition that must be met and the consequent part defining the fact that may happen. Our rules are
formally defined according to the ECA structure (OnEvent if Conditions doActions) Poulovassilis, Papamarkos, andWood (2006). The event
part determines the contexts for triggering the rules. The condition part represents a set of circumstances that should be achieved. The
action part specifies the list of actions to be performed if the conditions will be held. The proposed rules are classified into two categories:
rules for connected objects’ management and others for diagnosis, treatments and notification proposal. These categories will be detailed
with regards to the gestational diabetes context.
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FIGURE 4Reasoning Process.

7.1 Medical ObjectsManagement
To exploit the MCOs in a reliable and effective way, it is necessary to ensure and check their proper functioning, their adaptability level with

diverse contexts and their ability to perform configurations.
In this section, we develop diverse rules some of them are described below, which mainly focus on: i) the diagnosis of the objects state ii) the
allocation/de-allocation of tasks, and iii) the verification of their capabilities. We present in ?? some SWRL rules for MCOs management in accor-
dance with the proposed use case.

Determine themode ofMCOs:Connected objects can have three different modes:

• Activemode, which verifies that the object is currently active and it is not available to be, used for other tasks.

• Standbymode: verifies that the object finalizes its work and it becomes available for other tasks;

• Passivemode: indicates that the state of the sensor is out of order and it is not available for new tasks that implies to be replaced by another.

These states should be verified using the time context. For example, the standbymode verification consists of:
Event: AMCO contains a sensing device with a blood glucose type and used by a pregnant woman has finished its task and waited for another one.
(the instant when the sensor accomplishes its task should be before the actual time). This event was triggered thanks to the temporal built-ins
("temporal:before" and the subject "now") used from the temporal ontology.
Condition: The lifetime of the sensing device should be after the actual time. For that, we use the temporal built-ins "temporal:after".
Action: Themedical object becomes in standbymode.
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rule: "Standbymode verification"
When
Medical-object(?o) ^ Sensing-device(?s) ^ contains (?o, ?s) ^ has-type(?s, "blood-glucose-sensor") ^ has-user(?o,?p) ^
sexe(?p,"woman")^ has-state(?p, pregnant)^ finish-at(?s,?f)^ has-value(?f,?v)^ temporal:before(?f, "now")
IF
has-life-time(?s,?t)^ has-value(?t,?v)^ temporal:after(?t, "now")
Then
has-state(?s, "standby")
Verify the availability of MCOs: In this category, the proposed rules determine if the MCOs are available for new tasks or not. These rules

depend on the result of the verification of the mode rules. If theMCOwas in active or passive state, it is not available. However, if it is in a standby
mode, it becomes available to execute other tasks. The proposed example consists of:
Event: aMCO that contains a sensing device with a blood glucose type is used by a pregnant woman.
Condition: theMCO is in a standbymode.
Action: theMCO is available to execute a new task (e.g. the detection of the blood glucose level after two hours).

rule: "Availability verification"
When
Medical-object(?o) ^ Sensing-device(?s) ^ contains (?o, ?s) ^ has-type(?s, "blood-glucose-sensor") ^ has-user(?o,?p) ^
sexe(?p,"woman")^ has-state(?p, pregnant)
IF
has-state(?s, "standby")
Then
availability(?o, true)
Task allocation: The main goal of these rules is to allocate/de-allocate tasks for MCOs. They are based on the verification of the mode and the

availability rules. Therefore, if theMCOs is available, it can allocate a new task. For example, the suggested rule in this paper is formed by:
Event: aMCO contains a sensing device with a blood glucose type turns passive (e.g. lifetime exceeded).
Condition: anotherMCO contains a sensing device with the same type of the previousMCO is available to execute a new task.
Action: the task of the firstMCO is allocated by the second one that will be attached to themonitored patient.

rule: "Task Allocation"
When
Medical-Object(?o1) ^ Sensing-device(?s1) ^ contains(?o1, ?s1) ^ has-user(?o1,?p) ^ sexe(?p,"woman") ^ has-state(?p, pregnant) ^
availability(?s1, false)^ has-type(?s1, ?type1)^ task(?t)^ allocated(?o1,?t)
IF
Medical-Object(?o2) ^ Sensing-device(?s2)^ contains(?o2, ?s2) ^ has-state(?s2, "standby") ^ has-type(?s2,?type2) ^
swrlb:stringEqualIgnoreCase(?type1, ?type2)
Then
allocated(?o2,?t)^ de-allocate(?o1,?t)^ has-user(?o2,?p)
Capability Verification: To examine the proper functioning and capabilities (battery level, RAMmemory, energy consumption, etc) of the medi-

cal objects, it is very important to propose various rules. The following rule consists of:
Event:MCOexecutes a task
Condition: its battery level is 10%
Action: the state of the battery is Low and themode of its sensing-device becomes standby (sleep state) to save energy consumption.



