
Novel Adaptive Data Collection based on a
Confidence Index in SDN

Kokouvi Benoit Nougnanke
CNRS, LAAS, F-31400 Toulouse, France

Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France
Email: nougnanke@laas.fr

Yann Labit
CNRS, LAAS, F-31400 Toulouse, France

Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France
Email: ylabit@laas.fr

Abstract—SDN makes networks programmable by bringing
flexibility in their control and management. An SDN controller
decides how packets should be forwarded and installs flow rules
on the data-plane devices for this end. For efficient control and
management, the SDN controller needs to monitor the network
state continuously in order to have an accurate and up-to-
date view of the underlying data-plane. The need for this high-
visibility on the network brings specific types of monitoring as
streaming telemetry where data is streamed continuously from
network devices (wired switches, wireless energy constrained
nodes, etc.) as bulk time series data. But this may generate a
lot of overhead. Adaptive monitoring techniques provide ways
to reduce this overhead, but generally, they require complex
user parameter tuning and also they effectively handle data dis-
semination overhead with counterpart certain energy-consuming
treatment on the source nodes. In light of this, we propose
novel adaptive sampling technique based on a confidence index
that considerably reduces the number of exchanged messages
about 55-70 % while maintaining an accurately collected data,
represented by the explained variance score that is about 0.7 and
0.8. And more, our proposition achieves these results while being
a lightweight solution for source nodes.

Index Terms—SDN, Continuous Monitoring, Data Collection,
Monitoring Overhead, Adaptive sampling, Time Series

I. INTRODUCTION

Software Defined Networking (SDN) [1] is the physical sep-
aration of the control plane from the forwarding plane. It eases
control and introduces flexibility in network management.
Innovation and optimization in networks are also eased. SDN
paradigm is used for both wired and wireless networks, but it
was traditionally developed for wired environments where it is
more mature. Its application to the wireless context has a lot
of advantages even if it needs readjustments and adaptations.

For an SDN architecture to work well, and especially in
the case of dynamic networks, we need to frequently or
continuously monitor the network and collect its information.
This monitoring consists essentially of network state infor-
mation (performance metrics, physical topology, hop latency,
queue occupancy, remaining energy, etc.) and traffic/flow
information collected from data-plane devices such as wired
servers, switches, routers, wireless nodes, base stations, etc.
This collected information may help in the control of packet
forwarding allowing the controller to adapt flow rules opti-
mally. It is also used by management or monitoring services
or applications such as DDoS Attack Detection [2].

Inspired by self-driving cars, self-driving networks consti-
tute a new promising research topic [3] [4]. Their implemen-
tation will leverage SDN, machine learning, and automation,
just to name a few. And here data collection is of great interest,
and more real-time telemetry is needed.

Continuous monitoring is then ineluctable in SDN and this
monitoring must not be restricted to only traffic or flow infor-
mation but all relevant ones that can be useful in any decision
making process at the controller level. The only downside is
that it may generate a lot of overhead for an SDN architec-
ture. To handle this, adaptive data collection techniques are
developed. Based on [5], an overview of network monitoring
in SDN, [6] an adaptive approach for monitoring in SDN
and [7], presenting a state-of-the-art review of monitoring in
edge computing and its requirement, the literature adaptive
techniques handle efficiently overhead reduction problem, but
they still present these 3 aspects:

• they are tailored for a polled-based monitoring model
and generally for traffic and flow information collection.
Other information may be useful, and for continuous
monitoring a push model is more adequate as in streaming
telemetry. So, adaptive techniques have to be compatible
with this latter model or more have to be generic;

• they require complex parameters tuning, which limits
their adoption;

• the lightness of the solutions for source nodes, that could
be energy constrained devices, is questionable.

Considering the aspects discussed above, we propose a new
adaptive sampling approach, COCO (information COnfidence
index COllection) with the following contributions:

• We propose, for continuous monitoring overhead reduc-
tion, an adaptive monitoring framework using a confi-
dence index α assigned to any information to be collected
continuously. Its algorithms are presented (section III).

• Then, we carry out experiments on our proposed frame-
work, its evaluation results are discussed (section IV).

• And finally, we present an overview of adaptive monitor-
ing techniques from the literature (section V).

