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Abstract—In Software-Defined Networking, near-real-time col-
lection of flow-level statistics provided by OpenFlow (e.g. byte
count) is needed for control and management applications like
traffic engineering, heavy hitters detection, attack detection,
etc. The practical way to do this near-real-time collection is a
periodic collection at high frequency. However, periodic polling
may generate a lot of overheads expressed by the number of
OpenFlow request and reply messages on the control network.
To handle these overheads, adaptive techniques based on the pull
model were proposed. But we can do better by detaching from
the classical OpenFlow request-reply model for the particular
case of periodic statistics collection. In light of this, we propose a
push and prediction based adaptive collection to handle efficiently
periodic OpenFlow statistics collection while maintaining good
accuracy. We utilize the Ryu Controller and Mininet to imple-
ment our solution and then we carry out intensive experiments
using real-world traces. The results show that our proposed
approach can reduce the number of pushed messages up to 75%
compared to a fixed periodic collection with a very good accuracy
represented by a collection error of less than 0.5%.

Index Terms—SDN, OpenFlow, Continuous Monitoring, Data
Collection, Monitoring Overhead, Time Series

I. INTRODUCTION

Software-Defined Networking (SDN), by separating the
control plane from the data plane, provides good abstractions
to the network control plane, that becomes programmable,
flexible and more innovation in networking is eased. The
OpenFlow API is used to control the forwarding plane.

Apart from being used to control the forwarding plane
through flow rules installed by the control plane, OpenFlow
exposes flow statistics (packets and bytes count, flow duration,
etc.) and other relevant flow information (flow entry expiration
and packet-In). These statistics and event-based information
need to be gathered to enriched the global view of the network
and be used by many control and management functions as
traffic engineering [1], routing [2], anomaly detection [3], con-
gestion detection, identification of architectural bottlenecks,
etc. This flow-level measurement is done either actively, by
querying the statistics such as traffic counters, flow duration,
etc. on a pull basis with Read-State messages, or passively
after an event as flow entry expiration and packet-In.

Moreover, for efficient and near-optimal control and man-
agement, the network global view needs to be up-to-date which
means near-real-time network state observation. One practical
way to do this is by collecting non-event-based data (traffic
counters especially) periodically at high frequency (e.g. reports

interval of few seconds). But OpenFlow’s pull-based statistics
retrieving may impose high overheads [1], expressed by the
number of request and reply messages on the data plane.

To handle these overheads, i.e. provide timely accurate
statistics to the control plane but with low overheads, pull-
based adaptive approaches consisting of using adaptive polling
rates, instead of a fixed one were proposed. The collection
granularity adjustment is done either according to the stability
of the statistic being collected, by comparing the difference
between two consecutive data-points to one or several thresh-
olds [4], or by using a prediction-based approach which adjusts
the reporting intervals according to the ability to provide
good estimations of future data-points based on the history
composed of the previously collected data-points [3] [5].

The aforementioned approaches provide good accuracy-
overhead trade-offs, but we can do better by detaching from
the classical OpenFlow request-reply model for the particular
case of periodic statistics collection. We then propose a push
and prediction based adaptive periodic OpenFlow statistics
collection with low overheads and almost no accuracy degra-
dation. This will be possible since the switch, source of the
statistic to be collected is involved in the adaptive process.
Then it automatically knows the adaptive collection points
in time, and on its own will just push to the controller the
statistic value without the need for request messages. Doing
this way, the reduction of overhead will be more consequent.
Hence, we propose a push and prediction based adaptive for
OpenFlow statistics near-real-time collection, which ensures
low overheads with almost no accuracy degradation.

The main contributions of this paper are summarized below:

• We propose an adaptive collection mechanism that de-
creases considerably the overhead in terms of the number
of messages used to collect flow bytes count in near-real-
time (Section III).

• We implement the proposed algorithm using the Ryu
Controller and Mininet, and after that, we carry out
intensive experiments using real-world backbone and
university data-center traces. The evaluation results are
presented and analyzed (section IV).

