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Abstract

The systematic scaling approach is used in the literature as the only option to meet QoS requirements
in response to the traffic load increase in IoT platforms. Such a solution reduces the load on the congested
nodes and leads to an increase in the provisioning costs that, when measured at the scale of billions of
devices, may hinder acceptability. Our objective is to enhance the existing approaches using and extending
the emerging concept of Virtualized Network Functions (VNF), promoting End-to-End IoT traffic control.
We start from the observation that, within Cloud-enabled platforms, the allocated resources are not fully
used, making it possible to deploy traffic control network functions (NFs). Instead of systematically scaling
a congested node, we dynamically deploy, on under-loaded nodes, additional NFs that exploit the available
computing resources to differentiate the traffic processing level and to apply a QoS-oriented policy. The
considered NFs extend the notion of VNF defined within Network Function Virtualization (NFV), to take
advantage of component-based software design. To enable a possible use of the implemented functions,
we formulate a multi-objective optimization problem for the efficient planning of adequate NFs and scaling
actions, according to the considered multi-constrained context. The planner, called QoS4NIP (QoS for NFV-
enabled IoT Platforms), is based on a Genetic Algorithm (GA). The GA metaheuristic relies on biologically
inspired operators such as mutation, crossover, and selection. QoS4NIP uses the GA to generate solutions
to the identified multi-objective optimization problem by making a series of improvements in an iterative
process. The experiments conducted on a realistic case study show that QoS4NIP outperforms autoscaling-
based approaches (65% financial cost saved).

1 Introduction

IoT ecosystem is evolving from dedicated IoT platforms1, sketched for the requirements of a given IoT application
domain, to integrated shared platforms such as oneM2M [1]. These shared platforms simultaneously support
multiple application domains, such as smart grids, connected vehicles, home automation, public safety, and
e-health. The next generation of the IoT ecosystem is expected to connect billions of devices with extreme
heterogeneity in terms of resources (e.g., CPU and RAM) capacities and limitations, as well as software and
hardware technologies for connectivity, processing, and storage.

Virtualization is a crucial technique toward the successful design and implementation of IoT platforms that
handle heterogeneity. The virtualization technologies pushed by Cloud Computing are now being extended to
cover the networking domain. The Network Function Virtualization (NFV) approach [2] has been introduced to
solve the challenges induced by conventional middlebox technologies, such as massive and costly deployments
and complex management requirements, overloads and failures, and limited upgradability. The NFV technology
tackles these challenges through the virtualization of Network Functions (NFs) on Cloud-enabled infrastructures
[3]. NFV allows the instantiation, configuration, and duplication of Virtualized Network Functions (VNFs) in
various locations according to the NIP operator needs, which avoids installing new physical equipment [4]. In
the NFV environments, autoscaling2 is used to guarantee a certain level of QoS3.

Motivation. Despite the recent efforts made by the industry and academia communities for QoS man-
agement in NFV-enabled IoT platforms (NIPs), we drew the following observations and conclusions. First, the

1An IoT platform, also known as IoT software platform or IoT middleware, implements an IoT architecture providing a variety
of service to an IoT application, such as device connectivity, device management, data transfer, data management, data analytics,
security, and visualization.

2Autoscaling is a reconfiguration scheme where the number of resources varies automatically based on the load on the platform.
3The term QoS refers to the measurement of the overall performance of the NIPs service. We consider the following aspects of

the NIPs service: Unavailability, Throughput, and Latency.
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majority of current IoT platform providers, such as Google, AWS IoT Core, or Microsoft Azure IoT, only provide
“autoscaling tools” to manage resources provisioned by tenants [5]. The autoscaling scheme is automatically
triggered when resource usage reaches a given threshold (e.g., CPU usage > 80%). This observation drove the
IoT community toward considering the cost minimization of autoscaling as an important research challenge.
The second observation is that in those platforms, nodes implement the First-Come-First-Served (FCFS) [1]
as a default traffic control policy. In FCFS, the traffic data coming from different IoT applications are queued
together and served in the order of their arrival. For a given level of resources within a NIP’s node, the FCFS
processing of IoT applications’ traffic crossing this node may lead to the following problem: the resource usage
induced by a “greedy” IoT application can lead to QoS degradation for other IoT applications. Therefore, this
would trigger a new scaling action to increase the provisioned resources. These first two observations lead to
a state that the cost of the provisioned resources is not optimal. To reach an optimal solution, we propose to
associate the autoscaling scheme with Traffic Control Functions (TCFs) that take into account the different
QoS levels required by the IoT applications. The third observation is that the data centers have held significant
Capital Expenditure but have low resource usage. For instance4, the average CPU and memory usage rates
in Google’s production clusters were only 20% and 40%, respectively, in 2012 [6]. Nearly at the same time,
the average CPU utilization rate of Amazon AWS EC2 was only 7% to 17% [7]. This observation leads to
conclude that there are available resources that can be used to host the Traffic Control Functions (TCFs). The
last observation is that in the Cloud-to-Thing continuum (C2TC) [8], the availability and capacity of the re-
sources, namely computation, storage, and connectivity, decrease when moving from the Cloud toward Things.
Typically, the IoT End Gateways, located close to Things, are small devices with limited processing, storage,
and connectivity capabilities. Thus, motivated by the above conclusions and by the promises brought by the
existing studies [9], one option for the deployment of TCFs within NIPs relies on the use of technologies such as
NFV. However, deploying those TCFs only as VMs or OS-level containers (as required by NFV) does not cover
the resources and capacities heterogeneity of future networks. To fit the decreasing resources’ capacities when
moving close to the Things, and to make the End-to-End deployment of NFs, a lighter solution is required.
Such a solution is one of the contributions of this paper, that we name “Application Network Function (ANF).”

Considering these conclusions, our objective is: (1) to meet the QoS requirements of IoT applications
executed on NIPs, and (2) to optimize the costs induced by a classic autoscaling scheme. For this purpose,
the global approach explored in this paper is to take advantage of the different ways of deploying TCFs (i.e.,
via VNFs or ANFs), while taking into account nodes’ resources heterogeneity. In other words, we seek to
dynamically deploy (i.e., when the need arises) (1) the appropriate TCF (e.g., Dropper, Scheduler), (2) in the
appropriate packaging (ANF or VNF), and (3) on the appropriate nodes of the platform (e.g., a Scheduler
before a congested node, not after).

Contributions. In this context, the significant contributions of this paper are summarized below.

• We introduce the ANF concept, which relies on a tight level of isolation technique more dealing with
software execution. The ANFs make possible the deployment of NFs on IoT End Gateways and support
reaching the best possible use of available heterogeneous resources capacity of the C2TC. We design a
collection of TCFs that we implement as VNFs and ANFs, with the aim to sustain the QoS level required
by the IoT applications. We also provide the performance measurement results to get the quantitative
characteristics associated with the different implementation packages (VNFs and ANFs) of the considered
TCFs. We study the effects of the traffic arrival rates on the processing time and the resource usage (CPU
and RAM) required for executing the TCFs. The performance measurement results are used to solve the
multiobjective optimization problem introduced hereafter.

• We formulate a multiobjective optimization problem for an efficient planning scheme of TCFs deployment
on the available nodes in NIPs. The designed scheme, named QoS4NIP5, considers both TCFs deployment
and scaling actions while optimizing the overall End-to-End QoS.

• We evaluate the benefits in terms of cost-saving of the solutions provided by the QoS4NIP scheme. These
benefits are compared to the solutions provided by FCFS (the lazy scheme), the autoscaling scheme,
and the two variants of QoS4NIP that do not consider scaling action but only TCFs (the first considers
only TCFs deployed as VNFs, and second considers TCFs deployed as VNFs and ANFs). We consider
a realistic case study dealing with Connected Vehicles for validation of our approach. The validation
results show that our scheme, QoS4NIP, while sustaining the End-to-End QoS in NIPs, achieves the best
cost-saving amongst the existing competing approaches.

Organization. The remainder of the paper is structured as follows. Section 2 discusses the related work.
Section 3 develops the proposed approach and explains the key concepts. Section 4 presents the implemented

4No recent information is available today.
5The Python source of the proposed planning scheme algorithm, is available for download at

https://github.com/couedrao/QoS4NIP.
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TCFs and the performance evaluations of the implemented VNF and ANF concepts. Section 5 is devoted to the
QoS4NIP scheme description. Section 6 demonstrates the proposed approach effectiveness for the Connected
Vehicles case study. The proposed work limitations are discussed in section 7. Finally, Section 8 concludes the
paper.

2 Related Work

Several fields, such as information-centric networking (ICN), overlay network, and network slicing, consider the
use of NFV for the management of QoS. In this paper, since we only aim to contribute to this domain for the
IoT context, we consider the reference contributions made in the literature. The following sections present a
literature review analysis on overhead minimization for cost saving in NFV and runtime optimization in NFV
that are essential aspects of the proposed approach.

