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Stokes, Gibbs and volume computation of semi-algebraic
sets

Matteo Tacchi1,2, Jean Bernard Lasserre1,3,∗, Didier Henrion1,4

September 23, 2020

Abstract

We consider the problem of computing the Lebesgue volume of compact basic semi-
algebraic sets. In full generality, it can be approximated as closely as desired by a converg-
ing hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares)
methodology to a certain infinite-dimensional linear program (LP). At each step one solves
a semidefinite relaxation of the LP which involves pseudo-moments up to a certain degree.
Its dual computes a polynomial of same degree which approximates from above the discon-
tinuous indicator function of the set, hence with a typical Gibbs phenomenon which results
in a slow convergence of the associated numerical scheme. Drastic improvements have been
observed by introducing in the initial LP additional linear moment constraints obtained from
a certain application of Stokes’ theorem for integration on the set. However and so far there
was no rationale to explain this behavior. We provide a refined version of this extended LP
formulation. When the set is the smooth super-level set of a single polynomial, we show that
the dual of this refined LP has an optimal solution which is a continuous function. Therefore
in this dual one now approximates a continuous function by a polynomial, hence with no
Gibbs phenomenon, which explains and improves the already observed drastic acceleration
of the convergence of the hierarchy. Interestingly, the technique of proof involves classical
results on Poisson’s partial differential equation (PDE).

Keywords: convex optimization, real algebraic geometry, multivariate integration

1 Introduction
Consider the problem of computing the Lebesgue volume of a compact basic semi-algebraic set
K ⊂ Rn. For simplicity of exposition we will restrict to the case where K is the smooth super-
level set {x : g(x) ≥ 0 } ⊂ Rn of a single polynomial g.

If K is a convex body then several procedures are available; see e.g. exact deterministic
methods for convex polytopes [1], or non deterministic Hit-and-Run methods [17, 22] and the
more recent [2, 3]. Even approximating λ(K) by deterministic methods is still a hard problem
as explained in e.g. [3] and references therein. In full generality with no specific assumption on
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K such as convexity, the only general method available is Monte-Carlo, that is, one samples N
points according to Lebesgue measure λ normalized on a simple set B (e.g. a box or an ellipsoid)
that contains K. If ρN is the proportion of points that fall into K then the random variable
ρN λ(B) provides a good estimator of λ(K) with convergence guarantees as N increases. However
this estimator is non deterministic and neither provides a lower bound nor an upper bound on
λ(K).

When K is a compact basic semi-algebraic set, a deterministic numerical scheme described
in [9] provides a sequence (τk)k∈N ⊂ R of upper bounds that converges to λ(K) as k increases.
Briefly,

λ(K) = inf
p∈R[x]

{∫
p dλ : p ≥ 1K on B

}
(1)

τk = inf
p∈R[x]k

{∫
p dλ : p ≥ 1K on B

}
, (2)

with x 7→ 1K(x) = 1 if x ∈ K and 0 otherwise. One can notice that minimizing sequences for
(1) and (2) also minimize the L1(B, λ)-norm ‖p− 1K‖1 (with convergence to 0 in the case (1)).
As the upper bound τk > λ(K) is obtained by restricting the search in (2) to polynomials of
degree at most k, the infimum is attained and an optimal solution can be obtained by solving
a semidefinite program. Of course, the size of the resulting semidefinite program increases with
the degree k; for more details the interested reader is referred to [9].

Then clearly, a Gibbs phenomenon1 takes place as one tries to approximate on B and from
above, the discontinuous function 1K by a polynomial of degree at most k. This makes the
convergence of the upper bounds τk very slow (even for modest dimension problems). A trick
was used in [9] to accelerate this convergence but at the price of loosing monotonicity of the
resulting sequence.

In fact (1) is a dual of the following infinite-dimensional Linear program (LP) on measures

sup
µ
{µ(K) : µ ≤ λ ; µ ∈M(K)+ } (3)

(whereM(K)+ is the space of finite Borel measures on K). Its optimal value is also λ(K) and
is attained at the unique optimal solution µ? := λK (the restriction of λ to K).

A simple but key observation. As one knows the unique optimal solution µ? = λK of (3),
any constraint satisfied by µ? (in particular, linear constraints) can be included as a constraint on
µ in (3) without changing the optimal value and the optimal solution. While these constraints
provide additional restrictions in (3), they translate into additional degrees of freedom in the
dual (hence a relaxed version of (1)), and therefore better approximations when passing to the
finite-dimensional relaxed version of (2). A first set of such linear constraints experimented in
[13] and later in [14], resulted in drastic improvements but with no clear rationale behind such
improvements.

Contribution. The main message and result of this paper is that there is an appropriate
set of additional linear constraints on µ in (3) such that the resulting dual (a relaxed version
of (1)) has an explicit continuous optimal solution with value λ(K). These additional linear
contraints (called Stokes constraints) come from an appropriate modelling of Stokes’ theorem for
integration over K, a refined version of that in [13]. Therefore the optimal continuous solution
can be approximated efficiently by polynomials with no Gibbs phenomenon, by the hierarchy of
semidefinite relaxations defined in [9] (adapted to these new linear constraints). Interestingly,

1 The Gibbs phenomenon appears at a jump discontinuity when one numerically approximates a piecewise C1

function with a polynomial function, e.g. by its Fourier series; see e.g. [20, Chapter 9].
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the technique of proof and the construction of the optimal solution invoke classical results from
the field of elliptic partial differential equations (PDE), namely the Lax-Milgram and Poincaré-
Wirtinger inequalities as well as regularity theorems for solutions to elliptic PDEs.