• We also present a direct use-case of our low-cost near-
real-time bytes count collection, bandwidth monitoring
for traffic engineering and then we discuss our work
regarding P4 and INT (Section V).



II. RELATED WORKS

For continuous statistics collection in SDN, especially flow
bytes count, traditional network monitoring flow sampling
techniques like sFlow, NetFlow/IPFIX could be used. But we
don’t need this extra instrumentation on OpenFlow Switches
since they provide directly flow statistics, by maintaining
records on packets matching installed flow rules. We just
need to collect these statistics efficiently. However, OpenFlow
will face some issues to provide the same level of flow-
level measurements compared to the sampling techniques
mentioned above, especially the limitation of the number
of flow rules that a switch can support. In light of this,
[6] emulates NetFlow/IPFIX operation in SDN, providing
OpenFlow compatible flow sampling methods. For near-real-
time statistics collection with good accuracy-efficiency trade-
off, [7] proposes per-flow sampling with adaptive polling
frequency, polling frequency being adjusted depending on
whether the sampled traffic is stable or busy. In the same
context to provide timely data-plane state information with low
overheads, [4] proposes a threshold-based adaptive scheduling
algorithm for flow statistics retrieving by polling.

III. PERIODIC COLLECTION OVERHEAD HANDLING

A. Problem Statement

A statistic S to be collected in near-real-time, here an
OpenFlow bytes count maintained by the data-plane switch,
is modeled by:
S : R+ −→ N
∀u, t ∈ R+ : u ≤ t =⇒ S(u) ≤ S(t).

The bytes count S(t) matching a specific flow, or a port
bytes count in the interval [0, t), is a cumulative, non-negative
and non-decreasing function. It must be part of the global
and up-to-date view exposed by the control plane. Practically
it will be collected periodically and control and management
functions’ requirements may define the period T0 to be used.

Then the statistic S may be seen as ST0 = {si}ni=0, n→∞,
a large sequence of data-points si at regular time interval T0
with si ≤ si+k,∀k ∈ N, representing an increasing trend time
series. We denote the collected version at the controller level
as Ŝ. If collected at a fixed T0, ŜT0

will be considered equal
to ST0 (with the hypothesis that there is no packet loss and
that data plane and controller communication delay is zero,
ideally with an out-of-band control deployment).

For fine-grained near real-time control and management, T0
needs to be as small as possible but this may generate a lot of
overhead. A question that could raise at this point is: ”Isn’t any
magic T0 to be used that will give a good trade-off between
the collection accuracy and the overhead ?”

Our approach consists of not to have to look for this magic
T0. Instead, we will provide the samples of S(t) with the
application chosen T0, but not all the samples will be really
collected. We will effectively collect at adaptive frequency
(T0, 2T0, 3T0, ...) and the non-collected data-points will be
predicted based on the already existing ones.

B. Pushed and Prediction based Adaptive Collection

Our proposition is an easy to deploy, transparent and
lightweight solution that comes from our early previous work
[8], where we propose, a generic adaptive algorithm based
on a confidence index for collecting any type of information
(CPU usage, switch information, etc). Here we leverage this
adaptive algorithm that is enhanced and optimized for statistics
presenting a particular pattern, an increasing trend (counters).

Our adaptive approach is built upon two mainstays: the
adaptive push model and the power of time series forecast-
ing. A push model because the classical OpenFlow pull model
(request/reply) is inefficient since with a periodic collection or
even with our adaptive collection mechanism, the collection
points in time are known by the source node. This latter has
to push to the controller at the collection points on its own
without the need for a request message.

The adaptive frequencies or periods are represented by Tα =
(1+α)T0, where α is a confidence index expressing the degree
of confidence between the collector and the node, source of
the statistic, on the ability of the prediction method to provide
good estimations of uncollected data-points. The confidence
index α is constructed incrementally, it means that if at a
given α the predictions are good, we pass to a new confidence
level α + 1. Conversely, the confidence index will degrade
when we do not have good estimations. Hence our push and
prediction based adaptive collection solution is called COCO
for COnfidence based adaptive COllection.