2.1 Overhead Minimization in NFV

As presented in Section 4, in this paper, we propose the ANF concept to fully enable the deployment of NFs over
the C2TC. The existing literature involves research proposals aiming to remove the massive footprint of today’s
NFV platforms [10–14]. In [10], the authors present the Glasgow Network Functions (GNF), a container-based
NFV platform that runs and orchestrates lightweight container-based VNFs, saving core network utilization and
providing lower latency. Palkar et al. [11] propose a framework (E2) for NFV packet processing. E2 provides
a single coherent system for managing NFs while relieving developers from developing per-NF solutions for
placement, scaling, fault-tolerance, and other functionalities. Riggio et al. [12] propose a MEC OS that supports
lightweight virtualization. Yasukata et al. in [13] propose HyperNF, a high-performance NFV framework aiming
at maximizing server performance when concurrently running large numbers of NFs. HyperNF implements
Hypercall-based virtual I/O, placing packet forwarding logic inside the hypervisor to significantly reduce I/O
synchronization overheads. Gallo et al. [14] propose a scalable NFV-based solution as a novel approach that
satisfies the stated requirements for user-centric support of IoT devices. The main differences between all these
frameworks and our proposal are related to the isolation of NFs. Since isolation is not a mandatory requirement
in our context (the ANFs being used are considered trusted because they are only supplied by the NIP operator),
ANFs have a more reduced overhead than hypervisor-based NFs.

Furthermore, the virtualization technologies proposed these studies still have significant memory and CPU
requirements [15] for the C2TC. These solutions are not adapted to the common IoT End Gateways capacities.
At the same time, their needs for a particular hypervisor prevent them from operating on these gateways.

2.2 Runtime Optimization for Cost-saving in NFV

Most of the work for cost saving in NFV consider the initial planning step or the VNFs initial development
step (i.e., design-time optimization), as described in detail in [4]. However, the few works that deal with
the Runtime Optimization for cost saving in NFV problematic, radically, consider to automatically scale the
resources provisioned to the platforms without human intervention under a dynamic workload, to minimize
resource cost while satisfying Quality of Service (QoS) requirement [5]. Only considering the autoscaling scheme
in these studies without differentiation in the QoS levels leads to a non-optimal scheme and induces high
relative costs. Ren et al. propose in [16] an adaptive autoscaling algorithm (ASA) using an analytical model to
balance the cost-performance trade-off well while maintaining an acceptable level of performance for 5G mobile
networks. ASA adds (or removes) VNF instances according to the number of user requests waiting. Rahman
et al. propose in [17], a proactive Machine Learning (ML)-based approach to perform autoscaling of VNFs in
response to dynamic traffic changes. The authors propose an ML-based planner that learns VNF (VMs and
Docker containers) scaling decisions and seasonal behavior of network traffic load to generate scaling decisions
ahead of time. However, the conducted experiments show that such a proposal has a high cost. Similarly, [18]
investigates a reinforcement learning approach for autoscaling on NFV. Exploring a different approach, [19]
proposes a negotiation-game-based autoscaling method where tenants and service providers both engage in the
autoscaling decision, based on their willingness to participate, different QoS requirements, and financial gain
(e.g., cost savings). Also, [19] proposes a proactive ML-based prediction method to perform Service Function
Chains (SFC) autoscaling in dynamic traffic scenarios. Searching beyond the autoscaling scheme, Draxler et
al. [20] propose JASPER, a fully automated approach for jointly optimizing scaling, placement, and routing for
multiple network services, consisting of numerous VNFs. JASPER manages various network services that share
the same substrate network, dynamically adds or removes services, and handles workload changes. On a similar
line, [21] and [22] study how to optimize SFC deployment and readjustment in a dynamic situation. Authors
in [22] try to jointly maximize the implementation of new users’ SFCs and the adaptation of in-service users’
SFCs while considering the trade-off between resource usages and operational overhead. Quang et al. in [23]
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extend the SFC deployment and readjustment in a dynamic situation approach. [23] examines VNF migration
by providing a model that solves the adaptive and dynamic VNF allocation problem under QoS constraints. Yu
et al. [24] extended the SFC readjustment in a proactive situation approach. [24] considers load balance, energy
cost, and resource usages to formulate a multi-objective optimal resource planning problem. Contributions
in [16–19,23,24] do not consider network IoT End Gateways resource constraints, and this limits the applicability
for NIPs, while contributions in [20–22] explicitly take it into consideration in their approaches. In [25], Cheng
et al. investigate the issues of network utility degradation when implementing NFV in dynamic networks and
design a proactive NFV solution from a fully stochastic perspective. Unlike existing deterministic NFV solutions
that assume given network capacities and static service quality demands, their work explicitly integrates the
knowledge of substantial network variations. Targeting End-to-End reliability of mission-critical traffic, Petrov
et al. in [26] introduce a softwarized 5G architecture. [26] also proposes a mathematical framework to model
the process of critical session transfers in a 5G access network and to quantify their impact (QoS interferences)
on other user traffic flows. They implemented, in [26], a hardware prototype to investigate the practical effects
of supporting mission-critical data in a 5G NFV-enabled core network.

In summary, the existing literature lacks the attention to NIPs in two perspectives. On the one hand,
several [16–19, 23, 24] studies failed to take the available heterogeneous resources capacity of the C2TC into
account. On the other hand, none of the current studies consider the traffic control perspective for cost saving
in NIPs. The approach we propose here addresses the shortcomings of the related work mentioned below.

3 Key Concepts and Approach Overview

The main originality of our contribution consists of the combination of several changes in the autoscaling
approach, with the aim to optimize the cost of QoS management for NIPs. The first change (Section 3.1)
consists in considering the on-the-fly deployment of the TCFs to sustain QoS in NIPs. The second change
(Section ??) consists in considering the ANFs, in addition to the VNFs, for the TCFs deployment. The last
change (Section 3.3) deals with the elaboration and implementation of a new planning scheme, QoS4NIP, which
jointly optimizes scaling actions and TCFs deployment.

The frequently used abbreviations are listed in Table 1.

Table 1: Abbreviation
Abbreviation Description
ANF Application Network Function
C2TC Cloud-to-Thing Continuum [8]
FCFS First-Come-First-Served
GA Genetic Algorithm
IoT Internet of Things
LSL Local Service Level
NFV-I Network Functions Virtualization Infrastructure
NIP NFV-enabled IoT Platform
QoS Quality of Service
QoS4NIP QoS for NFV-enabled IoT Platforms
TCF Traffic Control Function
VM Virtual Machines
VNF Virtualized Network Function

End GatewaysEdge GatewaysCloud Servers

Application1

Applicationz

Thing1

Thingd

QoS4NIP

Node1
Node2

Node3

Node4

Noden-1

Noden

Traffic control functions Scale OutScale Up

Figure 1: Approach overview over the Cloud-to-Thing continuum.
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3.1 The Traffic Control Functions

We handle the NIPs that implement the common reference architectures, such as oneM2M [1]. More specif-
ically, we deal with stateless communication between the platform nodes (i.e., Server and Gateways). Such
architectural frameworks allow TCFs to be inserted in the platform nodes without disturbing the supported
IoT applications. Based on these features, we consider the TCFs proposed at the network level by Carpenter
et al. in [27], which we adapt to the specifics of the IoT traffic context. We manage the QoS in a NIP by
implementing and distributing on-the-fly the adequate TCFs on the NIP’s nodes. We consider that NIPs’ nodes
in the Cloud Server and Edge Gateways have nested virtualization capabilities for hosting VNF in VM (e.g.,
running Docker over Amazon EC2 VMs) [28]. Let us remark here that our approach cannot be applied for
all platforms, typically multimedia streaming platforms, because of the stateful aspects of End-to-End proto-
cols (i.e., Real-time Transport Protocol (RTP) and Real-time Streaming Protocol (RTSP)) widely used in this
context.

3.2 The ANFs packaging solution

To fully enable the deployment of TCFs over the C2TC, we consider the solution explored in [29,30], leading to
package NFs into software components that can be deployed on-the-fly on NIPs’ nodes. We then distinguish,
in Fig 2, two types of NFs. The first type consists of NFs hosted inside virtual containers (VMs or OS-level
containers like Docker). This type of function is commonly called VNF [2]. The second type consists of NFs
hosted inside a program as a software component. We call them Application NFs (ANF) in the sequel.

Figure 2: Network Functions Instances.

The ANF concept does not give the same isolation as the VNF concept. Isolation is one of the inherent
features highlighted in the existing NFV platforms. Isolation allows the NFs to run on the same hardware and
not interfere with each other from two standpoints [31]: security and performance. OS-level containers and VMs
are the two virtualization techniques commonly used to provide isolation. On the one hand, different studies,
such as [15], show that these virtualization techniques generally induce a high usage of resources. On the other
hand, the IoT End Gateways, located close to Things, are generally small devices with limited processing,
storage, and connectivity capabilities. For example, an IoT Gateway, such as a Dell Edge Gateway 5000, has
an Intel Atom processor clocked at 1.33 GHz with only 2 GB of memory. Deploying NFs as VMs or Os-level
Containers do not fit NIPs’ heterogeneity of resource capacities. Indeed, deploying a VNF as a standard Linux
VM requires a minimum6 of 256 Megabytes RAM, a 300 MHz x86 processor, and 1.5 GB of disk space. Deploying
this VNF as a container requires a minimum7 of 29 Megabytes of disk space. This requirement sharply limits
the amount of VNFs that can be deployed on a node and drastically reduces the number of compliant nodes.
For most IoT End Gateways, it is difficult to host multiple instances of such VNFs. Moreover, ANF adapts the
NF packaging to the constrained deployment context using specific solutions for each chosen programming and
deployment environment. The runtime environment “ANF-host” executes on-the-fly ANFs written in a specific
programming language (Java in our case). Some of the characteristics of such a runtime environment are:

• an ANF is held and versioned in a code repository;

• ANF dependencies are explicitly defined;

• an ANF can be deployed into development, staging, or production environments without changes;

• an ANF configuration is stored in the environment, typically through environment variables;

6https://help.ubuntu.com/community/Installation/SystemRequirements
7https://hub.docker.com/r/ /ubuntu/
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• backing services, such as data stores, message queues, and memory caches, are accessed through a network,
and no distinction is made between local or third-party services;

• an ANF is stateless, and therefore, enables easy scale-out.