Outline. In Section 2 we recall the primal-dual linear formulation of the volume problem, and
we explain why the dual value is not attained, which results in a Gibbs phenomenon. In Section
3 we revisit the acceleration strategy based on Stokes’ theorem, with the aim of introducing in
Section 4 a more general acceleration strategy and a new primal-dual linear formulation of the
volume problem. Our main result, attainment of the dual value in this new formulation, is stated
as Theorem 4 at the end of Section 4. The drastic improvement in the convergence to λ(K) is
illustrated on a simple example of the Euclidean ball.

2 Linear reformulation of the volume problem
Consider a compact basic semi-algebraic set

K := {x ∈ Rn : g(x) ≥ 0}

with g ∈ R[x]. We suppose that K ⊂ B where B is a compact basic semi-algebraic set for which
we know the moments

∫
B

xk dx of the Lebesgue measure λB, where xk := xk11 x
k2
2 · · ·xknn denotes

a multivariate monomial of degree k ∈ Nn. We assume that

Ω := {x ∈ Rn : g(x) > 0}

is a nonempty open set with closure
Ω = K,

and that its boundary
∂Ω = ∂K = K \Ω

is C1 in the sense that it is locally the graph of a continuously differentiable function. We want
to compute the Lebesgue volume of K, i.e., the mass of the Lebesgue measure λK:

λ(K) :=

∫
K

dx =

∫
Rn

dλK(x).

If X ⊂ Rn is a compact set, denote byM(X) the space of signed Borel measures on X, which
identifies with the topological dual of C0(X), the space of continuous functions on X. Denote
by M(X)+ the convex cone of non-negative Borel measures on X, and by C0(X)+ the convex
cone of non-negative continuous functions on X.

In [9] a sequence of upper bounds converging to λ(K) is obtained by applying the Moment-
SOS hierarchy [12] (a family of finite-dimensional convex relaxations) to approximate as closely
as desired the (primal) infinite-dimensional LP on measures:

max
µ

µ(K) (4)

s.t. µ ∈M(K)+

λB − µ ∈M(B)+

whose optimal value is λ(K), attained for µ? := λK. The LP (4) has an infinite-dimensional LP
dual on continuous functions which reads:

inf
w

∫
B

w dλ (5)

s.t. w ∈ C0(B)+

w|K − 1 ∈ C0(K)+.
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Figure 1: Gibbs effect occurring when approximating from above with a polynomial of degree 10
(left red curve) and 20 (right red curve) the indicator function of an interval (black curve).

Observe that (5) consists of approximating the discontinuous indicator function 1K (equal to one
on K and zero elsewhere) from above by continuous functions w, in minimizing the L1(B)-norm
‖w − 1K‖1. Clearly the infimum λ(K) is not attained.

Since K is generated by a polynomial g, and measures on compact sets are uniquely deter-
mined by their moments, one may apply the Moment-SOS hierarchy [12] for solving (4). The
moment relaxation of (4) consists of replacing µ by finitely many of its moments y, say up to
degree d ∈ N. Then the cone of moments is relaxed by a linear slice of the semidefinite cone
constructed from so-called moment and localizing matrices indexed by d, as defined in e.g. [12],
and which defines a semidefinite program. Therefore the dual of this semidefinite program (i.e.,
the dual SOS-hierarchy) is a strenghtening of (5) where

(i) continuous functions w are replaced with polynomials of increasing degree d, and
(ii) nonnegativity constraints are replaced with Putinar’s SOS-based certificates of positivity

[16] which translate to semidefinite constraints on the coefficients of polynomials; again the
interest reader is referred to [9, 12] for more details.

For each fixed degree d, a valid upper bound on λ(K) is computed by solving a primal-dual
pair of convex semidefinite programming problems (not described here). As proved in [9] by
combining Stone-Weierstrass’ theorem and Putinar’s Positivstellensatz [16],

(i) there is no duality gap between each primal semidefinite relaxation of the hierarchy and
its dual, and

(ii) the resulting sequence of upper bounds converges to λ(K) as d increases.
The main drawback of this numerical scheme is its typical slow convergence, observed already

for very simple univariate examples, see e.g. [9, Figs. 4.1 and 4.5]. The best available theoretical
convergence speed estimates are also pessimistic, with an asymptoptic rate of log log d [11]. Slow
convergence is mostly due to the so-called Gibbs phenomenon which is well-known in numerical
analysis [20, Chapter 9]. Indeed, as already mentioned, solving (5) numerically amounts to
approximating the discontinuous function 1K from above with polynomials of increasing degree,
which generates oscillations and overshoots and slows down the convergence, see e.g. [9, Figs.
4.2, 4.4, 4.6, 4.7, 4.10, 4.12].

Example 1. Let K := [0, 1/2] ⊂ B := [−1, 1]. In Figure 1 is displayed the degree-10 and degree-
20 polynomials w obtained by solving the dual of SOS relaxations of problem (4). We can clearly
see bumps, typical of a Gibbs phenomenon at points of discontinuity.