AhlemRhayem ET AL 19

rule: "Battery level verification"
When
Medical-Object(?o)^ battery(?b)^ Sensing-device(?s)^ contains (?o, ?s)^ allocated(?o,?t)^ has-battery(?o,?b)
IF
has-value(?b,0.1)
Then
state-battery(?b,"Low")^ has-state(?s,"standby")
Mobility Verification:MCOs can be either in fixed or moving states. In fact, moving state defines their dynamic position that changes contin-

uously instead of the fixed one that designates their constant location. Verifying this state needs spatio-temporal data. Therefore, based on the
temporal:duration builtins, and the Time, Location and Trajectory contexts, we proposed an SWRL rule that determines if the location of this object
changes.We have considered a time interval depending on the estimated period needed for the patientmonitoring task that takes into account the
patient’s state and the complexity of the disease. For example, we supposed that a pregnant woman needs to monitor her blood glucose 8 times
per day, separated by two hours. In these times, we aim to control the mobility of theMCO. Accordingly, it will be easier to allocate tasks in case of
failure ofMCOby considering only the nearest objects. In addition, it helps to control the activity of the patient. It consists of:
Event:MCOhas a trajectory that is composed of a set of crossed locations during an interval of time
Condition: the location is the same during two hours.
Action:MCOobject is in stopping state and consequently the patient is motionless.

rule: "Mobility verification"
When
Medical-object(?o) ^ Sensing-device(?s) ^ contains (?o, ?s) ^ has-type(?s, "blood-glucose-sensor") ^ has-user(?o,?p) ^
sexe(?p,"woman") ^ has-state(?p, pregnant) ^ Trajectory(?t)^ has-trajectory(?o,?t) ^ has-source( ?t,?l1) ^ has-name(?l1, ?m)^ has-
destination(?t,?l2)^ has-name(?l2, ?n)^ starts(?t,?i1)^ ends(?t,?i2)
IF
swrlb:stringEqualIgnoreCase(?m,?n)^ temporal:durationEqualTo (2, ?i1, ?i2, "Hours")
Then
has-state(?o, "stopping")

7.2 Patient State Diagnosis andDecisionMaking
One of the main contributions of this work is to propose a decision-making process namely Measure-Event-Risk-Treatment-Alert (M-E-R-T-A)

that takes into account the whole remote diagnosis process for the patient. M-E-R-T-A starts with the analysis of the obtained measures, then the
detection of the health event thatmay happen, the prediction of risk complication, and finishes with the proposition of the adequate treatment and
the notification of the patient. Figure 5 shows an example that allows interpreting the detected data with a Glycemia sensor based on M-E-R-T-A.
Thereby, the analysis of glycemia level leads to the detection of hyperglycemia event and the possible risk that may happen as the fetal loss for the
pregnant woman. After that, the next phase determines and notifies the patient with the appropriate treatment (MetforminMylan).
To perform this process, wedevelop diverse SWRL rules to treat five different healthmeasurements (temperature, blood pressure, heart rate, blood
glucose, and cholesterol). In the next sub-sections, we describe some rules in accordance to the proposed use case (gestational diabetes context).
Validity of Data; For the purpose to analyze the obtained data in real-time, we define the following to verify the validity of the blood glucose. It

consists of:
Event:MCOdetects blood glucose level of a pregnant woman.
Condition: the deadline of the obtained blood glucose is greater than the time required for data access and analysis by the doctor. To verify this
condition we exploit the temporal SWRL builtins. temporal:before and the subject "now" that refers to the actual time.
Action: The blood glucose is valid to be processed and analyzed.
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FIGURE 5M-E-R-T-A: diagnostic and decisionmakingmethod