All these characteristics allow elementary ANFs to be chained, the same way as VNFs, to provide complex
services commonly named SFC (Service Function Chain). For example, when using an OSGi-based modular
platform, the ANF is uploaded on the ANF-host through a specific protocol, often HTTP. The OSGi specifica-
tions assume an architecture to remotely manage the OSGi framework components relying on a Management
Agent (MA). The MA receives, verifies, installs, and configures the ANF according to a “Manifest” file that is
similar to the VNFD defined by ETSI-NFV. The method to deploy multiple ANFs (ANFs SFC) implements the
“Pre-Calculated Deployment” specified by OSGi [32]. A pre-calculated deployment process is initiated using one
of the OSGi subsystem service’s install methods. In this case, ANFs SFC (OSGi-based) is an OSGi subsystem
deployed as an OSGi Subsystem Archive (.esa) file. An OSGi subsystem comprises resources, including OSGi
bundles (ANFs).

3.3 The Joint Optimization of the Scaling Action and the TCFs Deployment

Fig 1 illustrates the overall approach. In this figure, the IoT applications run on top of the NIP (e.g., on a
Cloud Server or a User Device). The presence of a square (red) indicates the deployment of a particular TCF
on a node (NFV-I or ANF host). The up-arrow (blue) and the right-arrow (purple) indicate the execution of
a scaling action on a node (scale-up and scale-out, respectively). Scale-out means adding more instances to a
NIP’ node, and scale-up means adding more resources to a NIP’ node. The overall approach relies on the TCFs
deployment on the NIPs’ nodes and the scaling action execution to sustain the QoS for the IoT applications.

Nevertheless, the IoT application QoS’ fulfillment in NIPs can be seen as a natural Multi-Objective opti-
mization problem. This problem raises a set of optimal solutions (known mainly as Pareto-optimal solutions),
instead of a single optimal solution. A solution is Pareto-optimal if we cannot improve any of the objectives
without degrading the others. Without additional subjective preference, all Pareto-optimal solutions are con-
sidered equally “good.” Classical optimization methods suggest converting the Multi-Objective optimization
problem artificially to a Single-Objective optimization problem. This usually requires the repetitive use of an
algorithm to find multiple Pareto-optimal solutions. On some occasions, such usage does not even guarantee to
find Pareto-optimal solutions. In contrast, the population evolution approach of Evolutionary Algorithms (EA)
allows an efficient way to find simultaneously multiple Pareto-optimal solutions in a single run [33]. This is the
most popular approach in the literature. We implement this approach in this paper. Additional studies on the
Multi-Objective EA can be discovered in [34].

In general, the joint optimization of the TCFs deployment and the scaling action execution is an NP-Hard
problem. For this problem, we propose a meta-heuristic based on the Genetic Algorithms (GA) that have been
proven to constitute an efficient method to provide suitable near-optimal solutions in a short amount of time
(see Section 5).

4 Network Functions for TCFs in NIPs

The traffic control mechanisms proposed at the IP level by Carpenter et al. in [27] inspired the proposed
functions. [27] introduces DiffServ, an architecture based on a simple model within which the IP traffic that
arrives in the network gets assigned to a class of behavior. Each class is uniquely identified by a “Tag” in the
IP packets. All the intermediate routers process packets follow the behavior associated with their “Tag.” For
instance, 80% of the bandwidth of a router belongs to packets tagged A and 20% to those tagged B.

A small number of functions can be composed to differentiate the level of service provided to the IoT
applications according to their QoS requirements. The traditional functions (e.i. Classifier, Marker, Dropper,
Shaper) are split up simply and deployed when needed. For example, we can deploy a dropping function without
the shaping function (avoiding its overhead) and vice versa. We added to these functions a Scheduler and a
Redirector. The Classifier and Marker were merged into a new Classifier capable of marking IoT traffic. We
package these functions in NFs (ANF and VNF), deploy, and configure them on-the-fly on the targeted NIPs’
nodes. In these functions, traffic is composed of one or several messages that cross the NIP’s nodes (Server,
Gateways); and a traffic profile specifies the temporal properties, such as the rate and the burst size of the
traffic. It provides the rules for determining whether a message is in or out-of-profile.

This section presents a) an overview of the TCFs implemented as ANF and VNF to sustain the QoS level
to the IoT applications; b) performance evaluations of the VNF and ANF concepts.
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4.1 Traffic Control Functions Overview

In the remainder of this paper, a message arriving at a function is denoted r; C denotes the set of considered
types of services (or traffic classes), and P denotes the set of traffic priorities. We also consider D, a hash table
where the keys range over C, and the values range over P . Below, we explain each of the considered functions,
and we propose the algorithms implementing them on NIPs as TCFs.

Classifier. This function is used to “distinguish” the incoming traffic for further processing. The Classifier
allows identifying the IoT application traffic and the update of its header with the appropriate label. The
Classifier identifies the messages based on their headers’ content according to a set of predefined rules, typically
some combination of source and destination addresses, content-type, protocols, source, and destination ports
fields. Algorithm 1 implements the Classifier. Line 2, the algorithm, first tries to identify the class c of the
message r. From lines 3 to 7, the Classifier adds a message header with the associated tag when it recognizes a
class. The added header is called the Local Service Level (LSL) header. The time complexity of the Classifier
(Algorithm 1) is O(|C|), where |C| denotes the number of elements of the set C. In practice, we may even
handle a fixed number of classes making |C| a constant.

Dropper. This function allows discarding messages based on their LSL header. The Dropper discards
some or all messages in an IoT application traffic to bring this traffic into compliance with an expected profile.
A REST API is used to configure the rejection percentage and the targeted traffic of this function. Algorithm
2 implements the Dropper. Line 2, upon the reception of a message, the Dropper identifies the associated LSL
in the message header. Then, from lines 3 to 6, the algorithm calculates the previously rejected percentage for
the considered traffic profile. Line 7, the algorithm rejects the message, return null when the percentage of the
rejected messages is lower than the specified limit in the configured policy. Otherwise, the Dropper forwards
the message without any modification. The time complexity of the Dropper (Algorithm 2) is O(|C|), where |C|
denotes the number of elements of the set C. In practice, we may even handle a fixed number of classes making
|C| a constant.

Shaper. This function allows delaying the messages of the traffic to make it compliant with a defined
traffic profile. The Shaper discards some messages if there is not enough space in the buffer to hold the delayed
messages. The Shaper uses the LSL to identify the delay time of a message. A REST API is used to configure
the delaying time and the targeted traffic of this function. Algorithm 3 implements the Shaper. Line 2, the
algorithm tries to identify the LSL of the message in its LSL header. From lines 3 to 7, the Shaper holds the
message for the necessary delay time matching the identified profile. Line 8, after the elapsed delay, the function
returns the message without modification. The time complexity of the Shaper (Algorithm 3) is O(|C|), where
|C| denotes the number of elements of the set C. In practice, we may even handle a fixed amount of classes
making |C| a constant.

Scheduler. This function enables the management of the incoming message sequence according to their
LSL headers. The function serves any message with a high LSL before a message with a low LSL. If two
messages have the same LSL, then the function serves according to their enqueued order. A REST API is used
to configure the associated traffic priorities in the queue. Algorithm 4 implements the Scheduler. From lines 1 to
12, the first main procedure enqueues the received message in an internal queue. It delivers this message while
it moves to the head of the queue. From lines 13 to 16, the second procedure reorders the messages inside the
queue according to their LSL. The time complexity of the Scheduler (Algorithm 4) is O(|C|+ |Q| log |Q|), where
|C| denotes the number of elements of the set C and |Q| denotes the length of the queue Q. In practice, we may
even handle a fixed number of classes making |C| a constant, and then, the time complexity is O(|Q| log |Q|).