An idea to bypass this limitation consists of adding certain linear constraints to the finite-
dimensional semidefinite relaxations, to make their optimal values larger and so closer to the
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optimal value λ(K). Such linear constraints must be chosen appropriately:
(i) they must be redundant for the infinite-dimensional moment LP on measures (4), and
(ii) become active for its finite-dimensional relaxations.
This is the heuristic proposed in [13] to accelerate the Moment-SOS hierarchy for evaluat-

ing transcendental integrals on semi-algebraic sets. These additional linear constraints on the
moments y of µ? are obtained from an application of Stokes’ theorem for integration on K,
a classical result in differential geometry. It has been also observed experimentally that this
heuristic accelerates significantly the convergence of the hierarchy in other applied contexts, e.g.
in chance-constrained optimization problems [21].

3 Introducing Stokes constraints
In this section we explain the heuristic introduced in [13] to accelerate convergence of the Moment-
SOS hierarchy by adding linear constraints on the moments of µ?. These linear constraints are
obtained from a certain application of Stokes’ theorem for integration on K.

3.1 Stokes’ Theorem and its variants
Theorem 1 (Stokes’ Theorem). Let Ω ⊂ Rn be a piecewise C1 open set. For any (n − 1)-
differential form ω on Ω, it holds ∫

∂Ω

ω =

∫
Ω

dω.

.

Corollary 2. In particular, for u ∈ C1(Ω)n and ω(x) = u(x) · nΩ(x) dσ(x), where the dot is
the inner product, σ is the surface or Hausdorff measure on ∂Ω and nΩ is the outward pointing
normal to ∂Ω, we obtain the Gauss formula∫

∂Ω

u(x) · nΩ(x) dσ(x) =

∫
Ω

div u(x) dx. (6)

With the choice u(x) := u(x) ei where u ∈ C1(Ω) and ei is the vector of Rn with one at entry i
and zeros elsewhere, for i = 1, . . . , n, we obtain the dual Gauss formula∫

∂Ω

u(x) nΩ(x) dσ(x) =

∫
Ω

gradu(x) dx. (7)

Proof. These are all particular cases of [10, Theorem 6.10.2].

3.2 Original Stokes constraints
Associated to a sequence y = (yk)k∈Nn ∈ RNn

, introduce the Riesz linear functional Ly : R[x]→
R which acts on a polynomial p :=

∑
k pk xk ∈ R[x] by Ly(p) :=

∑
k pk yk. Thus, if y is the

sequence of moments of λK, i.e. yk :=
∫
K

xkdx for all k ∈ Nn, then Ly(p) =
∫
K
p(x)dx and by

(7) with u(x) := xkg(x):

Ly(grad(xkg)) =

∫
K

grad(xkg(x)) dx

=

∫
∂K

xkg(x) nK(x) dσ(x) = 0,
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since by construction g vanishes on ∂K. Thus while in the infinite-dimensional LP (4) one may
add the linear constraints ∫

K

grad(xkg) dµ = 0 ∀k ∈ Nn,

without changing its optimal value λ(K), on the other hand inclusion of the linear moment
constraints

Ly(grad(xkg)) = 0 , |k| ≤ 2d+ 1− deg(g) (8)

in the moment relaxation with pseudo-moments y of degree at most d, will decrease the optimal
value of the initial relaxation.

In practice, it was observed that adding constraints (8) dramatically speeds up the conver-
gence of the moment-SOS hierarchy, see e.g. [13, 21]. One main goal of this paper is to provide
a qualitative mathematical rationale behind this phenomenon.

3.3 Infinite-dimensional Stokes constraints
In [18], Stokes constraints were formulated in the infinite-dimensional setting, and a dual for-
mulation was obtained in the context of the volume problem. Using (6) with u = gv (which
vanishes on ∂K) and v ∈ C1(K)n arbitrary, yields:∫

K

(grad g(x) · v(x) + g(x) div v(x)) dx =

∫
∂K

gv nK dσ = 0 ,

which can be written equivalently (in the sense of distributions) as

(grad g)λK − grad(gλK) = 0 .

This allows to rewrite problem (4) as

max
µ

µ(K) (9)

s.t. µ ∈M(K)+

λB − µ ∈M(B)+

(grad g)µ− grad(gµ) = 0

without changing its optimal value λ(K) attained at µ? = λK.
Using infinite-dimensional convex duality as in e.g. the proof of Theorem 2 in [6], the dual

of LP (9) reads

inf
v,w

∫
B

w dλ (10)

s.t. v ∈ C1(K)n

w ∈ C0(B)+

w|K − div(gv)− 1 ∈ C0(K)+.

Crucial observation. Notice that w in (9) is not required to approximate 1K from above
anymore. Instead, it should approximate 1 + div(gv) on K and 0 outside K. Hence, provided
that 1+div(gv) = 0 on ∂K, w might be a continuous function for some well-chosen v ∈ C1(K)n,
and therefore an optimal solution of (10) (i.e., the infimum is a minimum). As a result, the
Gibbs phenomenon would disappear and convergence would be faster.