rule: "Validity of the Blood glucose level"
When
Medical-object(?o)^Blood-glucose(?t)^ detect(?o,?t)^ has-duration(?t, ?d)^ has-start(?d, ?s)^ has-finish(?d, ?e)
IF
temporal:before(?s, "now")^ temporal:after(?e, "now")
Then
validity(?t, true)
Events detection; These rules are proposed to enable medical staff to predict and detect events on time. For this end, we define several SWRL

rules which aim to examine the patients’ vital signs from different contexts in real time and to provide an adequate solution. For example, the next
rule identifies the hyperglycemia event (Gestational diabetes) for a pregnant woman. Therefore, in the normal case, hyperglycemia is diagnosed
when the blood glucose level is greater than or equal to 126 mg/dl. But, in the case of pregnant woman, it is diagnosed if it is greater than or equal
to 92mg/dl. This rule consists of:
Event:MCOdetects blood glucose level of a pregnant woman.
Condition: The detected blood glucose is valid and it is greater than 92 mg/dl and the pregnancy is meanwhile the forth and ninth months. We use
the temporal built-ins "temporal:durationGreaterThan" and "temporal:durationLessThan" to analyze the pregnancy duration of the patient.
Action:Hyperglycemia event is detected.

rule: "Hyperglycemia event detection"
When
Patient(?p)^ sexe(?p, "woman")^ has-state(?p, pregnant) ^ start-at(pregnant,?s) ^ temporal:durationGreaterThan (4, ?s, "now",
"Months") ^ temporal:durationLessThan (9, ?s, "now", "Months")^ Medical-object(?o) ^ has-user(?o,?p) ^ Blood-glucose(?t) ^
detect(?o,?t)
IF
validity(?t, true)^ has-value(?t,?v)^ swrlb:greaterThan (?v,92)^ has-unit(?t, ?u)^ has-name (?u, "mg/dl")
Then
has-event(?p, Hyperglycemia)^ has-disease(?p, Gestational-diabete)
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Risk anticipation; Risk prediction and management are very paramount in the healthcare domain. Thereby, the main goal in this phase is to

control and detect potential health risks in order to prevent it and minimize critical crises. For this reason, it is very important to propose a risk
management plan that should identify the controlled situation, the critical effect of the result if it happens and its impact.
According to theWHO, uncontrolled diabetes during pregnancy give rise to a very dangerous effect on both mother and child as for instance with
the risk of fetal loss, congenital malformations, stillbirth, and obstetric complications. However, the degree of severity of these risks depends on
other factors and symptom such as hypertension, cramping, age greater than 40 years and so on. The next rule is formed as:
Event: an hyperglycemia is detected in a pregnant woman.
Condition: the woman has another disease (hypertension), her age is greater than or equal to 40, she has a cramping symptom.
Action: This woman has a high risk of fetal loss.

rule: "Risk of Hyperglycemia in pregnant woman"
When
Patient(?p)^ sexe(?p, "woman")^ has-state(?p, pregnant)^ has-event(?p, Hyperglycemia)
IF
has-event(?p, hypertension)^ has-symptom(?p, cramping)^ hasage(?p,?a)^ swrlb:greaterThanOrEqual(?a, 40)
Then
has-risk(?p, fetal-loss)^ has-degree(fetal-loss, "High")
Treatment proposition; In this phase, diverse rules are defined to assist doctors in making an efficient and suitable treatment according to

the diagnosis results. The proposed treatment can be a lifestyle recommendation, drugs proposition, and adjustment, or emergency service that
requires the quick intervention of themedical staff. The next rule describes an emergency service for a pregnant woman. This rule is defined as
Event: an hyperglycemia is detected in a pregnant woman.
Condition: the woman has a high risk of fetal loss.
Action: the woman needs an emergency service(e.g. ambulance).

rule: "Emergency service proposition for pregnant woman"
When
Patient(?p)^ has-risk(?p, fetal-loss)
IF
has-degree(fetal-loss, "High")
Then
need(?p, ambulance)
Rules for alert generation; A generated alert from the MCOs is classified into three categories according to their importance (normal, medium

and urgent). The normal alert is automatically produced by theMCOswhere the analysis of the data is performed by the controller devices, and the
decision is provided within the actuator devices. This kind of alert is usually used in simple cases (e.g., message contains the value of the detected
signs). The medium alert is proposed in cases that need the intervention of medical staff, the data would be transferred to the healthcare profes-
sionals to analyze it and to propose the adequate alert that would then be sent to the MCOs of the patient. The urgent alert is provided when the
medical staff detects a critical case, which needs urgent intervention. The following rule represents an example of a normal alert, which consists of:
Event: hyperglycemia is detected in a pregnant woman.
Condition: Thewoman has aMCO that contains an alarm actuator.
Action: The alarm state will be "ON" and the receivedmessage was "High blood glucose, contact your doctor".