II. BACKGROUND

A. SDN Controller
SDN controller is the heart, not to say the brain of an

SDN architecture [8]. It exercises management-control over

the data-plane devices to satisfy the needs of applications
by translating their requirement (high-level intent) into flow
rules (instruction) that will be executed by devices [9]. When
satisfying these requirements, the controller has to achieve
certain goals: QoS provisioning, optimal network resources
utilization, security aspects, etc.

The SDN controller ensures the control part essentially with
the OpenFlow protocol [10]. For management, protocols used
are OF-CONFIG, NETCONF, SNMP, etc.

By controlling and managing the underlying data-plane, the
SDN controller plays the role of an active control element
in a feedback loop, responding to network events, recovering
from failure, reallocating resources [11], etc. Because the data-
plane is a dynamic environment that changes over time, the
controller by mediating between applications and networks
resources [12], continually adapts the state of resources of
its data-plane to maintain a desired (optimal) state.

Comparison Adjustment

SDN Controller

Delta

Data-plane Resources

Optimization Policy or Constraints
(By Management Applications)

Deny New Request

Notify Exception

Control Signal
(Modify resource state

 with flow rules) P
ol

le
d

N
ot

ifi
ed

Applications

Requirements

Actual Resource State
(and Performance Metrics)

Desired Resource State
and Performance Metrics

Measurements

Fig. 1. SDN Controller in a Control feedback loop

From Fig. 1, adapted from [8] [12], we can see control as
the process of establishing and maintaining a desired state on
the data-plane, and feedback is of utmost importance in this
process. The feedback process constitutes a management task
(events handling, statistics collection, monitoring, etc.).

B. Data collection in SDN

As shown above, with an SDN architecture we are in the
presence of closed-loop of control. For this control loop to
be efficient (i.e. allows applications to dynamically control
the network while improving its utilization, QoS provisioning,
etc.), the most active element of this loop, the SDN controller,
has to provide to the applications network information perti-
nent to their needs and objectives [9]. We can distinguish two
main categories of information:

• Traffic Forwarding information: flow statistics such as
switch interfaces (ports) information like flow volume,
data throughput, packet loss, port down or up, etc.

• Network Resource State information: related more to
the management part e.g. CPU usage, disk usage, etc.

The information may be directly informative (port is down
or up) or can be used as performance metrics and so on.

As mentioned by ONF in SDN Scope and Requirements this
information that can be static (eg. datapath ID) or dynamic (eg.
CPU usage) may be collected in several manners: provisioned,
discovered, queried, notified and streamed.

Using these techniques, SDN controller would gather rele-
vant information and provide global view and full knowledge
of the data-plane under its control. The data collection impor-
tance is not to be proved but is increasing with the advent of
machine learning techniques in networking in general [13] and
especially in the control loop of SDN [14], machine learning
who breathes ”only” by data. Monitoring will also have a great
role in the implementation of self-driving networks, inspired
by autonomous vehicles, which leverages SDN and Machine
Learning [3] [4]. Self-driving networks need continuous re-
source monitoring and streaming telemetry fits well with this
requirement [15]. Nevertheless, care should be taken to the
abstract level and granularity of collected information and to
the cost of this task.

Indeed, Streaming Telemetry [16], powered by the Open-
Config working group, is a new approach for network monitor-
ing in which data is streamed from devices continuously, thus
bulk time series data is collected (e.g. statistics are uploaded
every 15 seconds). An event-driven update and requested
for ad-hoc data are also available. Unlike SNMP, Streaming
Telemetry uses a publish-subscribe pattern and is model-driven
telemetry enabling vendor-agnostic monitoring. It is based on
open-source initiatives like YANG model, OpenConfig data
model, gRPC (Google Remote Procedure Call) etc.

C. Problem with periodic monitoring

We have seen in section II-B the stress of network state
information collection in SDN. This collection is usually done
periodically, and this for several reasons. For example, we
want network state information to be available when SDN
services or applications request them, proactive approach for
the network management. This periodic data collection is
not without cost, but more it presents a dilemma: at which
frequency (sampling period), data may be collected?

• If we use high frequency, we will have real-time and
accurate information but with significant overhead.

• Low frequency resolves the problem of overhead but we
will not have accurate network state information.