The issue is then to determine whether the infimum in (10) is attained or not. And if not,
are there other special features of problem (10) that can be exploited to yield more efficient
semidefinite relaxations ?
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4 New Stokes constraints and main result
In the previous section, the Stokes constraint∫

K

(v(x) · grad g(x) + g(x) div v(x)) dµ(x) = 0

or equivalently (in the sense of distributions)

(grad g)µ− grad(gµ) = 0 (11)

(with µ ∈ M(K)+ being the Lebesgue measure on K) was obtained as a particular case of
Stokes’ theorem with u = gv in (6). Instead, we can use a more general version with u not in
factored form, and also use the fact that ∀x ∈ ∂K, 0 6= grad g(x) = −| grad g(x)| nK(x) (here
|y| := √y · y is the n-dimensional Euclidean norm), to obtain∫

K

div u(x) dµ(x) = −
∫
∂K

u(x) · grad g(x) dν(x) ,

or equivalently (in the sense of distributions)

gradµ = (grad g)ν , (12)

with µ ∈M(K)+ being the Lebesgue measure on K and ν ∈M(∂K)+ being the measure having
density 1/| grad g(x)| with respect to the (n− 1)-dimensional Haussdorff measure σ on ∂K. The
same linear equation was used in [14] to compute moments of the Hausdorff measure. In fact,
equation (12) is a generalization of equation (11) in the following sense.

Lemma 3. If ν ∈M(∂K)+ is such that µ ∈M(K)+ satisfies (12), then µ also satisfies (11).

Proof. Equation (12) means that
∫
K

div u(x)dµ(x) +
∫
∂K

u(x) grad g(x)dν(x) = 0 for all u ∈
C1(K)n. In particular if u = gv for some v ∈ C1(K)n then (12) reads∫

K

(v(x) · grad g(x) + g(x) div v(x)) dµ(x) = 0 ,

which is precisely (11).

Hence we can incorporate linear constraints (12) on µ and ν, to rewrite problem (4) as

max
µ,ν

µ(K) (13)

s.t. µ ∈M(K)+

ν ∈M(∂K)+

λB − µ ∈M(B)+

(grad g)ν − gradµ = 0

without changing its optimal value λ(K) attained at µ? = λK and ν? = σ/| grad g|. Notice that
LP (13) involves two measures µ and ν whereas LP (9) involves only one measure µ.

Next, by convex duality as in e.g. the proof of Theorem 2 in [6], the dual of (13) reads

inf
u,w

∫
B

w dλ (14)

s.t. u ∈ C1(K)n

w ∈ C0(B)+

w|K − div u− 1 ∈ C0(K)+

− (u · grad g)|∂K ∈ C0(∂K)+.
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Our main result states that the optimal value of the dual (14) is attained at some continuous
function (w,u) ∈ C0(B)+ × C1(K)n. Therefore, in contrast with problem (5), there is no
Gibbs phenomenon at an optimal solution of the (finite-dimensional) semidefinite strengthening
associated with (14).

Let Ωi, i = 1, . . . , N denote the connected components of Ω, and let

mΩi(g) :=
1

λ(Ωi)

∫
Ωi

g dλ.

Theorem 4. In dual LP (14) the infimum is a minimum, attained at

w?(x) := g(x)

N∑
i=1

1Ωi(x)

mΩi
(g)

, x ∈ B ,

and
u?(x) := gradu(x) ,

where u solves the Poisson PDE{
−∆u(x) = 1− w?(x), x ∈ Ω
∂nu(x) = 0, x ∈ ∂Ω.

Remark 1. The moment-SOS hierarchy associated to LPs (13) and (14) yields upper bounds
for the volume. Theorem 4 is designed for these LPs but it has a straightforward counterpart
for lower bound volume computation, obtained by replacing K with B \ Ω in the previous
developments, i.e. computing upper bounds of λ(B \Ω). However, two additional technicalities
should then be considered:

• This work only deals with semi-algebraic sets defined by a single polynomial; actually, it
immediately generalizes to finite intersections of such semi-algebraic sets, as long as their
boundaries do not intersect (i.e. here K should be included in the interior of B): the
constraints on boundaries should just be splitted between the boundaries of the intersected
sets.

• This work heavily relies on the fact that the boundary of the considered set should be
smooth; for this reason, computing lower bounds of the volume implies that one chooses a
smooth bounding box B (typically a euclidean ball, ellipsoid or `p ball), which rules out
simple sets like the hypercube [−1, 1]n.

Upon taking into account these technicalities, Theorem 4 still holds, allowing to determinis-
tically compute upper and lower bounds for the volume, with arbitrary precision. Of course in
practice, one is limited by the performance of state-of-art SDP solvers.

5 Proof of main result
Theorem 4 is proved in several steps as follows:

• we show that the optimal dual solution satisfies a Poisson PDE;

• we study the Poisson PDE on a connected domain;

• we study the Poisson PDE on a union of connected domains;

• we construct an explicit optimum for problem (14).
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5.1 Equivalence to a Poisson PDE
Lemma 5. Problem (14) has an optimal solution iff there exist u ∈ C1(Ω)n and h ∈ C0(Ω)+
solving

h = 0 on ∂Ω, (15a)
− div u = 1− h in Ω, (15b)
u · nΩ = 0 on ∂Ω. (15c)

Proof. Let (u, h) solve (15). Using (15a), one can define

w(x) =

{
h(x) if x ∈ Ω
0 if x ∈ B \Ω.