rule: "Normal Alert"
When
Patient(?p)^ has-event(?p, Hyperglycemia)
IF
Medical-Object(?o)^ contains(?o, Alarm)^ has-user(?o,?p)^ sexe(?p,"woman")^ has-state(?p,"pregnant")
Then
has-state(Alarm, "ON")^ has-message(Alarm,"High blood glucose, contact your doctor")
The next one describes an emergency alert triggered in critical cases. It is formed as

Event: the patient (pregnant woman) needs emergency service (ambulance).
Condition: a hospital has an available ambulance.
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Action: The actuator of the ambulance is on state "ON" and has amessage, which indicates the name and the location of the corresponding patient.
rule: "Emergency Alert"
When
Medical-Object(?o)^ has-type (?o, "ambulance")^ actuator(?c)^ contains(?o,?c)^Hospital(?h)^ has-object (?h,?o)^ availability(?o,
true)^ Patient(?p)^ has-name(?p,?name)^ located-in(?p, ?l)
IF
need(?p, ambulance)
Then
swrlb:stringConcat(?m, ?name, ?l)^ has-state(?c, "ON")^ has-message(?c, ?m)

8 IMPLEMENTATIONPHASE
Once our Knowledge-base is defined referring to previous phases, it is necessary to be exploited by end-users. From this regard, themain goal of

this implementation phase is to develop an IoT-based clinical decision support system (IoTMedicare system). This system is integrated with query
and inference engine (Drools engine) developed with SWRLAPI, OWLAPI, and Jena APIs which are used to deal with SWRL rules, and SPARQL
queries. To provide a suitable decision, this system takes into account the health data that describes the patient’s information and technical data
that represents the state of the medical objects. The IoT Medicare system consists mainly of three modules: Medical Objects Management, Diag-
nosis and treatment module, and a Notification module. The connected object management module deals with ensuring the proper functioning of
the connected objects. The second module focuses on the analysis and the interpretation of the detected patient vital signs, to treat and prevent
diseases. The notificationmodule allows notifying patients with the decision of the doctor.
The reliable exploitation of the IoT system requires a secure actor authentication to protect the accessed information through a password stored in
the HealthIoT ontology. After that, the end user is able to ask simply a query using easy ways (button choose, or menu choose). This query is trans-
ferred to the knowledge base to run an inference engine (Drools engine). The latter, firstly, loads the ontology on the basis of OWLAPI and executes
the developed SWRL rules. Subsequently, it gives the actors the appropriate decision through the obtained inferred results.

FIGURE 6UpdateMO’s state
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8.1 MCOManagementModule
With the continuous growth of medical connected objects, a manual monitoring of their states has become infeasible and very hard. Therefore,

it is paramount to propose amonitoring system that enables the administrator user to:
- Facilitate the search, the update and the exploitation of these devices.
- Ensure a periodic monitoring of medical connected objects.
- Help to anticipate problems and provide preventive and predictivemaintenance.
The administrator is the responsible for this task. Thus, he is able tomonitor the state of themedical object and configure it, addnewobjects, consult
the list of objects, update its properties, among others.
Figure 6 shows an example of updating some parameters of a selected object from the returned list. This list is the result of the SPARQL query

illustrated in Figure 7d. This query returns the objects that need a configuration (e.g. object with activemode andwith availability true). The admin-
istrator can easily change the value of the availability state to false through a user-friendly interface. The confirmation of this task is insured via the
"UpDate" button, which executes a SPARQL update query Figure 7a. This query consists of twomain operations. TheDelete operation removes the
"true" value of the data property availability and the insert operation inserts the "false" value.

(a) SPARQLQuery to update the state ofMO. (b) List of Patients and their personal information.

(c) SPARQL Query to select the list of patients, their measurements, the detected events, risks and the proposed
treatments.

(d) SPARQLQuery to select the listMO, their states, their tasks, and their availability.