Redirector. This function enables the interception and the forwarding of traffic messages towards different
targets. The routing scheme (at the platform level) is affected by this function since we are using an oneM2M-
based [1] NIP where the routing is at IoT application-level routing (level 6 of OSI layering). This modification
is completely transparent to the IoT application. A REST API is used to configure the new destination and
the targeted traffic for this function. Algorithm 5 implements the Redirector. Line 2, the Redirector, identifies
the LSL of the message according to its LSL header. From lines 3 to 6, it changes the message’s destination
according to the corresponding identified LSL. Line 7 it sends the message to its new destination without an
LSL and additional modifications. The time complexity of the Redirector (Algorithm 5) is O(|C|), where |C|
denotes the number of elements of the set C. In practice, we may even handle a fixed number of classes making
|C| a constant.
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Algorithm 1: Classifier Network Function

Input: r;D = (C,P )
Output: r

1 begin
2 c←− FindClass(r)
3 if c 6= {} then
4 for k ∈ D[C] do
5 if k = c then
6 p←− D[k]

7 r ←− AddMark(r, p)

8 return r

Algorithm 2: Dropper Network Function

Input: r;D = (C,P );
Output: r or null

1 begin
2 p←− GetMessagePriority(r)
3 if p 6= {} then
4 for k ∈ D[C]) do
5 if k = p then
6 ppast ←− GetRejectionPercentage(k)
7 if ppast < D[k] then
8 return null
9 UpdateRejectionPercentage(k)

10 return r

Algorithm 3: Shaper Network Function

Input: r;D = (C,P );
Output: r

1 begin
2 p←− GetMessagePriority(r)
3 if p 6= {} then
4 for k ∈ D[C]) do
5 if k = p then
6 d←− GetDelay(k)
7 Wait(d)

8 return r

Algorithm 4: Scheduler Network Function

Input: r;D = (C,P ); Queue Q;
Output: r

1 Algorithm Priority-based Processing()
2 begin
3 p←− GetMessagePriority(r)
4 if p 6= {} then
5 for k ∈ D[C]) do
6 if k = p then
7 Q.push(k, r)
8 while r¬Q.peek() do
9 Wait()

10 r ←− Q.pull()

11 return r

12 Procedure PriortySortQ()
13 while true do
14 if Q 6= {} then
15 Timsort(Q)

Algorithm 5: Redirector Network Function

Input: r;D = (C,P );
Output: r

1 begin
2 p←− GetMessagePriority(r)
3 if p 6= {} then
4 for k ∈ D[C]) do
5 if k = p then
6 d←− GetRedirectionIP(k)
7 r ←− SendTo(r, d)

8 return r

4.2 Evaluation of the TCFs packaging (VNF and ANF)

In this section, we evaluate the deployment time of the TCFs implemented as VNF and ANF. Then, we study
the effects of the traffic arrival rates on the processing time and the resource usage (CPU and RAM) required
for executing the TCFs. The goal is to get quantitative characteristics associated with the different packaging
(ANF and VNF) of the TCFs.

The details of the TCFs implementation are provided in the Appendix.
Experimental context. The presented performance measurements allow assessing the deployment time,

denoted dt, of the TCFs: as ANF in the considered ANF-host (i.e., IoT Gateway); and as VNF in the considered
NFV-I nodes. In order not to bias the tests by an additional upload time related to network conditions, the TCFs
are supposed to be already present in the hosting system as Docker Images for VNFs, and JARs files for ANFs.
To collect performance metrics, we implemented monitoring tools based on Java Management Extensions (JMX)
technology. In each TCF, we created MBeans objects for processing time, CPU, and RAM remote monitoring.

We characterize the processing time, denoted pt, associated with each function under the effects of request
arrivals. Let a session S = (r1, r2, . . . , rn) be a sequence of n requests for resource ri coming from the same IoT
application, and let tr(ri) and ts(ri), respectively, be the time that resource ri was requested and the time that
resource ri was served, respectively. The processing time for request ri in session S is:

pt(ri) = ts(ri)− tr(ri) (1)

According to [35], the Poisson distribution for modeling the traffic of an IoT application to the Cloud is
a good approximation for the scalability analysis. Thus, to simplify, we assume that the arrivals of the IoT
traffic in a session follow a Poisson distribution. An event (request arrival) can occur k times (0 to n) in a given
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Figure 3: Traffic Control Functions deployment time.

interval. The probability P of observing k events in an interval is given by Equation:

P (k) = e−λ
λk

k!
(2)

where k is the number of times an event occurs in an interval and takes values 0, 1, 2, . . . .
The experimental testbed consists of three host machines: one traffic generator equipped with two CPU

and 4 GB RAM, one NFV-I equipped with four CPU and 16 GB RAM, and one ANF-host fitted with one
CPU and 4 GB RAM. All the CPUs are CPU Intel Core i7-7500U clocked at 2.70 GHz. The traffic generator
produces the IoT traffics according to a Poisson distribution with a request arrival rate of λ ∈ [1, 50, 100, 150]
req/s (request size = 1 Mb). The NFV-I is composed of all hardware and software components that build up
the environment in which VNFs are deployed and managed using the OpenBaton [36] platform. The ANF-host
is running an OSGi-based [32] program that can deploy ANFs. The three host machines run with Ubuntu
16.04. The template (size) of a VNF/ANF is 1 CPU and 4 Gigabytes RAM. In these experiments, a message
is an HTTP request or an HTTP response. The considered NIP is the Eclipse open-source OM2M [37] that
implements the standard oneM2M [1].

The conducted experiments address the following questions:

(a) How does the TCF type impact the deployment time;

(b) How does λ in Equation (2) impact the processing time defined in Equation (1);

(c) How does λ in Equation (2) impact the CPU and RAM usage;

(d) How does the CPU and RAM saturation impact the TCF performance.

Performance analysis. In the first experiment, we answer the question “(a)” by investigating the TCF
deployment time. We examine the relationship between the TCF type (ANF and VNF) and their deployment
time. Fig. 3 shows the results in a logarithmic scale. The deployment time of an ANF with an average weight
of 15 Kbits is ≈ 8 ms; the deployment time of a VNF having an average weight of 200 Megabytes is ≈ 520 ms.

The second experiment investigates the TCF processing time to answer the question “(b).” We analyze the
relationship between the request arrival rate λ and the processing time pt. We start with each implementation
(ANF and VNF) of each TCF facing a session S of 3000 requests and a λ = 1. Then, repeatedly, with the same
session S of 3000 requests, we increase λ first to 50, then to 100, and finally to 150. The results (shown in Fig.
4a and Fig. 4b) confirm the expected behavior: the increase of λ leads to the increase of the processing time.
For instance, in Fig. 4a, with λ = 1, we have a pt(min) = 0 ms, pt(median) = 2 ms, pt(max) = 50 ms for the
Dropper Network Function processing time. However, the cumulative distribution function (CDF) of the same
TCF facing the same λ differs depending on its type (ANF or VNF). In Fig. 4a and Fig. 4b, the Classifier
processing time represents the insertion of the tag (LSL). For instance, in Fig. 4a, it takes 2 ms to insert a
tag for almost 75% of the requests when we handle 1 req/s. Additionally, we handle tags only internally inside
an infrastructure node of the NFV network topology (NFV-I). The Classifier calculates the tag in each node
according to the content of the message headers. The tag is not transmitted outside of the NFV-I node entities,
and no transmission overhead is then induced by the message exchange between the NFV-I nodes, which is the
most significant part of the communication traffic. The same applies to ANF-host.

In the third experiment, we answer the question “(c)” by investigating the TCF resource usage. We audit
the relationship between the request arrival rate λ and the resource usage (CPU and RAM). We start with each
implementation (ANF and VNF) of each TCF facing a session S of 3000 requests and a λ = 1. Then, we repeat,
with the same session S of 3000 requests, raising λ first to 50, then to 100, and finally to 150. Using ANF,
there is essentially no isolation in the use of resources, so we approximate the ANF resource usage to the whole
resource usage of the Java Virtual Machine hosting it, which is the worst situation of resource usage. For each
session of every TCF (ANF, VNF), we measure the average usage of CPU and RAM. Fig. 4c and Fig. 4d show
these average usages. The results show that the TCFs implemented as VNFs consume more CPU compared to
ANFs. However, both (ANFs and VNFs) consume the same amount of RAM.
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Saturation effect on TCFs: Here, we answer the question “(d)” by exploring the relationship between the
resource saturation (i.e., when CPU and/or RAM are utilized over 90%) and the TCF performance. As shown
in Fig. 4a and Fig. 4b, the CPU saturation has an important influence on the VNF TCFs performance. From
λ = 50, we can see that, on the one hand, the CPU is used at ≈ 100%, and the pt reaches 5 seconds (Fig. 4a).
On the other hand, the RAM remains slightly congested because the proposed TCFs are almost stateless and
computation intensive.

By removing the isolation between NFs, we lose a level of security. However, we get a decrease in the overhead
(resource usage, deployment time), a reduced complexity of the hosting nodes, and the increase of the number of
hosting nodes. Considering, under some circumstances, the isolation as a non-mandatory functionality for the
deployment of NFs, the concept of ANF completes the global toolset that sustains QoS in NIPs. Our approach
aims to dynamically deploy the different TCFs presented in this section within the platform, according to
resources and requirements changes. Given the task’s complexity, several TCFs can be considered, but with
varying results. Section 5 presents our contribution, based on a combinatorial optimization heuristics, to decide
the best combination of TCFs to deploy appropriately to the current context. Section 6 presents the method
of evaluating the performance of our contribution, as well as the results obtained.

5 Design of QoS4NIP Planner

In a real scenario, as described in Section 6, the proposed planner, called QoS4NIP, is located on top of the NIP’s
monitoring system. This follows the autonomic architecture model of [38]. QoS4NIP is invoked periodically
and takes the monitoring information as inputs. The output of QoS4NIP is a reconfiguration plan represented
by a binary vector. The configuration enforcement component [38] performs this reconfiguration and takes into
account the current configuration. For instance, when the QoS4NIP reconfiguration plan includes deploying a

(a) ANF Processing Time.