Our collection overhead reducing mechanism operates on
two entities: the collector and the data plane agent as shown
in Fig. 1. Their algorithms are presented in the next section.

COCO Collector COCO Agent

Counter Values pushing
Over UDP

Collection Initialization (T0, 𝜼) 
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OpenFlow
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Fig. 1. COCO Collection Architecture

C. Algorithms

The COCO Agent executes the adaptive push procedure
(see Algorithm 1) as a software-based monitoring solution
on the node (switch), of course in collaboration with the
SDN controller. In fact, for a statistic that is required to
be up-to-date at T0 granularity at the controller level, we
attach the confidence index α, and Tα = (1 + α)T0 is the
period with which this information (the samples ŝi = si) will
be pushed. The reporting interval begins with a low period
Tα = (1 + α)T0 = T0 (α = 0) and α will be increased
each β data-points pushed if a deviation alarm is not raised
by the controller. Otherwise, α will be decreased according
to the deviation degree γ. α evolves according to an AIMD
(Additive-Increase/Multiplicative-Decrease) pattern.

Algorithm 2 describes the controller side process, where
the collector processes collected data-points (ŝi), forecasts
uncollected ones (ŝj) and raises deviation alarm if needed.



Algorithm 1: COCO Agent: Adaptive Push Procedure
1 Push β0 data-points ŝi each T0, (α = 0) ;
2 α ←− α + 1 and Tα ←− (1 + α)T0 ;
3 i←− i+ 1 ;
4 while Forever do
5 Push ŝi at Tα ;
6 if (ŝi is the β ith data-point for α) then
7 if ¬ Deviation occurred then
8 α ←− min(α + 1, αmax) ;
9 else

10 α ←− α / (2 * γ) ;
11 end
12 Tα ←− (1 + α)T0 ;
13 end
14 i←− i+ 1 ;
15 end

Algorithm 2: COCO Collector: Forecasting and Devi-
ation Checking

1 Collect the first β0 data-points ŝi ;
2 α ←− α + 1 and steps←− α+ 1 ;
3 while Forever do
4 Collect data-point ŝi ;
5 Add ŝi to last collect ;
6 if (ŝi is the β ith data-point for α) then
7 if error indicator(last collect, last forecast) < η

then
8 No Deviation: α ←− min(α+1, αmax) ;
9 else

10 Deviation γ: α ←− α / (2 * γ) ;
11 Send Asynchronously γ to the switch;
12 end
13 steps←− α+ 1 ;
14 last collect ←− ∅ ;
15 last forecast ←− ∅ ;
16 end
17 Forecast steps future data-points (ŝj) using previous ŝi ;
18 Add the steps ith forecast to last forecast ;
19 end

The controller receives samples ŝi from the node each
Tα = (1+α)T0. Firstly it forecasts step equals to α+ 1 next
data-points. The first α forecasts will be used as an estimation
of {ŝj}αj=1 uncollected data-points between ŝi and ˆsi+1 on
a T0 basis. Secondly, The last forecast the α + 1 ith one
will be compared to ˆsi+1 to estimate the prediction algorithm
accuracy. For a given α, after collecting β data-points ŝi, an
accuracy deviation checking is done using these data-points
{ŝi}βi=1 and their corresponding forecasts (the α + 1 ith) to
compute an indicator of the prediction error. This indicator is
compared to the threshold η, when violated, a deviation alarm
of degree γ (default γ = 1) is raised. γ is sent to the node for
updating (decreasing) α then Tα.

To compute the prediction error indicator we use Mean
Absolute Scaled Error (MASE) [9], a time series forecasting
accuracy metric. It has many desirable properties compared to
existing error metrics (e.g. MAPE). MASE is computed using
β last forecasts, β last collected data-points, according to the

previous data-points used for prediction (See Eq. 1).