FIGURE 7 SPARQLQueries.
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8.2 Patient State DiagnosisModule
This module has been designed to describe how healthcare professionals can remotely provide diverse systematic care services including the

analysis and diagnosis of the patients’ states.
The meaningful interpretation of vital signs obtained from several connected objects; this implies to provide adequate treatments for patients,
which presents the main goal of this module. In fact, through a simple authentication, the doctor can perform various functionalities. Firstly, he
should specify the appropriate object to be used to monitor the patient’s state. Once this object is activated and based on its detected vital signs,
he is able to diagnose the patient’s state. Then, he can consult the list of patients in charge in order to know their status, their disease record,
and followed treatments, notify them with a suitable cure, and so on. When the doctor selects the patient to be monitored, a decision-making
interface is displayed in Figure 8. This interface illustrates the obtained vital signs from the patients’ medical objects. Accordingly, by clicking on the
button "Diagnostic", the doctor can check the patient’s actual state, the possible risk and the appropriate treatment for this predicted event. In this
interface, the diagnostic, the risk and the treatment areas are alterable in order to offer the doctor the possibility of updating thembecause the role
of a doctor is irreplaceable. After that, through the button "Notify Patient" the doctor sends his decision to the patient.

FIGURE 8DecisionMaking

8.3 NotificationModule
The main reason to design this layer is to make patients capable to receive recommendations and treatments from their doctors and contact

themwhen they face adverse effects following a proposedmedication.
This module is very important because it ensures a high health care service delivery during a reasonable time.
Figure 9 represents an example of a notification that contains adequate treatment after the analysis of the state of the selected patient (colored
in red) in the last module and how this notification is saved in the knowledge base "HealthIoT-Ontology". This module is composed of a diverse
menu. The profilemenu provides general information about the patient and the suggested treatments by the doctor. The diagnosticmenu shows the
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diagnosis events and possible healthcare risks. The measurements menu shows the vital sign’s value and the detection time. The treatments menu
contains previous treatment taken by the patient. The physiciansmenu contains general information of the patient’s doctor and his web site.

List of 

Notifications  

Diagnosed 

Patient 

Notification 

content 

FIGURE 9 SavedNotification in HealthIoT-O

9 EVALUATION
Weevaluateour approachon the functional and technical level. In the technical level,we focusonevaluating the semantic quality of theproposed

model (HealthIoT-O). In the functional level, we focus on the reasoning performance and the response time of our proposed system "IoTMedicare
system".

9.1 Technical Evaluation: OQUARE Framework
In order to evaluate the quality of our ontology, we applied theOQuaRE evaluation frameworkDuque-Ramos et al. (2013), which ismainly based

on the Software product quality standards ISO/IEC 25012:2008 (SQuaRE) ISO/IEC (2008). In this work, the authors used the SQuaRE characteris-
tics namely structural, functional adequacy, adaptability,maintainability, operability, reliability, and transferability. Each characteristicwas assessed
with various sub-characteristics andmetrics.
Table 8 recapitulates these characteristics, their definitions, their sub-characteristics, and the relatedmetrics.

Formoredetails about the relativemetrics of each sub-characteristic, howeachmetric is calculated andhowthe score is assigned, readersmay refer
to these works Duque-Ramos et al. (2013), Duque-Ramos, Fernández-Breis, Stevens, Aussenac-Gilles, et al. (2011), Duque-Ramos et al. (2014).
Based on these works, our experimentation process is summarized as follows:

1. Firstly, we calculated the value of eachmetric for each sub-characteristic (note that onemetric can be used for several sub-characteristics).
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TABLE 8OQuaRE Charecteristics andmetrics

Characteristics Definitions Sub-characteristics Metrics
Structural Allows evaluating the ontology based on diverse

formal and semantic ontological properties
Formal, Cohe-
sion, Redundancy
Tangledness

RROnto, LCOMOnto,
TMOnto, ANOnto

Functional Ade-
quacy

Evaluates the degree of the ontology to execute
concrete function purposes

Controlled vocabu-
lary, Consistent search
and query, knowledge
acquisition, results rep-
resentation, knowledge
reuse

ANOnto, RROnto, AROnto,
INROnto, INROnto,
NOMOnto,

Reliability Determines the degree of the ontology to main-
tain the performance level under several condi-
tions