(b) VNF Processing Time.

(c) ANF Resource Usage. (d) VNF Resource Usage.

Figure 4: Traffic Control Functions performances.
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Table 2: Notations
Names Meanings

τ an IoT application
z the total number of IoT applications
n the total number of nodes

LQosτ the Latency required by τ
TQosτ the Throughput required by τ
UQosτ the Unavailability required by τ
LE2Eτ the End-to-End Latency served to τ
TE2Eτ the End-to-End Throughput served to τ
UE2Eτ the End-to-End Unavailability served to τ

Liτ the Latency of τ on node i
Tiτ the Throughput of τ on node i
Uiτ the Unavailability of τ on node i
ρiτ the monitored Throughput on node i for τ
δi the monitored Latency on node i
m the total number of scaling actions
p the total number of TCFs
Ai the set of scaling actions supported by the node i
Fi the set of TCFs supported by the node i
fq the TCF q benefit
ac the scaling actions c benefit

Γic the cost of scaling action c on node i
cpuq the TCF q cpu resource usage
ramq the TCF q ram resource usage

ηi the sum of the benefits induced by all the supported TCFs and the scaling actions on the node i
ζi the sum of the benefits of the Throughput induced by all the supported scaling actions on the node i
ωi the weighting factor of the Scheduler on the Throughput on the node i
εi the loss factor of the Dropper on the Unavailability on the node i
λi the request arrival rate on node i

CostE2E the End-to-End Cost of the scaling action
Costi the cost of all the scaling action execution on node i

RUE2E the End-to-End Resource usage of TCFs
RUi the resource usage of TCFs on node i
Hicpu the node i cpu usage
Hiram the node i ram usage

βi the node i cpu usage with Scaling action execution and TCFs deployment
γi the node i ram usage with Scaling action execution and TCFs deployment
Xθ the binary vector describing the describe the application of TCFs or scaling actions to the NIPs’ nodes

xji a binary row of Xθ
Tθ the integer matrix describing the genes’ additional information

tji a integer row of Tθ
Pt a Pareto front
Cp the crossover probability
Mp the mutation probability
N the population size
l the chromosome length
T the maximum number of generations

given TCF on a particular NIP’s node, and if this given TCF is already deployed, nothing happens. Otherwise,
the TCF will be deployed. The same applies when the QoS4NIP reconfiguration plan does not include the
deployment of a given TCF on a particular NIP’s node (this TCF will be removed). QoS4NIP handles a scaled
out/up node, virtually, as a unique node with i) resized resource in case of scaling-up, and ii) combined resources
in case of scaling-out.

In this section, we describe the design of QoS4NIP based on the considerations mentioned above. QoS4NIP
considers the different trade-offs for the cognitive management of QoS in NIPs. In Section 5.1, we describe the
considered system model. In Section 5.2, we formulate the QoS model of IoT applications (Latency, Throughput,
and Availability), the scaling actions cost model, and the TCFs deployment resource usage model. As stated
in Section 3.3, we formulate in Section 5.3 a multi-objective optimization problem for efficient planning. We
propose in Section 5.4 a modelization for the problem resolution (GA-based Constrained Optimization Model).
To solve the multi-objective optimization problem, we explore in Section 5.5 the evolutionary strategies and the
Pareto front. Finally, we present in Section 5.6, the QoS4NIP planner algorithm. For convenience, the used
notations are listed in Table 2.
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5.1 System Model

Fig. 1 depicts the system model used by the multi-objective optimization algorithm presented in this paper.
Let the NIP be composed of a set of n TCF (VNF or ANF) hosting nodes that are already provisioned and are
parts of the infrastructure. Let consider that each TCF or scaling action is associated with a benefit (estimated
a priori). This could be justified; for example, using the classical response time model R = S/(1− U), where S
is the node service time, U is the node utilization. The execution of a scaling action decreases U and therefore
decreases R. For simplicity, we call this variation (R/Rscaled) the “benefit” of the scaling action. This benefit,
expressed as a percentage (%), describes how the scaling action affects the QoS on the hosting node. The same
applies to the TCFs. For instance, a benefit of 25% means that the TCF or the scaling action reduces the
targeted IoT application Latency by 25% (to the detriment of other applications that are not targeted).

The joint optimization problem is to find the relevant TCFs to deploy (or remove) on every node of this set
and the scaling actions to execute, while optimizing the overall E2E QoS (i.e., E2E Latency, Throughput, and
Unavailability).

5.2 QoS, Cost and Resource Usage Models

Given a set of z IoT applications, we compute for each IoT application τ : the E2E Latency (denoted LE2Eτ ),
the E2E Throughput (denoted TE2Eτ ), the E2E Unavailability (denoted UE2Eτ ). We also compute the resource
usage associated with the deployment of the TCFs (RUE2E), and the cost associated with the execution of the
scaling actions (CostE2E).

E2E Latency model. As per [39], we can easily calculate the E2E Latency as the sum of all the local
Latencies for IoT application τ on the n nodes.

LE2Eτ =
n∑
i=1

Liτ (3)

In Equation 3, we assume a zero-latency for the IoT application τ if the benefit ηi (i.e. the sum of the benefits
induced by all the supported TCFs and the scaling actions on the node i) is greater than 100. Otherwise, the
Latency on the node i is (1− ηi%) of the monitored Latency.

Liτ =

{
0 if ηi ≥ 100

δi × (1− ηi%) else
(4)

with ηi =
∑p
q=0 fq +

∑m
c=0 ac

q ∈ Fi and c ∈ Ai
E2E Throughput model. The E2E Throughput is the minimum of all the Throughputs crossed by the

IoT application τ .
TE2Eτ = min(T1τ . . . Tnτ ) (5)

Where we assume that ζi is the sum of the benefits to the Throughput induced by all the supported scaling
actions on the node i. The Throughput on the node i is then the monitored Throughput added to ζi, if no
Scheduler is deployed or if node i does not support Scheduler deployment. When a Scheduler is on the node i,
then the Throughput is ωi% of the monitored Throughput added to ζi.

Tiτ =

{
ρiτ − ζi + 1 if @ scheduler ∨ scheduler /∈ Fi
(ρiτ − ζi + 1)× ωi else

(6)

with ωi = 1 + 1
100fscheduler and ζi = 1

100

∑m
c=0 ac

E2E Unavailability model. The E2E Unavailability is the sum of the Unavailability of the n nodes for the
IoT application τ .

UE2Eτ =

n∑
i=1

Uiτ (7)

Where we assume that the Unavailability of node i is zero if there is no Dropper deployed or if node i does not
support the Dropper deployment. If there is a Dropper deployed on the first node (0), then the Unavailability is
the rejection percentage associated with the IoT application τ . Otherwise, the Unavailability is the remaining
availability multiplied by the rejection % associated with the IoT application τ .

Uiτ =


0 if @ dropper ∨ dropper /∈ Fi
fdropper if i = 0

(1− εi)× fdropper if i > 0

(8)
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with εi = 1− 1
100

∑i−1
i′=0 Ui′τ

Scaling action execution’s E2E Cost model. The CostE2E is the sum of all the costs associated with
the scaling actions execution on the node i (Costi).

CostE2E =

n∑
i=1

Costi (9)

where

Costi =


∑m
c=0 Γic if node i support all

the scaling actions

∞ else

(10)

TCFs deployment’s E2E resource usage model. The RUE2E , is the sum of all the resource usage
associated with the deployment of TCFs on the nodes.

RUE2E =

n∑
i=1

RUi (11)

Where

RUi =


∑p
q=0(cpuq(λi) + ramq(λi)) ifβi% ≤ 1

∧γi% ≤ 1

∞ else

(12)

with βi = (
∑p
q=0 cpuq(λi) +Hicpu) ×

∑m
c=0 ac

and γi = (
∑p
q=0 ramq(λi) +Hiram) ×

∑m
c=0 ac

The CPU and RAM usage of the TCF depend on the request arrival rate λ on the node i.

5.3 Multi-Objective Problem Formulation

We formulate in this section a multi-objective optimization problem for efficient planning of the TCFs (proposed
in Section 4) and scaling actions execution in the multi-constraint NIP set-up. Our goal in the formulated
problem is to minimize the ratio between the IoT application’s QoS requirement and the QoS provided (E2E
Latency, E2E Availability, and E2E Throughput) by the NIP. The k-objectives problem is formulated as:

minimize F = l1, . . . , lz, t1, . . . , tz, u1, . . . , uz

subject to lτ ≤ 1,∀τ ∈ [1, ..., z],

tτ ≤ 1,∀τ ∈ [1, ..., z],

uτ ≤ 1,∀τ ∈ [1, ..., z]

(13)

Where we have

lτ =
LE2Eτ

LQosτ
(14)

tτ =
TQosτ
TE2Eτ

(15)

uτ =
UE2Eτ

UQosτ
(16)

5.4 GA-based Constrained Optimization Model

In this section, we define the “individuals” structure (chromosome). A chromosome is a solution that combines
the execution of scaling actions and TCFs deployment to sustain QoS. Additionally, we consider the following
genetic operators: mutation and crossover.