Continuous monitoring, not to say periodic monitoring at
high frequency, is needed to ensure high-visibility and deep
or real-time insights on the data-plane. Streaming telemetry
(discussed above) has arisen and is compatible with these
requirements by streaming data each X seconds to an inter-
ested receiver, on a push basis, generating bulk time series
data. Concerning overhead, the use of a push model offers a
better efficiency compared to a collection in a polling fashion.
Furthermore, to add more efficiency and tackle this overhead
problem, we propose to stream the data, not with high fre-
quency, but with a ”virtual high frequency”, or in other
words, to use adaptive sampling in the data streaming process.
The adaptive sampling procedure is based on a confidence

index α representing the trust the receiver, here the controller,
has on the source node for adjusting the reporting interval.

Our adaptive monitoring algorithm consists of adjusting
collection period for a push-based monitoring model according
to α. Indeed network devices stream to the SDN controller
each Tα (equals to Tαmin = T0, initially) unit of time and
this reporting interval increases automatically [Tαmin, Tαmax]
over time, and it will be adjusted (decreased) only if the
receiver side is unable to capture the runtime evolution of
the information being collected and thus can not guarantee a
certain accuracy, initially defined. Then, it raises a deviation
alarm and the reporting interval is decreased. A detailed
description of our proposition is given in section III.

III. OUR SOLUTION: AN INFORMATION CONFIDENCE
BASED ADAPTIVE DATA COLLECTION

We represent, like [17], the metric M to be monitored as a
sequence, at regular time intervals (e.g. T0 = 1s), of values mk,
M = {mk}nk=0, n→∞. These n + 1 observations m0, ...,mn

form a time series and mk may be seen as a tuple (id, tk,
value, αk). With our adaptive sampling algorithm, only some
of these samples mk will be pushed to the SDN controller by
the network node, source of the monitoring stream M.

The data collection process between the controller and
the node according to our proposition COCO (information
COnfidence COllection) is described in Fig. 2.

Data plane Control plane

Deviation degree 𝜸

A
pplications

INITIALIZER

Network
State

Information
Base

REGISTRATOR

COLLECTOR -
PREDICTOR

DEVIATION
CHECKER

samples each T𝜶 = (1+𝜶)T0

COCO Agent COCO Collector

Information to be collected
and parameters (T0, 𝜷0, 𝜷)

Information to be collected
and parameters (T0, 𝜼)

(T0, 𝜷0, 𝜷)
𝜼

1a1b

1c

2a 2b

3

Automatic
Adaptive

SAMPLER

T𝜶

Collected+Forecasted

 Datapoints

Fig. 2. COCO Framework

Initially, a certain application, control or management ser-
vice expresses its interest in certain information (1a). It
specifies the metric M to be collected, at which frequency
it may be available with T0, and η the collection (or forecast)
imprecision tolerance indicator. The registrator then initialize
the collection process on the node (1b) and (1c).

Information to be collected periodically is given a confi-
dence index α, and Tα is the period with which this informa-
tion will be pushed i.e. at tk = tk−1+ Tαk

(2a). Tα will evolve
in a similar manner as TCP’s congestion window evolution:
slow-start and congestion avoidance. Indeed, we will begin
with a low period Tα(k) = (1+α(k))T0 = T0 (α = 0) and α
will be increased each β samples uploaded if a deviation alarm
is not raised by the controller. Otherwise, α will be decreased
according to the deviation degree γ (3). This is presented with
our Adaptive Sampling Procedure on Algorithm 1.

Algorithm 1: COCO Adaptive Sampling Procedure
1 Upload β0+1 metric samples mk each T0, k := 0 to β0 ;
2 αk+1 ←− αk + 1 and Tαk+1 ←− (1 + αk+1)T0 ;
3 k ←− k + 1 and j ←− 0 ;
4 while Forever do
5 Upload mk at tk = tk−1+ Tαk ;
6 j ←− j + 1 ;
7 if j == β then
8 if ¬ Deviation occurred then
9 αk+1 ←− min(αk + 1, αmax) ;

10 else
11 αk+1 ←− αk / (2 * γ) ;
12 end
13 Tαk+1 ←− (1 + αk+1)T0 ;
14 j ←− 0 ;
15 end
16 k ←− k + 1 ;
17 end

Algorithm 2: COCO Forecasting and Deviation Checking
1 Retrieve the first β0 + 1 metric samples mk ;
2 steps←− αk + 1 ;
3 while Forever do
4 Retrieve metric sample mk ;
5 if (mk is the β th sample for αk) then
6 if MASE(last collected, last forecasted) < MASE th

then
7 No Deviation: α ←− min(mk.αk+1, αmax) ;
8 Send Asynchronously γ to the source;
9 else