Availability,
Recoverability

WMCOnto, DITOnto,
NOMOnto, LCOMOnto

Maintenability Determines theflexibility of the developedmodel
to adapt to changes in the environment, require-
ments, and functional specification

Modularity, Reusability,
Analysability, Change-
ability, Modification
Stability, Testability

WMCOnto, DITOnto,
NOCOnto, RFCOnto,
NOMOnto, LCOMOnto,
CBOOnto

Compatibility Checks how much the ontology can be deployed
for different applications and with different soft-
ware

Replaceability,
Adaptability

WMCOnto, DITOnto,
RFCOnto, NOMOnto,
CBOOnto

Operability Verifies how much the ontology enables users to
learn its application

Learnability WMCOnto, LCOMOnto,
NOMOnto, CBOOnto,
NOCOnto

2. Secondly, we assigned a score for each metric that shows the acceptability degree of each measurement. The score range varies between
1 and 5. Where 1 means highly unacceptable, 2 unacceptable and improvement is required, 3 minimally acceptable, 4 acceptable, and 5
exceeds the requirements. Themapping process is well detailed in Duque-Ramos et al. (2011).

3. Then, we calculated the average score of these sub-characteristics that is equal to themean score of all their associatedmetrics.

4. Finally, we calculated the average score of each characteristic which is equal to theMean Score of their sub-characteristics.

Figure 10 depicts the score of each quality characteristics of the HealthIoT ontology. The structural, functional, reliability as well as the operabil-
ity characteristics are above average, which reflects the good quality of the HealthIoT ontology. However, for theMaintainability and compatibility
characteristics, the average score is above 3 (minimally acceptable) but still less than 4. For these characteristics, somemetrics should be improved
to reach this score. For example, in the maintainability characteristics, LCOMOnto and DITOnto metrics have the score 3, which is minimally
acceptable. Consequently, the HealthIoT ontology needs some improvements related to these indicators.

9.2 Functional Evaluation
In this step, we evaluated the reasoning performance of HealthIoT ontology and the effect of the quantity of data obtained frommedical devices

and their contexts on the response time of the IoTMedicare system.

9.2.1 Reasoning Performance of HealthIoT
To evaluate the effectiveness degree of ourmodel reasoning, three evaluationmeasures including Recall, Precision, F-Measurewere considered

using the following equations. We relied on the contingency table as described in Table 9. We denote TP, FP, TN and FN as True Positive (correctly
diagnosed instances as required), False Positive (incorrectly diagnosed instances as required), False Negative (incorrectly diagnosed instances as
not required), and the True Negative (correctly diagnosed instances as not required).



AhlemRhayem ET AL 27

(a) (b)

(c) (d)

(e) (f)

FIGURE 10HealthIoT- Ontology Evaluations using OQuaREmetrics.

Precision= TP
(TP+FP) (1)

Recall= TP
(TP+FN) (2)
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F-measure=2*Precision*RecallPrecision + Recall (3)
The values of thesemeasures reflect the relevance level of the inferred axioms by identifying the correct and the ambiguous ones.
For the experimentation we considered five datasets (temperature, blood pressure, blood glucose, cholesterol and heart rate) from physiobank10
and we took 10 patients as sample. Therefore, for each dataset, we only took 1200 data records that correspond to the one-month duration for
the monitoring of these patients (4 measurements per-day * 30 days * 10 patients). Consequently 6000 data records (1200*5) are stored in the
HealthIoT ontology. These datasets contains others informations such as the time and the location of these measures. Consequently, a total of
18300 instances (measures, time, location, symptoms, disease, drugs, food) were created to form thewhole knowledge base of our clinical decision
support system (IoT-Medicare).
In fact, we have proposed diverse rules validated with health care experts (3 doctors) that helped us to calculate the reasoning phase performance
of our knowledge base. Firstly, we proposed some rules taking into account just few contexts (age, and sex) (arround 20 rules) that help doctors for
primary diagnosis. Secondly, we deeply focused on diverse contexts for advanced diagnosis process (arround 35 rules). Table 9 and Table 10 show
the results of the correctly diagnosed patients with our system compared to those diagnosed manually (with domain experts), in the first and the
second cases respectively.