Genotype. The solutions are represented in a way that they can be easily understood and manipulated.
We define a chromosome as a binary vector Xθ to describe the application of TCFs or scaling actions to the
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NIP’s nodes (See Fig. 5a). Each Xθ is associated with an integer matrix Tθ that contains the TCF or scaling
actions’ additional information.

Xθ = [x1
1, . . . , x

p+m
1 , . . . , x1

n . . . x
p+m
n ] (17)

Particularly, each decision variable xji = 1 if and only if the jth TCF or scaling action is applied to NIP’s

node i. Each decision variable xji is associated with a configuration vector named tji . The vector tji is represented
in Fig. 5b and contains the following information:

• tji [1 . . . z]: denotes the decision variable xji effect on all IoT applications.

tji (τ) =

{
+1 if xji improves the QoS of τ

−1 else
(18)

• tji [e]: denotes the proportion of the decision variable xji effect. For instance, tji [e] = 25 means that the

decision variable xji can reduce (if tji [τ ] > 0) or increase (if tji [τ ] < 0) the IoT application τ Latency by
25%.

• tji [o]: denotes information to each the decision variable xji .

– In the Redirector gene, tji [o] denotes the number of hops for the priority IoT application.

– In the Shaper gene, tji [o] denotes the delay time for the priority IoT application.

– In the Scheduler gene, tji [o] denotes the scheduling rate for the priority IoT application.

– In the Scale-up and Scale-out genes, tji [o] denotes the cost in USD.

Genetic operators. We consider the classic operators that are enough to create and maintain the genetic
diversity, by combining existing solutions into new solutions, and to select between solutions:

• Bit-flip – acts independently on each bit in a solution and changes the value of the bit (0 to 1 and vice
versa) with probability Mp, where Mp is a parameter of the operator. The most commonly prescribed
value for this parameter is Mp = 1/l.

• Tournament Selector (Selection) – selects an individual from a population of individuals by running several
“tournaments” among a few individuals randomly chosen from the population. This operator selects the
winner of each tournament (the one with the best fitness) for crossover.

• Half Uniform Crossover (HUX) – swaps the half of the non-matching bits of two solutions according to a
probability Cp. For this purpose, HUX first calculates the number of different bits (Hamming distance)
between the parents. Half of this number is the number of bits exchanged between parents to form the
two children.

(a) Chromosome Xθ.

- 25 2$+1

𝒙𝒊
𝒋

𝒕𝒊
𝒋

𝒆 𝒐𝟏 𝒛

(b) Illustration of xji and its associated

tji .

Figure 5: Genotype Representation.
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(a) Hyper-volume measure on the formulated problem with
Cp = 100%; Mp = 100%; N = 200, l = 28.

(b) Speedup achieved by the NSGAII-based evolutionary
strategy on the formulated problem for 3, 10, 20, 50 and
100 IoT applications (on a Processor Intel (R) Core (TM)
i7-7500U CPU @2.70GHz).

Figure 6: Evolutionary strategy on the formulated problem.

5.5 Evolutionary Strategies and Pareto Front analysis

The proposed model above is the starting point in the implementation of a Genetic Algorithm to optimize the
QoS parameters of IoT applications (Latencies, Throughputs, Availabilities), resource usage of TCFs, and cost
of scaling actions. In this section, firstly, we present the adopted evolutionary strategy to compare individuals.
Secondly, we present a discussion on the choice of the solution in the Pareto front to apply.

Evolutionary strategy. We adopted the evolution strategy for QoS4NIP planner based on the Hyper-
volume calculated from Pareto fronts found by the main algorithms in the literature, and that are compatible
with the formulated problem. We consider the Non-dominated Sorting Genetic Algorithm II (NSGAII [33]),
III (NSGAIII [40]), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2 [41]). The Hyper-volume
indicator measures the volume of the dominated portion of the objective space. It is of exceptional interest, as
it possesses a highly desirable feature called strict Pareto compliance. This feature means that whenever one
approximation completely dominates another approximation, the Hyper-volume of the former will be higher
than the Hyper-volume of the latter.

The largest Hyper-volume was obtained by NSGAII, as shown in Fig. 6a. The outperformance of NSGAII
on NSGAIII is explainable since our problem is of type Knapsack Problems (KP). As clearly demonstrated
in [42], on multi-objective KP, NSGAII outperformed NSGAIII. NSGAII will be used for validation purposes
in the rest of this paper. The reader may see [33] for further details about the NSGAII algorithm.

Discussion on the choice of the applied solution. As earlier stated, the presence of multiple objectives
in a problem, in principle, gives rise to a set of optimal solutions. None of these Pareto-optimal solutions can be
considered better than the others in the absence of additional information. In our context, once the GA finds
a Pareto front, a choice must be made to apply a unique solution to the NIP. We recommend three methods of
selection.

The first method is the Random Selection, which consists of choosing a solution randomly from the Pareto
front. This method is a proper selection since each solution, Xθ, of the Pareto front has the same probability
of being applied to the NIP.

The second method is the QoS objectives-based Selection. This method consists of selecting a solution to
apply to the NIP based on the ranking or weighting of the QoS. For instance, in the Pareto front, there may be
some non-dominated solutions leading to request losses for some IoT applications. The choice will be towards
the solution that discards nothing, even if it proposes higher Latencies (≤ Lqos).

The last method of selection is the Non-QoS objectives-based Selection. The selection of the solution to be
applied to the NIP is based on Non-QoS criteria, such as the number of scaling actions and TCFs required
by the solution (Complexity-based), or the cost and resource usage associated with each solution (Cost-based).
The following case study on Connected Vehicles will use this last method (Cost-based).

5.6 The QoS4NIP Planner Algorithm

The general work-flow of the QoS4NIP planner (NSGAII-based) presented in Algorithm 6 is as follows.
From lines 2 to 4, the population is initialized randomly, where every individual’s structure is as proposed

in Fig. 5a. Then, the fitness value of every solution in the current population is computed using Equations
3, 5, 7 and the monitoring information (cf. Equations 4 and 6). All the individuals of the current population
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Algorithm 6: QoS4NIP Planner
Input: N ; T
Output: Xθ

1 begin
2 Set t = 0 Initialize P0 and set Q0 = ∅.
3 while t < T do
4 Calculate fitness for Pt and assign rant based on Pareto dominance
5 Perform selection on Pt to fill the mating pool
6 Apply crossover and mutation operators to obtain the offspring population Qt
7 Select the best N non-dominated solution from Pt ∪Qt by the two-step procedure to form Pt+1

8 Set t = t + 1

9 Set j = 0
10 while j < N do
11 Calculate and save RUE2E [j] for Pt[j]
12 Calculate and save CostE2E [j] for Pt[j]
13 Set j = j + 1

14 indexes←− arg minj=1...N{CostE2E(Pt[j])}
15 index←− arg minj∈indexes{RUE2E(Pt[j])}
16 Xθ ←− Pt[index]
17 return Xθ

with penalties values are discarded. Once the fitness is assigned, the population is sorted according to the non-
domination individual. Line 5, the Tournament selector is applied to the entire population to determine the
fittest individuals of the current population, which will be placed into the mating pool. Line 6, new solutions,
called offspring, are generated by applying Bit-Flip Mutation and Half Uniform Crossover to the mating pool.
Line 7, based on the values provided by the ranking scheme, the best individuals from the combination of
the current population Pt, and the offspring pool Qt, are detected. Those with a lower value (min) or higher
crowding distance are saved in the next population Pt+1. The crowding distance mechanism is used to preserve
the diversity of solutions. It estimates the volume of the hyper-rectangle defined by two nearest neighbors [33].
If some candidate solutions are of the same rank, and not all of them can enter the next population, the less
crowded individuals from a given rank are selected to fit the future population. From lines 9 to 13, the Pareto
Front’s scaling action cost and resource usage are calculated. From lines 14 to 17, using the selection method
described in Section 5.5, the cheapest solution (Xθ) is returned. The heuristic time complexity is O(MN2),
where M is the number of objectives, and N is the population size. The plots in Fig. 6b. have been drawn in
logarithmic scales. They show the speedup in ms as a function of population size.

6 Evaluations in a Connected Vehicles Case Study

Much of the data required by Connected Vehicles can be transferred using short-distance communications.
However, numerous use cases depend on the information that is not obtainable within proximity. For these
longer communication paths, the cellular network could be a potential solution for communication, both between
vehicles and from the vehicles to the network itself, so-called vehicle-to-network (V2N) communication. As
shown in Fig 7, we consider three realistic V2N IoT applications with different QoS requirements [43]. We
carried out simulations to evaluate the effectiveness of the proposed approach against others.

6.1 Compared Schemes

The relative performance comparison of the proposed scheme (QoS4NIP) has been carried out against four
other schemes. The first is the standard First-Come-First-Served (FCFS)-based approach. Unlike the proposed
scheme, this approach does not give any particular emphasis to maintain QoS requirements. The second
is the autoscaling scheme. To not bias the results, we compared our scheme with the autoscaling approach,
without considering a particular implementation in the literature, while trying to show its limits. The compared
autoscaling scheme is obtained by tuning our planning algorithm to use the scaling actions only and switching
off VNF and ANF deployment.