MASE =
1

β

β∑
k=1

(
|ŝk − pred(ŝk)|

1/(β − 1)
∑β
k=2 |ŝk − ˆsk−1|

) (1)

It compares the actual forecasting method to the one-step naive
forecast computed in-sample with a ratio of their respective
Mean Absolute Errors (MAE). Then when MASE < 1, the
actual forecasting performs well than the naive one and vice
versa. We transform this threshold of 1 to η.

Concerning uncollected data-points forecasting, the two
following statistical techniques are investigated:

1) The popular Box-Jenkins ARIMA family of meth-
ods shortened as ARIMA (AutoRegressive Integrated
Moving Average): It exploits information embedded in
the autocorrelation pattern of the data. Estimations are
done based on the maximum likelihood. The univariate
statistical time-series ARIMA model parameters (p, d,
q) are computed automatically using Auto ARIMA [10].

2) Holt’s Trend Corrected Exponential Smoothing: Or
Double Exponential Smoothing is used to do forecasting
when the time series presents a particular trend (increas-
ing or decreasing) without a seasonal pattern. For this
model, we may retain two main hyper-parameters: α∗

the smoothing factor for the level (mean) and β∗ the
smoothing factor for the trend or slope smoothing.

For convenient forecasting, we need to satisfy a minimum
training set size which generally is 50. Then, we define a
specific β, β0 equals to 50 (default) for α = 0 at the beginning.
Moreover, we emphasize recent data-points supposing older
ones less relevant, and also for the fact that we are doing an
on-line prediction, we set a sliding window of size W = 1.5*β0
for previous data-points to be used for the prediction.

The parameters used in our overhead reduction proposition
are summarized in TABLE I.

TABLE I
PARAMETERS

Parameters Description
α Confidence index on the ability to provide good

estimations of uncollected data-points, ∈ [0,..,9]
T0 The required time granularity for statistic updates
Tα = (1+α)T0 Effective pushing period for the confidence index α
β0 The minimal number of samples to be collected at

the beginning on T0 basis
β Number of samples for a given α after which a

deviation checking is done allowing α update
η A threshold on the prediction error
γ The degree of a deviation alarm

IV. EVALUATION

A. Setup and Evaluation Metrics

We evaluate our proposition using the topology in Fig. 2 on
a virtual machine of 32 GB of RAM and 20 vCPUs.

With tcpreplay, we replay real network traffics from the
two following public anonymized datasets. UNIV2 [11]: A
university data-center trace collected on 22 January 2010. We
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extract 8 samples of 450s from 19:02:15 to 20:10:00. And
MAWI [12]: A backbone trace from the WIDE MAWI archive
collected in September 2019 at the transit link (1Gps) of WIDE
to the upstream ISP. We extract 7 samples of 450s from the
archives from 19 to 22 September.

Host1 replays the traces on the OpenFlow switch S1,
executing the COCO Agent, that forwards all the traffic to the
sink node Host2. Host1, Host2 and the switch S1 are emulated
with Mininet. The SDN controller (Ryu) executes the COCO
Collector and collects the flow statistics from S1.

Two main metrics are used in this evaluation. We compute
these metrics in comparison to a fixed push mechanism at T0
(which will be the case when we use for example sFlow).

Accuracy: To evaluate the collection error induced by our
adaptive push mechanism compared to a fixed T0 one, we use
the Mean Absolute Percentage Error (MAPE). It’s expressed
in percentage, the lower this value, the better it is.

Overhead: We express the overhead reduction with the
percentage of the number of messages with a fixed push
collection compared to the effective number of messages with
COCO. We want this value to be as high as possible.

B. Overhead Reduction and Collection Accuracy

Fig. 3 and Fig. 4 show the percentage of messages reduced
(on the left) and the collection error with MAPE (on the right)
according to the threshold η respectively for the traces UNIV2
and MAWI, for 2 combinations of (β0, β): (50, 10), (100, 10).

For all η > 0, meaning a fraction of inaccuracy is authorized
on the collection, we always have a reduction of the overhead
compared to the fixed periodic push collection. This reduction
increases when η increases and may stabilize. We achieve up
to 75% of reduction. And we have this with a very low error
(less than 0.5 %) on the whole collection compared to the
fixed T0 collection. This very low error for both MAWI and
UNIV2 increases with η and the reduction percentage.