TABLE 9Comparing system classification with domain experts classification, in the primary diagnosis

Correctly diagnosed cases by
expert domain

Incorrectly diagnosed cases by
expert domain

Correctly diagnosed cases by IoT Medi-
care system

(2700) TP (1310) FP

Incorrectly diagnosed cases by IoTMedi-
care system

(1030) FN (1020) TN

TABLE 10Comparing system classification with domain experts classification with diverse contexts

Correctly diagnosed cases by
expert domain

Incorrectly diagnosed cases by
expert domain

Correctly diagnosed cases by IoT Medi-
care system

(3230) TP (630) FP

Incorrectly diagnosed cases by IoTMedi-
care system

(780) FN (1360) TN

we recognized that taking into account context-aware reasoning gives a more precise and correct diagnosis and reduce adverse event that usu-
ally happens in the case of incorrect diagnosis.
Thereby, the performance of the developed systemwas improved as demonstrated by Figure 11.

9.2.2 Response Time of IoTMedicare System
This sectionwas devoted to evaluate the effect of the data quantity and their contexts in the response time of the IoTMedicare System. Thereby,

the response time is defined as:

Trep= Tload+Tinf+Tquery
whereTload is the time needed to load the ontology in the Drools engine,Tinf is the time of the execution of the SWRL rules andTquery determines
the processing time of the SPARQL queries to display the results for the users.

10https://physionet.org/physiobank/
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FIGURE 11 IoT-Medicare system performance

FIGURE 12Response Time of IoTMedicare System

HealthIoT ontology is made up of more than 80 concepts, 100 object properties, andmore than 90 data properties.
The first experimentation consists to set the number of rules to 30 and 65 for the second one. Then we vary the number of instances (600, 1000,
5000, 10000, 18300) in each experimentation.
The simulation is conducted with the following software platforms: Protege 5.0.1, JVM 1.8.1, Windows 7. The hardware platform is Intel Core
5GHZ CPU and 4GB RAM. In Figure 12, when the number of the stored data increases from 5000 to 18300, the response time of the processing
rules increases from 7,5 s to 14,87 s if we use only 30 rules. However, when we increase the number of rules to 65, the response time is increased
from 11,12 to 23,43 s. Thus, the number of stored data and proposed rules can have a significant impact on the performance of the response time,
especially if they involve complicated context reasoning.

9.3 Comparisonwith existing approaches
In this section, we conduct a comparative study between the above mentioned works in section 3.3 and our work. The comparison is based on

three main criteria as presented in Table 11. These criteria respond to our approach’s goals. The coverage criterion identifies and highlights the
reutilizationof IoT concepts and inorder to evaluate theperformanceof ourmodel,we try to compare itwithother onesusing their overall coverage
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as an assessment criterion. From this context, there are diverse referenced IoTmodels such as IoT-A Bauer et al. (2013) composed by 16 concepts,
IoT-lite Bermudez-Edo et al. (2016) composed by 18 concepts, IOT-O Seydoux et al. (2016) that is composed by 28 concepts and FIESTA ontology
that contains 26 concepts Agarwal et al. (2016). we have considered these ontologies and we calculated the coverage value of our ontology using
the following equation.

C = RC=TC (4)
Where C is the coverage, RC is the used concepts from the IoT domain TC is thewhole number of concepts in the IoTmodel. The second criterion is
about the reasoning task.Within this criterion, we verifywhat is themain objective of the proposed rules. Is it for devicemanagement or for disease
management? The last criterion focuses on the adoptedmethod for the evaluation of the proposedmodels.

TABLE 11Comparison with existing works

Reference Coverage of IoT concepts Reasoning Evaluation
IoT-A (16)
Bauer et
al. (2013)

IoT-O
(28)Sey-
doux et al.
(2016)

IoT-lite
Bermudez-
Edo et al.
(2016)
(18)

FIESTA-O
(26)

DM DiD DiT RP Alert Functional
evaluation

Technical
evaluation

Lasierra et
al. (2013)

1/16=
6.2%

1/28= 3% 1/18=
5.5%

1/26= 3% +/- No No No Yes Competency
Questions

No

Forkan et
al. (2014)

1/16=
6.2%

1/28= 3% 1/18=
5.5%

1/26= 3% +/- Yes No No Yes Response
time of
cloud node

No

D. Chen et
al. (2016)

4/16=25% 3/28=
10%

3/18=
16%

3/26=
11%

No Yes Yes Yes Yes No

Alirezaie
et al.
(2017)