In our comparison, we also want to distinguish the costs induced by VNF usage versus ANF usage, inde-
pendently of autoscaling. For this purpose, we implemented the two other schemes as two variants of QoS4NIP,
wherein one variant only deploys VNFs, while the latter, additionally, considers using ANFs on the IoT End
Gateways. In the following, the FCFS, the autoscaling scheme, and the considered variants of QoS4NIP are
referred to as FCFS, AS, QoSEF, and QoSEFe, respectively.
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Figure 7: Considered topology for the case study.

6.2 Simulation Setup

Table 3 shows Teleoperated driving, Cooperative maneuvers and Traffic efficiency QoS requirements. All these
V2N IoT applications communicate with the actuators and sensors in the vehicle through “IoT Server”, Cloud
“GW C”, Edge “GW C1” and End “GW C11.” In each test case, the platform is modeled by a snapshot, s0,
where no TCF is deployed, and no scaling action is executed. We implemented all the compared schemes (AS,
QoS4NIP, QoSEF, QoSEFe) in Python using the Multi-Objective Evolutionary Algorithms library Platypus [44].

6.3 Evaluation Parameters

Using the results of our previous work [45,46], we show the a priori benefit of each TCF presented in Table 4.
The scaling actions benefits are considered, as shown in the work [47]. For the resource usage parameters (CPU
and RAM), we rely on the performance model of ANF and VNF presented in Section 4.

The four considered schemes for comparison (AS, QoSEF, QoSEFe and QoS4NIP) are initialized with the
snapshot of the FCFS scheme, s0 (presented in Table 5), corresponding to a number of objectives = 9, N =
200, Cp = 100%, and Mp = 1; with n = 4, p = 5, m = 2, and l = 28 (i.e. n × (p + m)). The resource usage
(Hiram and Hicpu) on each node (IoT Server, Cloud “GW C”, Edge “GW C1”, and End “GW C11”) is [15-25]%.
Scale-up and Scale-out cost per node is fixed to 0.3 USD (corresponding to an “AWS r4.large” price in march
2020).

Table 3: Representative V2N applications. T=
Throughput in req/sec (request size = 1Mb); L= La-
tency in ms; A= Availability in %.

V2N
Application

Description
QoS Requirements
T L A

Teleoperated
driving

An external operator
drives the vehicle using
a live-stream video.

25 20 99

Cooperative
maneuvers

A set of vehicles com-
municating and behav-
ing as a system for per-
forming coordinated ac-
tions.

10 100 99

Traffic effi-
ciency

Optimization of traffic
parameters (traffic
lights, speed limit,
etc.).

10 1000 90

Table 4: Benefits parameter settings
Benefit Description

Classification 0% Deploy a classifier on an node
Redirection 0% Deploy a redirector on an node
Scheduling 35% [45] Deploy a scheduler on an node

Shaping 35% [45] Deploy a shaper on an node
Dropping 41% [45] Deploy a dropper on an node
Scale out 50% [47] Replicate an node
Scale up 50% [47] Double resources of an node

Table 5: Initial snapshot s0 parameter settings
QoS offered to applications at s0

Teleoperated
driving

Cooperative ma-
neuvers

Taffic efficiency

Li 10 ms 30 ms 80 ms
Ui 0% 0% 0%
Ti 25 req/sec 10 req/sec 10 req/sec
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6.4 Evaluation Metrics

The reconfiguration plan, we refer to here, are those proposed by the solutions associated with the different
schemes. The evaluation metrics used to assess the proposed approach are defined as follows:

• E2E Actions Cost and E2E Resource Usage: respectively, the End-to-End costs computed from Equation
(9) and the End-to-End resource usage to sustain the QoS computed from Equation (11).

• E2E Latency: End-to-End solutions Latency of Teleoperated driving, Cooperative maneuvers and Traffic
efficiency, computed from Equation (3).

• E2E Availability: End-to-End solutions Availability of Teleoperated driving, Cooperative maneuvers, and
Traffic efficiency is 1 minus the End-to-End solutions Unavailability (denoted UE2Eτ ), computed from
Equation (7).

• E2E Throughput: End-to-End solutions Throughput of Teleoperated driving, Cooperative maneuvers and
Traffic efficiency, computed from Equation (5).

6.5 Observations

This part discusses the results we obtained. We compare the E2E Actions Cost, the E2E Resource Usage, the
E2E Latency, the E2E Availability, and the E2E Throughput in the FCFS scheme with the results obtained
from the schemes AS, QoSEF, QoSEFe, and QoS4NIP.

The E2E Actions Cost and E2E Resource Usage. Fig. 8a shows the obtained Pareto Front. The
associated cost in the FCFS scheme is 0 because no TCF is deployed, and no action is currently performed on
the considered NIP set-up. In the AS scheme, the cost ranges from 0.4 to 1.0 (0.48 to 1.2 in USD), and the
resource usage remains 0 since no TCF is currently deployed on the considered NIP set-up. The QoSEF scheme
does not induce any cost, and resource usage ranges from 0.97 to 0.99. In the QoSEFe scheme, using ANFs,
resource usage has been reduced to range 0.72 to 0.90. In the QoS4NIP scheme, by combining the AS scheme
and the QoSEFe scheme, the resource usage is between 0.08 and 0.63, and the cost is between 0.14 and 0.76
(i.e., 0.168 and 0.912 in USD).

The Cost-based solution selection, discussed in Section 5.5, is applied for the FCFS, AS, QoSEF, QoSEFe
and QoS4NIP schemes. In general, the (CostE2E , RUE2E) are, respectively (0, 0), (0.4, 0), (0, 0.97), (0.72, 0),
and (0.14, 0.53). The cost of the AS scheme is about three times higher than QoS4NIP (i.e., we have 65%
financial cost-saving). Fig. 8b shows the selected E2E reconfiguration plan of each scheme. The FCFS scheme
is to do nothing. The AS scheme performs Scale-up on every node (IoT Server, Cloud “GW C”, Edge “GW
C1”, and End “GW C11”). The QoSEF scheme deploys the following VNFs: on the IoT Server a Classifier, a
Shaper, and a Scheduler; on Cloud “GW C” a Classifier and a Scheduler; on the Edge “GW C1” a Classifier
and a Scheduler; and on the End “GW C11” a Classifier, a Scheduler, and a Dropper. The QoSEFe scheme
deploys the following ANFs: on the End “GW C11”, a Classifier, a Shaper, a Scheduler, and a Dropper; and,
on all other nodes (IoT Server, Cloud “GW C,” Edge “GW C1”), two VNFs: a Classifier, and a Scheduler. The
QoS4NIP scheme performs Scale-up on the IoT Server. It deploys, on the End “GW C11”, the following ANFs:
a Classifier, a Shaper, a Scheduler, and a Dropper; and, on all other nodes (Cloud “GW C,” Edge “GW C1”),
two VNFs: a Classifier, and a Scheduler.

QoS provided by the optimized reconfiguration plans. Fig. 9a shows the provided E2E Latencies by
the optimized reconfiguration plan of QoS4NIP versus other schemes. In the FCFS scheme, the E2E Latency for

(a) Relative E2E Reconfiguration Cost
and Resource Usage.

(b) Selected E2E Reconfiguration Plan (Xθ).

Figure 8: QoS4NIP compared with the others schemes.
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(a) E2E Latencies. (b) E2E Availability.

(c) E2E Throughputs.

Figure 9: QoS provided by the optimized reconfiguration plan of QoS4NIP versus others schemes.

Teleoperated driving is 40 ms and 120 ms for Cooperative maneuvers, which does not meet their requirements,
20 ms and 100 ms, respectively. Only in this scheme, the Traffic efficiency’s required E2E Latency is reached
(320 ms ≤ 1000 ms). In the other schemes (AS, QoSEF, QoSEFe, QoS4NIP), the E2E Latencies required by
the IoT applications are sustained. However, we observe that the AS scheme provides much more than what
is required by the IoT applications. For instance, for Cooperative maneuvers, the AS scheme provided 160 ms
E2E Latency, which is more than five times what is supported by the IoT application, and that is where we
see that the QoSEF, QoSEFe, and QoS4NIP schemes do better. Only by differentiating the processing of the
traffic between the IoT applications, the schemes QoSEF and QoSEFe make it possible to answer the required
E2E Latencies of all the IoT applications. The result is an increase in the E2E Latency of the Traffic efficiency
(≈ 500 ms), which always remains under the tolerable E2E Latency limit (under 1000 ms). The proposed
QoS4NIP scheme provided the best E2E Latencies, except for Traffic efficiency, where the AS scheme provided
low E2E Latency (160 ms).

Fig. 9b plotted the proposed E2E Availability by the optimized reconfiguration plan of QoS4NIP versus
other schemes. In the FCFS and AS schemes, the E2E Availability is 100%. The fact that these schemes
do not deploy droppers explains this value. However, in schemes QoSEF, QoSEFe, and QoS4NIP, the E2E
Availability is 99% for Cooperative maneuvers and Traffic efficiency, due to the use of a dropper (rejecting 1%
of the targeted traffic). Teleoperated driving being of the highest priority, its traffic is not dismissed. The E2E
Availability provided by all schemes always remains under the tolerable threshold.