10 Deviation γ: αk+1 ←− mk.αk / (2 * γ) ;
11 end
12 steps←− αk + 1 ;
13 last collected ←− ∅ ;
14 last forecasted ←− ∅ ;
15 end
16 Add mk to last collected ;
17 forecasted ←− Auto ARIMA forecasting ;
18 Add the steps th forecast to last forecasted ;
19 end

A mutual trust environment exists between the node and the
controller. Indeed, the controller allows the nodes to upload
samples with confidence α which means each (1+α)T0 and the
node trusts the controller to be able to have good forecasts and
then an accurate representation of the metric evolution based
on past data-points.

The COCO Agent is executed by the node (switch) as
a software-based monitoring solution, of course in collab-
oration with the SDN controller which processes collected
samples, forecasts uncollected ones and raises deviation alarm
if needed. The complete process on the controller is described
with Algorithm 2 and its details are given below.

The controller receives information samples at tk = tk−1+
Tαk

from the node. Firstly, it stores it and then it forecasts
step equals to α + 1 next data-points (2b). The first α th
data-points may be used in place of uncollected ones and the
latter will be used in deviation checking process. The forecast

is done, on previously collected samples and forecasts, using
the univariate statistical time-series ARIMA (AutoRegressive
Integrated Moving Average) model. ARIMA parameters (p,
d, q) are computed automatically using Auto ARIMA [18]
which chooses the best model order, selecting the combination
that minimizes models quality estimators such as the Akaike
Information Criterion (AIC) or the Bayesian information crite-
rion (BIC). For convenient time series forecasting, we need to
satisfy a minimum training set size which generally is 50. But
this is for general cases with seasonality. For this study, we
focus on non-seasonal time series and 30 gives good results.
for this reason, we define a specific β, β0 equals to 30 (default)
for α equals to 0 in the beginning.

When the received sample is the β th data-point for the cur-
rent α, deviation checking is done using Mean Absolute Scaled
Error (MASE) on β last forecasts, β last really collected data-
points, according to the training set (previous data-points) used
by the forecasting model. MASE, a measure of the accuracy
of forecasts proposed in [19], has many desirable properties
compared to existing forecasting errors measurements, and it
fits well with our deviation checking task. It is computed
using Eq. 1, with yk representing a real observation, which
is the value contained in the metric sample mk, and ŷk its
corresponding forecast.

MASE = 1/β

β∑
k=1

(
|yk − ŷk|

1/(β − 1)
∑β
k=2 |yk − yk−1|

) (1)

It compares the actual forecasting method to the one-step naive
forecast computed in-sample with a ratio of their respective
Mean absolute Errors (MAE). Then when MASE < 1, the
actual forecasting performs well than the naive one and vice
versa. We transform this threshold of 1 to MASE th = 1 +
η which will be used in the deviation alarm raising decision.
When the threshold is violated, the controller raises a deviation
alarm of degree γ (default γ = 1). γ is sent to the node for
updating (decreasing) α then Tα.

An illustration of Tα’s evolution is represented in Fig. 3
as the evolution of α since Tα = (1 + α)T0, where the αmax
reached is 6 then Tαmax is 7T0 and where we observe 5 raised
alarms at the following time: (170, 240, 260, 470, 540)T0.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780

time(TU)

0

1

2

3

4

5

6

α

α evolution over time (CPU monitoring)

(β0 = 30, β = 10, η = 0.5) for (CPU monitoring)

Fig. 3. α evolution over time for a real trace (CPU monitoring data)

Our framework follows these 2 objectives: have a rather
accurate evolution (samples) of the target information and
with a minimal number of messages exchanged between
the controller and the node. This aims to reduce overhead,
mainly on the data-plane. Indeed our framework proposes a

lightweight adaptive solution for source nodes compared to
related works where the adjustments of reporting intervals are
done after computing, predictions on the nodes. In our case,
apart from the case where a deviation alarm is raised, the
adjustment is automatic and most of the computation is done
on the controller side.

Also our approach requires minimal external parameters (T0
and η) all the other parameters are internal to the framework.