2/16=12% 2/28= 7% 2/18=
11%

2/26= 7% No Yes No No No No No

Moreira et
al. (2018)

1/16=
6.2%

1/28= 3% 1/18=
5.5%

1/26= 3% No No No No No Competency
Questions

No

Esposito
et al.
(2018)

1/16=
6.2%

1/28= 3% 1/18=
5.5%

1/26= 3% No Yes No Yes Yes No No

Rubí and
Gondim
(2020)

1/16=
6.2%

1/28= 3% 1/18=
5.5%

1/26= 3% No Yes No No Yes No No

Our
Approach

12/16=75% 7/28=
25%

7/18=
38%

7/26=
26%

+/+ Yes Yes Yes Yes F-measure,
Precision,
Rappel,
Response
Time

OQUARE
Framework

From the comparative table our system differs from other approaches, by the following aspects:

• It is based on a generic knowledge base (HealthIoT-ontology) that describes the amalgamation between the basic IoT domain concepts and
healthcare concepts. So that, it is useful for other applications in various contexts. It is better than the other systemswhich are based only on sensor
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device. Our ontology presents the best coverage value that ensures its reliability.
• Unlike other systems, our approach ensures configuration and management services for the deployed objects to guarantee a continuous and
reliable patient monitoring.

• It suggests a whole diagnosis process which starts with data collection, diagnosis, risk prediction, treatment suggestion and then triggered
alert.Most of these systems are proposed to accomplish a specific task, such as treatment or diagnosis. None of them has defined awhole diagnosis
process unlike D. Chen et al. (2016) that focused on specific application (Hypertension disease).

• It is a context-aware system that treats diverse contexts by taking into account patients’ states andmedical devices.

• It offers user-friendly interfaces that can be used by three different users (patients, doctors, and administrators). However, the majority of
other systems have been proposed for just one user; patients.

• Our system is flexible as it presents a graphical interface to doctors to be able to add or delete new patients and medical objects in the knowl-
edge base.

• It provides patients with other various functions, such as the possibility to contact their doctors via a graphical interface which contains their
healthcare information.

10 CONCLUSIONANDOUTLOOK
This paper proposed a semantic-based context-aware architecture approach for patient monitoring with MCOs. It was designed based on four

fundamental phases such as the data collection and preprocessing phase, the semantic modeling phase, the analysis phase, and the implementa-
tion phase. The data collection and preprocessing phase considered two sources of data: data collected fromMCOand data collected frommedical
records. The semantic modeling phase was interested in the representation of knowledge about the MCO, the monitored patient, and their con-
texts. The resulted semanticmodel called "HealthIoTOntology"was exploited by defining diverse rules based on the SWRL language in the analysis
phase. These rules were suggested for two main objectives: the configuration and the management of the employed objects and the patient state
diagnosis and decision making taking into account the alterable context. The implementation phase was focused on the development of an IoT
Medicare system for patient monitoring, which integrated both the proposed knowledge base (HealthIoT-O) and the rule base in order to provide
diverse services for end-users (doctor, patient, and administrator) according to its deployment context. The evaluation of our approach focused on
two objectives: a technical evaluation that interested in the semantic quality of HealthIoT ontology and a functional evaluation that focused on the
reasoning performance and the response time of the IoTMedicare system.
The currentwork offersmany challenges anddifferent perspectives thatweplan to address them in futureworks. Firstly, wewill focus on extending
and improving our approach firstly, by implementing a real use case and using health standards such as FHIR, ISO TS for health sensor data repre-
sentation. In addition, we will extract clinical information automatically from electronic sources (the EHR) by applying the NLP technics and deep
learning. Therefore, will focus on the alignment of our ontology with other domain ontology in order to enhance its capacity on accommodating
different application domains. Secondly, we aim to evaluate the capacity of our approach in the monitoring of patients which suffers from Corona-
virus.
In addition, we aim to propose and to implement an intelligent solution to optimize the use of the ontology instances to be then smartly processed
and analyzed. This solutionwill be able to define a direct and seamless interpretation of the knowledge base and the systemwithout using the infer-
ence engine. By this way, we ensure that the more accurate used knowledge, the more understandable and reasonable system we can define. In
addition, we will focus on the scalability challenge of the IoT-Medicare system in order to be capable to manage the possible huge quantity of data
accurately. In this context, Big data technology can be exploited as a solution.
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