Then (u, w) is feasible for (14) and one has∫
B

w dλ =

∫
Ω

h dλ

(15b)
=

∫
Ω

(1 + div u) dλ

(6)
= λ(Ω) +

∫
∂Ω

u · nΩ dσ

(15c)
= λ(Ω)

so that (u, w) is optimal.
Conversely, let (u, w) be an optimal solution of problem (14). We know that (µ?, ν?) =

(λΩ, σ/| grad g|) is optimal for problem (13). Then, duality theory ensures complementarity:∫
Ω

(w|Ω − div u− 1) dλ = 0, (16a)∫
∂Ω

u · grad g

| grad g|
dσ = 0. (16b)

Since w|Ω − div u − 1 is nonnegative, (16a) yields (15b) with h := w|Ω. Likewise, since −(u ·
grad g)|∂Ω is nonnegative, (16b) yields (15c) and thus, using (6), it holds

∫
Ω

div u dλ = 0.
Eventually, (16a) yields

∫
Ω
w dλ = λ(Ω) =

∫
B
w dλ by optimality of w, so that

∫
B\Ω

w dλ = 0

and, since w is nonnegative, w|B\Ω = 0. Continuity of w finally allows to conclude that w = 0
on ∂Ω, which is exactly (15a).

From Lemma 5, existence of an optimum for (14) is then equivalent to existence of a solution
to (15), which we rephrase as follows, defining f := 1− h and u = gradu with u ∈ C2(Ω), and
where ∆u := div gradu is the Laplacian of u, and ∂nu := gradu · nΩ.

Lemma 6. If there exist u ∈ C2(Ω)n and f ∈ C0(Ω) solving

−∆u = f in Ω, (17a)
∂nu = 0 on ∂Ω, (17b)
f ≤ 1 in Ω, (17c)
f = 1 on ∂Ω, (17d)

then problem (14) has an optimal solution.

9



This rephrazing is a Poisson PDE (17a) with Neumann boundary condition (17b), whose
source term f is a parameter subject to constraints (17c) and (17d).

Remark 2 (Loss of generality). Looking for u under the form u = gradu makes us loose the
equivalence. Indeed, while (14) and (15) are equivalent, existence of a solution to (17) is only a
sufficient condition for existence of an optimum for (14), since (15) might have only solutions u
that are not gradients.

Remark 3 (Invariant set for gradient flow). From a dynamical systems point of view, the con-
straint in (14) which states that the inner product of u = gradu with grad g is non-positive on
∂Ω, means that we are looking for a velocity field or control u in the form of the gradient of a
potential u such that Ω is an invariant set for the solutions t ∈ R 7→ x(t) ∈ Rn of the Cauchy
problem

ẋ(t) = − gradu(x(t)), x(0) ∈ B

after what we just have to define h := 1 + ∆u on Ω.

5.2 Poisson PDE on a connected domain
It remains to prove existence of solutions to problem (17). First, notice that PDE (17a) together
with its boundary condition (17b) enforces an important constraint on the source term f , namely
its mean must vanish: ∫

Ω

f dλ = 0. (18)

Indeed, if (f, u) solves (17), then∫
Ω

f dλ
(17a)
= −

∫
Ω

∆u dλ

(6)
= −

∫
∂Ω

gradu · nΩ dσ

= −
∫
∂Ω

∂nu dσ
(17b)
= 0 .

Moreover, the following holds.

Lemma 7 (Existence on a connected domain). Suppose that Ω is connected. Let the source
term f ∈ L2(Ω) ∩ C∞(Ω) have zero mean on Ω. Then there exists u ∈ C∞(Ω) satisfying (17a)
and (17b).

Proof. First let us rephrase the Poisson PDE with Neumann boundary condition under a vari-
ational form. The problem reduces to finding u ∈ H1(Ω) such that for any v ∈ H1(Ω) one
has ∫

Ω

gradu · grad v dλ =

∫
Ω

f v dλ. (19)

Then, since f ∈ L2(Ω), the interior H2-regularity theorem (see [5, Theorem 1 in Section 6.3.1])
ensures that u ∈ H2

loc(Ω), and Green’s theorem writes, for all v ∈ H1(Ω):∫
∂Ω

v ∂nu dσ =

∫
Ω

v∆u dλ+

∫
Ω

gradu · grad v dλ =

∫
Ω

(∆u+ f) v dλ.

Especially, for v ∈ C∞
c (Ω) ⊂ H1(Ω) the left hand side is zero, and by density of C∞

c (Ω) in L2(Ω),
we deduce that −∆u = f for the L2(Ω) Hilbert topology and then almost everywhere in Ω. The
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left hand side is then zero for any v ∈ H1(Ω) and especially for any v ∈ C∞(Ω) ⊂ H1(Ω),
so that, again by density of C∞(∂Ω) in L2(Ω), it holds ∂nu = 0 in L2(∂Ω) and then almost
everywhere on ∂Ω.

Eventually, the interior C∞-regularity theorem (see [5, Theorem 3 in section 6.3.1]) ensures
that since f ∈ C∞(Ω), u ∈ C∞(Ω) and we obtain the announced result: u is a smooth strong
solution of the Poisson PDE.

Next we invoke Lax-Milgram’s theorem which provides existence and uniqueness of a solution
to a given PDE (see e.g. [5, Section 6.2.1]). In our context the goal is to solve (19) for which it is
clear that if u is a solution then any û := u+C, C ∈ R is also solution, which makes it impossible
to obtain uniqueness of the solution in H1(Ω). We thus restrict ourselves to the hyperplane of
zero-mean functions

H :=

{
u ∈ H1(Ω) :

∫
Ω

u dλ = 0

}
which is closed by continuity of the Lebesgue integral, so that H is a Hilbert space for the scalar
product

〈u|v〉H := 〈u|v〉H1(Ω) =

∫
Ω

(uv + gradu · grad v) dλ.