IV. COCO EVALUATION

We evaluate our proposition COCO with three real traces
and a synthetic one. N represents the number of data-points:

• Battery levels, discharge of a laptop with N = 211
• ARMA generate, synthetic data with N = 300
• CPU monitoring, CPU usage data with N = 800 [20]
• Switch Traffic (in bits per second) with N = 288

Fig. 4 shows the traces (as on the source node) and their
corresponding collection at the controller level with COCO.

0 50 100 150 200

time (TU)

10

20

30

40

50

60

70

80
V
al
u
e

(Battery levels)

Original stream

COCO (collected + forecasted)

Collected data-points

0 50 100 150 200 250 300

time (TU)

−4

−2

0

2

4

6

V
al
u
e

(ARMA model data)

Original stream

COCO (collected + forecasted)

Collected data-points

0 100 200 300 400 500 600 700 800

time (TU)

0

20

40

60

80

V
al
u
e

(CPU monitoring)

Original stream

COCO (collected + forecasted)

Collected data-points

0 50 100 150 200 250 300

time (TU)

0

1

2

3

4

5

6

7

V
al
u
e

×107 (Switch Traffic)

Original stream

COCO (collected + forecasted)

Collected data-points

Fig. 4. Original traces and their corresponding collection with COCO

We implement our proposed approach in Python and the
simulation experiments were carried out on a machine Intel
Core i7-7500U CPU 2.70 GHz x 4 with 16 GB of RAM
running Ubuntu 16.04 LTS. For the evaluation, we use the
following two metrics:

• Percentage of the number of samples collected com-
pared to fixed T0 collection mechanism for the effi-
ciency of COCO. And we want this value to be as small
as possible. It includes also messages from the controller
to the node when a deviation alarm is raised.

• Explained Variation Score (EVS) for the quality of
COCO (accuracy). It expresses the proportion to which
COCO accounts for the variation (dispersion) of a data

set. It is computed with Eq. 2, where y represents the
original trace and ŷ the collected version of y :

EV S(y, ŷ) = 1− V ariance(y − ŷ)
V ariance(y)

(2)

The best score possible is 1.0.
Firstly, we evaluate the impact of η, for β0 = 30 and β = 10,

on COCO’s efficiency and its quality. η is used in the decision
process as an indicator of the tolerable imprecision. Negative
values (> -1) means MASE threshold < 1 imposes us to
compulsory do better than the naive one-step forecast. And
with positive values, we have more flexibility. Fig. 5 shows the
importance of η on COCO efficiency and its collection quality.
Indeed increasing its value improves the percentage from 70%
to around 35% while maintaining a quite stable EVS 0.75, 0.8.
An interesting result is for the Battery levels trace (with a quite
simple evolution), where we have an EVS equals to 1.0 when
η increases. More interesting this is followed by a decreasing
of the percentage of messages exchanged. It reaches its lowest
value of 36.49% from η equals to 1.75, and this with the same
EVS 1.0.

−0.75 00.50 00.25 0.00 0.25 0.50 0.75 1.00
η

0

20

40

60

80

100

Am
ou

nt
 o
f s

am
pl
es
 p
us

he
d
(\%

)

COCO Efficiency according to η
(Battery levels)
(ARMA model data)
(CPU monitoring)
(Switch Traffic)

−0.75 00.50 00.25 0.00 0.25 0.50 0.75 1.00
η

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E.
pl
ai
ne

d
Va

ria
nc

e
Sc

or
e
(E
VS

)

COCO Quality(Accuracy) according to η

(Battery levels)
(ARMA model data)
(CPU monitoring)
(Switch Traffic)

Fig. 5. The impact of η on the collection efficiency and quality

These interesting results presented may be seen in an intern
point of view of COCO with α evolution according to η,
represented in Fig. 6 by αmax reached and the number of
deviation alarms raised. They evolve in opposite manner when
η increases.