Fig. 9c shows the provided E2E Throughput of QoS4NIP versus other schemes. E2E Throughput required
by Teleoperated driving is not met in the FCFS scheme. In the AS scheme, the provided E2E Throughput
is much higher than the IoT application’s requirement, which is not a cost-optimal plan. The schemes based
on differentiation (QoSEF, QoSEFe, and QoS4NIP) use schedulers and provide the closest E2E Throughput
regarding the IoT application’s requirements. For instance, the QoS4NIP scheme provided to the Teleoperated
driving an E2E Throughput of 26 req/s that is very close to the required 25 req/s.

We can conclude from these simulations that the available resources can limit the QoSEF and the QoSEFe
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scheme’s effectiveness in the NIP set-up. The AS scheme is effective but has not optimal costs. The QoS4NIP
seems to be the best way to enable QoS for NIPs by taking advantage of the service differentiation and the
autoscaling combination to overcome the above limitations of both schemes separately considered.

7 Limitations

Our proposal has some limitations. We make the following considerations about the problem at hand. First,
the NIP’s nodes in the Cloud/Edge are VMs and can be easily scaled (up and out). The NIP’s nodes at the
network End (End Gateways) are mainly hardware nodes. In rare cases, an End Gateway can be a VM located
in a data center. Since the VMs are in the Cloud/Edge, the physical server’s available capacity is supposed
unlimited, as considered in the literature. For example, some IaaS providers are now proposing Cloud/Edge joint
offers, where the limited capacity in the Edge data center is mitigated through continuous offloading to Cloud
data centers. Oppositely, we consider that all reconfiguration plans generated by QoS4NIP must respect the
limitation of resource capacities inside the NIP’s nodes. Second, we consider only the NIP-level QoS regardless
of the underlying IP-network performance (consisting of routers and switches). Thereby, the system model does
not consider the network-level latency. Third, the scaling decisions are considered binary since QoS4NIP aims to
minimize the scaling cost. “Zero,” meaning no scaling action is necessary, and “One” meaning a scaling action
is unavoidable. This allows us to be accurate in our comparison by considering the “lowest boundary” of the
autoscaling approach with a minimal cost of “one new instance” at once (the non-compressible cost). Finally,
we assume that only one instance of any TCF can simultaneously run on a NIP’s node, and when a scale-out
is applied to a NIP’s node, the associated TCF will be deployed both on the initial instance and on the new
replicate. We did not consider the application of different TCFs during the scale-out for the following reasons.
First, we aim to maintain consistency in handling IoT traffic. When a node is scaled-out, a load-balancer is
deployed upstream of the node’s instances, and upon the arrival of a request, this load-balancer redirects this
request to any of the node instances with no distinction. Applying different TFCs to instances would lead to
an inconsistency problem for the IoT traffic handled by that node. That would result in different processing
rules for requests arriving at the same (scaled-out) node. Considering such a direction will break the standard
management rules for resource scaling. Indeed, we assume using the standard management rules for the scaling
of the nodes, executing different TFCs in instances would be technically not sound: the scaling manager can
delete any instances regardless of the TCFs executed. For these reasons, we consider, in our contribution, that
any instance of a scaled-out node will process the arriving requests as decided by QoS4NIP regardless of the
number of running instances. Considering the same TCFs in all instances of a given node allows us to be in line
with the standard scaling approaches that proceed by deploying identical instances when scaling-out a given
node and by removing any instance when scaling-in.

8 Conclusion

To summarise, we have proposed in this paper, a new cost-effective approach combining the advantages of the
Traffic Control Functions (TCFs) deployed as NFs and the autoscaling of the virtualized processing resources.
We considered the specific and challenging case of the NFV-enabled IoT Platforms (NIPs), where de facto het-
erogeneity is stressed by the emerging context of the recent networking technologies for routing and connectivity,
the computation infrastructure for processing and storage, and the varying constraints of data producers and
consumers’ devices. We considered the case of the horizontal NIPs that increase the heterogeneity by addressing
the cross-domain interoperability. We implemented our approach on top of OM2M, the reference implementa-
tion of the international standard oneM2M [1]. We showed by emulating different scenarios of the domain of
Connected Vehicles that the classical systematic scaling can be avoided while fitting the required End-to-End
QoS requirements for both common and potentially critical IoT applications. We considered the different QoS
parameters (Latency, Throughput, and Availability) and the Cloud resource usage cost that we handled in a
multi-objective optimization approach. We implemented TCFs that we deployed as Network Functions (NFs),
which are appropriate to the capacity limits of the NIPs’ nodes. We implemented a scheme, QoS4NIP, that
combines the scaling actions and traffic management efficiently.

Several potential directions may be worth investigating in the future. The current QoS4NIP planner considers
only the optimization of NFs (VNF/ANF) chaining to be deployed and scaling actions. It does not go further
into finding the optimal parameter configuration for all these actions (scaling the NF with different sizes,
adapting the loss rate within the Shaper, adapting the timeout limit, the queue reservation rate, and the other
parameters for the other functions). Our algorithm needs to be extended to consider the dynamicity (i.e., the car
mobility pattern in the Connected Vehicles case study) of the NIPs’ nodes. This study would require additional
capabilities to be taken into consideration to predict the evolution of the platform state and anticipate the
related QoS violations. Moreover, in all cases, we will need an extension of the current work to include the
detection of QoS violations when they are not predicted on time. The limited number of ANF-hosts prevents

20



from a large scale measurement campaign of the proposal’s experiments. A real-world deployment in a broader
scale environment would need the deployment of a large number of ANF-hosts. Today, such resources are
not yet available, unlike the NFV-I that can be deployed at a significant scale by provisioning a high number
of VMs (e.g., Amazon EC2 VMs). A potential future work to solve this issue is the deployment of an open
crowd-sourced testbed for large-scale experimentation.

VNFs Implementation Details in Docker. We develop a prototype of the traffic functions in Java 8.
Two service layer protocols are supported in this implementation: Constrained Application Protocol (CoAP)
and Hypertext Transfer Protocol (HTTP). Moreover, we based the service layer protocols implementation
on public optimized Open-Source libraries: Californium (https://www.eclipse.org/californium) for CoAP and
Apache HTTP (https://httpd.apache.org) for HTTP. After the compilation of source code, the binaries of the
TCFs are built into Docker images (Ubuntu 16.04). The associated VNF packages are created and onboarded in
the ETSI-MANO OpenBaton and ready to be deployed as VNFs. IP traffic redirection, when necessary, is done
using Software-defined networking (SDN) by adding Openflow rules on the NFV-I interconnection switches via
the NFV-I SDN controller REST API.

ANFs Implementation Details in Eclipse OM2M. OM2M nodes are developed following a modular
architectural style based on the OSGi standard [32]. Thanks to this implementation, it is possible to integrate
our ANFs as OSGi Bundles. Our integration approach is achieved so that the OM2M node maintains its
modular design and can operate without these new ANFs. An OM2M node (in-cse or mn-cse) is composed
of the following components: Core, Binding, Persistence, and Interworking Proxy Entity (IPE). The Core
component is responsible for the processing of generic requests and responses (i.e., protocol-agnostic messages).
It implements features such as Registration, Discovery, Re-routing, Notifications. The Binding components
act as translators of protocol-specific messages to generic messages and vice versa. A Binding component is
necessary for every supported protocol (i.e., HTTP, CoAP). The Persistence components are responsible for
implementing the data storage strategy. There is an interface component, and as many as supported storage
locations (in-memory, file, or server databases). Similar to the Binding components, they provide a translation
of generic messages into non-IP (i.e., Bluetooth, ZigBee, Z-Wave) messages and vice versa.

(a) Internal structure of an OM2M node integrating ANFs. (b) ANFs chaining in an OM2M node.

Figure 10: Seamless integration in the OM2M IoT platform.

To achieve this integration, we had to consider two options: (1) to re-implement the Binding components
and Interworking Proxy Entity components of a node to add a new interface to be used for the communication
with ANFs. Such a modification would have resulted in a new version of Eclipse OM2M, or (2) to use the OSGi
feature “Proxying Service” [32], which allows us to intermediate an OSGi service. We have chosen the second
option, which enables the integration of ANFs without affecting the oneM2M [1] standard being implemented
through Eclipse OM2M. Furthermore, this option has the advantage not to change any element of the current
implementation of OM2M. As shown in Fig. 10a, the main element of this architecture is the “ANF Chaining
adapter.” This component is specified following a design pattern [48]. It intermediates the OSGi service between
the Core component and the Binding components. Depending on its configuration, it also decides to pass the
request message through zero or several ANFs before reaching the Core. The same applies to the response
message. We implemented a Management Agent (MA) that receives and installs ANF files (JAR). We also
implemented an ANF deployment manager that deploys ANFs on a remote node. The deployment manager
also configures ANFs dynamically, including the “ANFs Chaining adapter,” which is a particular ANF. An
example is illustrated in 10b. After implementing OSGi compatible source code, we generate the JAR (Java
ARchive) associated with each TCFs. The generated JARs are ready to be deployed as ANFs. More details of
the architecture of implementation, integration, and deployment of the TCFs into the Eclipse OM2M can be
found in [45].
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