We then define the applications

B :

 H×H −→ R

(u, v) 7−→
∫

Ω

gradu · grad v dλ

and

L :

 H −→ R

v 7−→
∫

Ω

f v dλ.

The Lax-Milgram theorem then states that if L and B are continuous and if B is moreover
coercive, then there is a unique u ∈ H so that L = B(u, ·), which is the announced equality.
Let us show that these hypotheses are met.

• Continuity of L . Since L is a linear operator, it is sufficient to show that it is bounded.
Let v ∈ H. Then, Hölder’s inequality yields

|L (v)| =

∣∣∣∣∫
Ω

f v dλ

∣∣∣∣
≤ ‖f‖L2(Ω)‖v‖L2(Ω)

≤ ‖f‖L2(Ω)‖v‖H

because ‖v‖H =
√
‖v‖2L2(Ω) + ‖ grad v‖2L2(Ω) ≥ ‖v‖L2(Ω). Thus, L is a bounded operator

and |||L ||| = ‖f‖L2(Ω) (equality is obtained by taking v = f ∈ H, made possible by (18)).

• Continuity of B. Since B is a bilinear operator, it is sufficient to show that it is bounded.
Let u, v ∈ H. Again, Hölder’s inequality yields

|B(u, v)| =

∣∣∣∣∫
Ω

gradu · grad v dλ

∣∣∣∣
≤ ‖ gradu‖L2(Ω)‖ grad v‖L2(Ω)

≤ ‖ gradu‖H‖ grad v‖H

11



because ‖v‖H =
√
‖v‖2L2(Ω) + ‖ grad v‖2L2(Ω) ≥ ‖ grad v‖L2(Ω). Then, B is a bounded

bilinear operator.

• Coercivity of B. First, let us recall the following classical result, proved e.g. in [5, Theorem
1 in Section 5.8.1].

Lemma 8 (Poincaré-Wirtinger inequality). Let Ω ⊂ Rn be a bounded, connected, C1 open
set. There is a constant CΩ ≥ 0 such that for any u ∈ H1(Ω):

‖u−mΩ(u)‖L2(Ω) ≤ CΩ‖ gradu‖L2(Ω)n

where mΩ(u) := 1
λ(Ω)

∫
Ω
u dλ.

Now let us look for a constant C ∈ R such that ‖u‖H ≤ C B(u, u). Let u ∈ H. Then,
since ∂Ω is locally Lipschitz, we can use Lemma 8:

B(u, u) =

∫
Ω

| gradu|22 dλ

= ‖ gradu‖2L2(Ω)

≥
‖ gradu‖2L2(Ω) + ‖u−mΩ(u)‖2L2(Ω)

1 + C2
Ω

=
‖u‖2H

1 + C2
Ω

since u ∈ H implies that mΩ(u) := 1
λ(Ω)

∫
Ω
u dλ = 0.

Thus, the conditions of the Lax-Milgram theorem are satisfied, which gives us a unique u ∈ H
such that for all v ∈ H, equation (19) holds. To conclude, we still need to extend this property
to functions v that have nonzero mean. Let v ∈ H1(Ω), not necessary in H. We define v̂ :=
v −mΩ(v), so that v̂ ∈ H and grad v = grad v̂. Then,∫

Ω

f v dλ =

∫
Ω

f v̂ dλ+mK(v)

∫
Ω

f dλ

(18)
=

∫
Ω

f v̂ dλ

(19)
=

∫
Ω

gradu · grad v̂ dλ

=

∫
Ω

gradu · grad v dλ,

which concludes the solution of the variational formulation and the proof of Lemma 7.

5.3 Poisson PDE with boundary regularity on a union of connected
domains

In Lemma 7, we assumed that Ω is connected, so that we could apply the Poincaré-Wirtinger
inequality to use the Lax-Milgram theorem, obtaining both existence and uniqueness of a solution
in a well-chosen space. However, we are not interested in the uniqueness property, and we would
like to tackle non-connected sets. Since Ω is a semi-algebraic set, it has a finite number of
connected components Ω1, . . . ,ΩN .

12



Lemma 9. Let the source term f ∈ L2(Ω)∩C∞(Ω) have zero mean on each connected component
of Ω. There there exists u ∈ C∞(Ω) solving (17a) and(17b).

Proof. Let i = 1, . . . , N . Since
∫
Ωi
f dλ = 0, we can apply the result of Theorem 7 replacing Ω

with Ωi to obtain ui ∈ C∞(Ωi) such that −∆ui = f in Ωi and ∂nui = 0 on ∂Ωi.
Then, we notice that since ∂Ω is C1, the Ωi cannot be mutually tangent, so that ∂Ω =⊔N

i=1 ∂Ωi. Thus, for any x ∈ Ω, the following sum has exactly one non-zero term:

u :=

N∑
i=1

1Ωi
ui.

By definition of the Ωi as the connected components of Ω, u ∈ C∞(Ω).
Let x ∈ Ω. There is an i such that x ∈ Ωi, so that u = ui on a neighbourhood of x. Thus,

−∆u(x) = −∆ui(x) = f(x).
Let x ∈ ∂Ω. There is an i such that x ∈ ∂Ωi, so that u = ui on a neighbourhood of x in Ω.