η
=
-0
.7
5

η
=
-0
.5

η
=
-0
.2
5

η
=
0.
0

η
=
0.
25

η
=
0.
5

η
=
1.
0

0

1

2

3

4

5

6

7

α
m
a
x
re
ac
h
ed

Influence of η on αmax

(Battery levels)

(ARMA model data)

(CPU monitoring)

(Switch Traffic)

η
=
-0
.7
5

η
=
-0
.5

η
=
-0
.2
5

η
=
0.
0

η
=
0.
25

η
=
0.
5

η
=
1.
0

0

5

10

15

20

25

N
u
m
b
er

of
d
ev
ia
ti
on

al
ar
m
s
ra
is
ed

Influence of η on deviation alarms

(Battery levels)

(ARMA model data)

(CPU monitoring)

(Switch Traffic)

Fig. 6. αmax reached and Number of deviation alarms raised

Then, in Fig. 7 (Left), for η equals to 0.5, we present the
percentage of the number of samples pushed to the controller
with COCO compared to a fixed period T0 mechanism for
different values of β. This percentage at β equals to 10 is
around 30% and 45% which represents a reduction of 55%,
70% of the number of messages exchanged to have at the
controller level an acceptable accurate evolution of the metric
on the target node. The accuracy is presented with EVS on
the right graph. We can see also that COCO’s efficiency is

more important in the long term, where represented with the
size of the traces. So we have the lowest percentage with CPU
monitoring trace with 800 data-points. It depends also on the
values of β. Obviously when increasing β, this percentage
increases also, and this with relatively the same EVS. Slower
values of β are then recommended.

10 15 20 25 30 35 40 45 50
β

25

30

35

40

45

50

55

60

65

Am
ou
nt
 o
f s
am

pl
es
 p
us
he
d
(\%

)

Impact of β for β0 = 30
(Battery levels) : size = 211
(ARMA model data) : size = 300
(CPU monitoring) : size = 800
(Switch Traffic) : size = 288

10 15 20 25 30 35 40 45 50
β

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pl
ai
ne
d
Va

ria
nc

e
Sc

or
e
(E
VS

)

Impact of β on EVS

(Battery levels)
(ARMA model data)
(CPU monitoring)
(Switch Traffic)

Fig. 7. Efficiency (Number of samples collected compared to Fixed T0
collection mechanism)

To sum up this evaluation, we see that our proposed adap-
tive approach reduces considerably the number of messages
exchanged in continuous monitoring, with good accuracy, and
with the great advantage to being lightweight for source nodes,
that mainly have just to push the samples with automatic
sampling rate.

V. RELATED WORKS

Lots of adaptive algorithms are provided in the literature
from wireless sensor networks data collection [21] and In-
ternet of Things (IoT) [17] to monitoring in networking and
especially in SDN for monitoring overhead optimization. As
pointed out in [6], we can distinguish two main techniques:

• Threshold-based adaptive monitoring, where the mon-
itoring period is adjusted by comparing the two last mea-
surements variations to an upper and a lower thresholds.
Payless [22] uses this approach. Its authors focus on
the trade-off between monitoring accuracy and network
overhead by proposing a frequency adaptive statistics col-
lection scheduling algorithm applied on selected switches.
Payless’s adaptive algorithm adjusts dynamically polling
frequency based on collected data granularity.

• Prediction-based adaptive monitoring, where the next
measurement is predicted with last ones. the deviation
between the forecast and the real observation guides the
period adjustment.
This approach is used in [23] which uses a linear pre-
diction based dynamic adjustment scheme to provide
dynamic zooming into the flow space (temporal and
spatial dimensions).

Authors in [6] propose SAM (Self-tuning Adaptive Moni-
toring) which uses a prediction-based approach to dynamically
adjust polling rate but with minimal parameter tuning effort,
not like [23] and [22].

Other relevant works on the topic include [24] and [25].
OpenNetMon [24], for traffic monitoring (flow-related infor-
mation collection with OpenFlow), uses an adaptive polling
rate that increases and decreases respectively when the mea-
surement values differ between samples and when the values

stabilize. TENNISON [25] is a distributed security framework
with effective and proportionate monitoring. It offers multi-
level monitoring using appropriate tools (sFlow, IPFIX, DPI)
from layer 1 to layer 2. Its sampling and polling rate are
dynamically adjustable based on three thresholds.

Although the adaptive monitoring works presented above
are very interesting, they are mainly tailored for traffic mon-
itoring using a polling approach on the first hand. And on
the other hand, most of them require complex parameters
tuning. For fine-grained management at the SDN controller
level and with the advent of self-driving networks with its
real-time telemetry requirement, we do not need only flow-
related information collection with a poll-based approach but
all relevant information that may contribute to the decision
making process.