C. Computation Time and Synthesis

When a data-point ŝi is collected, before collecting the
next one ( ˆsi+1) some computations are done, like computing
estimations of missing data-points, and sometimes deviation
checking. This inter-data-points processing time needs to be
bounded for the good functioning of our algorithm and also
this time may impact the possible values of T0. In Fig. 5, we
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Fig. 3. UNIV2: Overhead Reduction and Collection Error (MAPE)
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show the range of this computation time for both ARIMA and
Exponential Smoothing forecasting. Exponential Smoothing
gives better results (around 0.025 seconds). ARIMA gives
computation time around 0.125 seconds.

From Fig. 3 and Fig. 4, ARIMA and ES are providing
the same quality of forecasting even with the big difference
in terms of computation time. Hence for our particular case
where the time series presents an increasing trend without
seasonality pattern, the better choice for uncollected data-
points is Double Exponential Smoothing.

V. USE CASE AND DISCUSSION

A. Use Case: Network Utilization Monitoring

With our lightweight near-real-time bytes count collection,
we contribute a lot to Traffic Engineering in SDN. As part
of TE, we can mention bandwidth management that consists
of measuring and controlling traffic on network links. Fig. 6
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shows bytes count evolution collected with our adaptive push
mechanism compared to a fixed push collection and the
bandwidth estimated from this statistic. The bandwidth is
expressed in bytes per second (Bps).
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B. Discussion

The objective here is to position our work with the recent
directions in SDN intending to take complete control over the
data-plane with P4, INT, and data-plane programmability.

P4 (Programming Protocol Independent Packet Processor)
[13] is a high-level language to express how a switch is to be
configured and it has to process packets. It’s worth pointing out
that P4’s goal is not to replace OpenFlow, but OpenFlow may
be seen as part of P4 and is one of many possible programs
(e.g P4Runtine) to describe the forwarding behavior. Since
there, our OpenFlow-based implementation can be considered
P4-compatible. Moreover, instead of running our solution as
a software agent on data-plane elements, it can be directly
integrated into programmable switches through P4.

Generally implemented with P4, INT (In-band Network
Telemetry) [14] is a new abstraction that allows data packets
to collect switch internal state (queues size, queues latency,
byte counts, etc), enabling monitoring of the network state by
the data-plane. Even with this approach sometimes we need
to collect from a selected node statistics to a central server.
For example in [15] a low-overhead network-wide heavy hitter
detection is done where large flows are detected locally in the
data-plane with a per-key threshold that triggers reports to a
central coordinator. A similar approach is used in [16]. At
the triggering moment, our adaptive solution will be useful in
reducing the overall monitoring task cost.

VI. CONCLUSION

This paper proposes an efficient adaptive push algorithm
for near-real-time flow statistics collection done as a periodic
collection. It is based on time series prediction that guides
the adjustment of the adaptive periods. Our proposition has
the advantage of being lightweight and easy to deploy. We
evaluate it using real-world backbone and university data-
center traces. It reduces the collection overhead up to 75%
compared to a fixed periodic push collection mechanism at
the price of almost no accuracy degradation with less than
0.5% of collection error.

As future works, we will investigate the use of machine
learning forecasting methods as RNN (Recurrent Neural Net-
works). And also we will implement our solution with P4 for
data-plane elements instead of using it as a software agent.

REFERENCES

[1] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[2] E. Akin and T. Korkmaz, “Comparison of routing algorithms with static
and dynamic link cost in software defined networking (sdn),” IEEE
Access, vol. 7, pp. 148 629–148 644, 2019.

[3] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[4] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Symposium
(NOMS). IEEE, 2014, pp. 1–9.

[5] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, “Self-
adaptive decentralized monitoring in software-defined networks,” IEEE
Transactions on Network and Service Management, vol. 15, no. 4, pp.
1277–1291, 2018.
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