Thus, ∂nu(x) = ∂nui(x) = 0.

In Section 5.2 we have proved that under suitable conditions on the source term f , equations
(17a) and (17b) have a solution u ∈ C∞(Ω). However, the existence of an optimum for problem
(14) requires u to be in C1(K): we need to establish regularity at the boundary. For this, an
additional assumption on Ω is needed to state the following corollary to Lemma 7.

Lemma 10. Let the source term f ∈ C∞(Ω) have zero mean on each connected component of
Ω. Suppose that ∂Ω is C∞. Then, there exists u ∈ C∞(Ω) solving (17a) and(17b).

Proof. First, since L2(Ω)∩C∞(Ω) ⊂ C∞(Ω), we can use Lemma 9 to get a suitable u ∈ C∞(Ω).
The only thing that remains to be proved is the regularity of u on ∂Ω. For this, we use the
boundary C∞-regularity theorem [5, Theorem 6 in Section 6.3.2]: since f ∈ C∞(Ω) and ∂Ω is
C∞, we conclude that u ∈ C∞(Ω).

Remark 4. Assuming that ∂Ω is C∞ instead of C1 is actually without loss of generality since Ω
is a semi-algebraic set: as soon as ∂Ω is locally the graph of a C1 function, it is smooth.

Remark 5. Lemma 10 automatically enforces −∆u = 1 on ∂Ω, which is crucial for the continuity
of the optimization variable w.

5.4 Explicit optimum for volume computation with Stokes constraints
Our optimization problem does not feature only the Poisson PDE with Neumann condition: it
also includes constraints (17c) and (17d) on the source term. Consequently, a function f ∈
C∞(Ω) with zero integral over any connected component of Ω and satisfying (17c) and (17d)
remains to be constructed. We keep the notations of Lemma 9 and suggest as candidate

x 7→ f(x) := 1− g(x)

N∑
i=1

1Ωi(x)

mΩi
(g)

. (20)

By definition, g = 0 on ∂Ω, so that (17d) automatically holds. Moreover, both g and 1Ωi
are

nonnegative on K, so that (17c) also holds.
In terms of regularity, f is polynomial on each connected component of Ω and since g smoothly

vanishes on ∂Ω, f ∈ C∞(K).
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Eventually, let i ∈ 1, . . . , N so that Ωi is a connected component of Ω. Then, by definition,
∂Ωi ⊂ ∂Ω, and one has ∫

Ωi

f dλ =

∫
Ωi

(
1− g(x)

N∑
i=1

1Ωi(x)

mΩi
(g)

)
dx

= λ(Ωi)−
1

mΩi(g)

∫
Ωi

g(x) dx = 0,

since by definition mΩi
(g) = 1

λ(Ωi)

∫
Ωi
g(x) dx.

We finally obtain our couple (u, f) solution to problem (17) with f defined in (20) and u
given by Lemma 10. Then we retrieve the couple (u, h) solution to problem (15) by defining
u := gradu and for all x ∈ Ω:

h(x) := 1− f(x) = g(x)

N∑
i=1

1Ωi
(x)

mΩi(g)
.

Eventually, the optimization problem (14) has a (global) minimizer (u, w) with, for all x ∈ B,

w(x) = g(x)

N∑
i=1

1Ωi
(x)

mΩi
(g)

.

Indeed, one can check that ∫
B

w dλ =

N∑
i=1

1

mΩi
(g)

∫
Ωi

g dλ

=

N∑
i=1

λ(Ωi) = λ(Ω) = λ(K) ,

which concludes the proof of Theorem 4.

6 Examples
To illustrate how efficient can be the introduction of Stokes constraints for volume computation,
we consider the simple setting where K is a Euclidean ball included in B the unit Euclidean ball.
Indeed drastic improvements on the convergence are observed. All numerical examples were
processed on a standard laptop computer under the Matlab environment with the SOS parser
of YALMIP [15], the moment parser GloptiPoly [8] and the semidefinite programming solver of
MOSEK [4].

6.1 Practical implementation
Following the Moment-SOS hierarchy methodology for volume computation as described in [9],
in the (finite-dimensional) degree d semidefinite strengthening of dual problem (14):

• w ∈ R[x]d and u ∈ R[x]nd are polynomials of degree at most d;

• the positivity constraint w ∈ C0(B)+ is replaced with a Putinar certificate of positivity on
B, that is:

w(x) = σ0(x) + σ1(x)(1− |x|2) , ∀x ∈ Rn ,
where σ0 (resp. σ1) is an SOS polynomial of degree at most 2d (resp. 2d− 2);

14



Figure 2: Degree 16 polynomial approximations obtained without Stokes constraints (left) and
with Stokes constraints (right).

• the positivity constraint w|K − div u − 1 ∈ C0(K)+ is replaced with a Putinar certificate
of positivity on K, that is:

w(x)− div u(x)− 1 = ψ0(x) + ψ1(x) g(x) , ∀x ∈ Rn ,

where ψ0 (resp. ψ1) is an SOS polynomial of degree at most 2d (resp. 2d− deg(g));

• the positivity constraint (u · grad g)|∂K ∈ C0(∂K)+ is replaced with a Putinar certificate
of positivity on ∂K, that is:

−u(x) · grad g(x) = η0(x) + η1(x) g(x) , ∀x ∈ Rn ,

where η0 is an SOS polynomial of degree at most 2d and η1 is a polynomial of degree at
most 2d− deg(g);

• the linear criterion
∫
B
wdλ translates into linear criterion on the vector of coefficients of w,

as
∫
B

xα dλ is available in closed-form.