Taking into consideration all this, we have proposed COCO,
an adaptive data collection framework for a push-based mon-
itoring model and with low parameter tuning. It uses the
two main techniques presented above: a prediction technique
to forecast uncollected data-points and a threshold decision
making process for deviation alarm raising, that expresses if
Tα should be increased or decreased (section III). It has also
the advantage of being lightweight for source nodes.

VI. CONCLUSION

In this work, we presented an adaptive data collection
framework in an SDN environment. It is based on a confidence
index and with the evaluation results, it allows reducing
periodic monitoring overhead about 55-70 % with a good
accuracy represented by the explained variance score that is
about 0.7 and 0.8. Compared to the state-of-the-art solutions it
has the advantage to be a lightweight solution for data-plane
nodes. This is very interesting, especially in Software Defined
Mobile Ad-hoc NETworks (SD-MANETs) where nodes are
constrained in energy but we need a continuous collection of
the data-plane state for the good functioning of the architec-
ture. Then SDN advantages could be brought efficiently to
other environments like MANETs without its shortcomings,
mainly the overhead generated by communications between
the separated control and data planes. And this is a good
start to stem the pessimism around the application of the SDN
paradigm to the Wireless Multi-hop networks because of the
high cost of data plane and controller interactions.

In our future works, we will implement our proposition in
a real platform, continue the evaluations by comparing it to
other related techniques.

REFERENCES

[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-defined networking (sdn): Layers and
architecture terminology,” Tech. Rep., 2015.

[2] X. Yang, B. Han, Z. Sun, and J. Huang, “Sdn-based ddos attack detection
with cross-plane collaboration and lightweight flow monitoring,” in
GLOBECOM 2017-2017 IEEE Global Communications Conference.
IEEE, 2017, pp. 1–6.

[3] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv:1710.11583, 2017.

[4] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and
S. Schmid, “Empowering self-driving networks,” in Proceedings of the
Afternoon Workshop on Self-Driving Networks. ACM, 2018, pp. 8–14.

[5] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Systems Journal, 2018.

[6] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, “Self-
adaptive decentralized monitoring in software-defined networks,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp.
1277–1291, 2018.

[7] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Mon-
itoring self-adaptive applications within edge computing frameworks: A
state-of-the-art review,” Journal of Systems and Software, vol. 136, pp.
19–38, 2018.

[8] ONF TR-521, “Sdn architecture, issue 1.1, 2016.”
[9] ONF TR-516, “Framework for sdn: Scope and requirements, version

1.0, june 2015.”
[10] O. S. S. Version, “1.5. 1 (protocol version 0x06), december, 2014.”
[11] ONF TR-502, “Sdn architecture, issue 1, june 2014.”
[12] S. Schaller and D. Hood, “Software defined networking architecture

standardization,” Computer Standards & Interfaces, vol. 54, pp. 197–
202, 2017.

[13] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[14] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(sdn): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, 2018.

[15] D. Rafique and L. Velasco, “Machine learning for network automation:
Overview, architecture, and applications [invited tutorial],” Journal of
Optical Communications and Networking, vol. 10, no. 10, pp. D126–
D143, 2018.

[16] http://www.openconfig.net/.
[17] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring

techniques for the internet of things,” IEEE Transactions on Services
Computing, 2018.

[18] http://www.alkaline-ml.com/pmdarima/develop/index.html.
[19] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast

accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[20] I. Shafer, K. Ren, V. N. Boddeti, Y. Abe, G. R. Ganger, and C. Faloutsos,
“Rainmon: an integrated approach to mining bursty timeseries moni-
toring data,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012, pp.
1158–1166.

[21] D. Laiymani and A. Makhoul, “Adaptive data collection approach for
periodic sensor networks,” in 2013 9th International Wireless Commu-
nications and Mobile Computing Conference (IWCMC). IEEE, 2013,
pp. 1448–1453.

[22] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in Network Operations and Management Symposium (NOMS), 2014
IEEE. IEEE, 2014, pp. 1–9.

[23] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[24] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Net-
work monitoring in openflow software-defined networks,” in 2014 IEEE
Network Operations and Management Symposium (NOMS). IEEE,
2014, pp. 1–8.

[25] L. Fawcett, S. Scott-Hayward, M. Broadbent, A. Wright, and N. Race,
“Tennison: A distributed sdn framework for scalable network security,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 12,
pp. 2805–2818, 2018.