The above identities define linear constraints on the coefficients of all the uknown polynomials.
Next, stating that some of these polynomials must be SOS translate into semidefinite constraints
on their respective unknown Gram matrices. The resulting optimization problem is a semidefinite
program; for more details the interested reader is referred to e.g. [9].

6.2 Bivariate disk
Let us first illustrate Theorem 4 for computing the area of the disk K := {x ∈ R2 : g(x) =
1/4− (x1 − 1/2)2 − x22 ≥ 0} included in the unit disk B := {x ∈ R2 : 1− x21 − x22 ≥ 0}.

The degree d = 16 polynomial approximation w obtained by solving the SOS relaxation of
linear problem (5) is represented at the left of Figure 2. We can see bumps and ripples typical
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n d without Stokes with Stokes
3 4 88% (0.03s) 18% (0.04s)
3 8 57% (0.16s) 1.0% (0.44s)
3 12 47% (1.97s) 0.0% (4.63s)
3 16 43% (23.9s) 0.0% (30.1s)
3 20 41% (142s) 0.0% (206s)

Table 1: Relative errors (%) and computational times (in brackets in seconds) for solving moment
relaxations of increasing degrees d approximating the volume of ball of dimension n = 3.

n d without Stokes with Stokes
1 10 17% (0.05s) 0.0% (0.03s)
2 10 35% (0.09s) 0.2% (0.25s)
3 10 56% (0.52s) 0.3% (1.19s)
4 10 72% (9.74s) 0.4% (22.8s)
5 10 79% (150s) 0.6% (669s)

n d without Stokes with Stokes
6 4 190% (0.25s) 45.1% (1.03s)
7 4 203% (0.32s) 60.0% (4.88s)
8 4 221% (0.42s) 78.6% (8.45s)
9 4 245% (1.15s) 102% (45.1s)
10 4 278% (3.10s) 131% (176s)

Table 2: Relative errors (%) and computational times (in brackets in seconds) for solving the
degree d = 10 (left) and d = 4 (right) moment relaxation approximating the volume of a ball of
increasing dimensions n.

of a Gibbs phenomenon, since the polynomial should approximate from above the discontinuous
indicator function 1K as closely as possible. A rather loose upper bound of 1.1626 is obtained
on the volume λ(K) = π

4 ≈ 0.7854.
In comparison, the degree d = 16 polynomial approximation w obtained by solving the SOS

relaxation of linear problem (14) is represented at the right of Figure 2. As expected from
the proof of Theorem 4, the poynomial should approximate from above the continuous function
g1K λ(K)/(

∫
gλK). The resulting polynomial approximation is smoother and yields a much

improved upper bound of 0.7870.

6.3 Higher dimensions
In Table 1 we report on the dramatic acceleration brought by Stokes constraints in the case of
the Euclidean ball K := {x ∈ R3 : g(x) = (3/4)2 − |x|2 ≥ 0} of dimension n = 3 included
in the unit ball B. We specify the relative errors on the bounds obtained by solving moment
relaxations with and without Stokes constraints, together with the computational times (in
seconds), for a relaxation degree d ranging from 4 to 20. We observe that tight bounds are
obtained already at low degrees with Stokes constraints, sharply contrasting with the loose
bounds obtained without Stokes constraints. However, we see also that the inclusion of Stokes
constraints has a computational price.

In Table 2 we report the relative errors on the bounds obtained with and without Stokes
constraints, together with the computational times (in seconds), for a relaxation degree equal
to d = 10 (left) resp. d = 4 (right) and for dimension n ranging from 1 to 5 (left) resp. from
6 to 10 (right). When d = 10 and n = 5 the semidefinite relaxation features 6006 pseudo-
moments without Stokes constraints, and 12194 pseudo-moments with Stokes constraints. We
see that introducing Stokes constraints incurs a computational cost, to be compromised with the
expected quality of the bounds.

Higher dimensional problems can be addressed only if the problem description has some
sparsity structure, as explained in [18]. Also, depending on the geometry of the problem, and for
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larger values of the relaxation degree, alternative polynomial bases may be preferable numerically
than the monomial basis which is used by default in Moment and SOS parsers.

7 Conclusion
In this paper we proposed a new primal-dual infinite-dimensional linear formulation of the prob-
lem of computing the volume of a smooth semi-algebraic set generated by a single polynomial,
generalizing the approach of [9] while still allowing the application of the moment-SOS hierarchy.
The new dual formulation contains redundant linear constraints arising from Stokes’s Theorem,
generalizing the heuristic of [13]. A striking property of this new formulation is that the dual
value is attained, contrary to the original formulation. As a consequence, the corresponding dual
SOS hierarchy does not suffer from the Gibbs phenomenon, thereby accelerating the convergence.

Numerical experiments (not reported here) reveal that the values obtained with the new
Stokes constraints (with a general vector field) are closely matching the values obtained with the
original Stokes constraints of [13] (with the generating polynomial factoring the vector field). It
may be then expected that the original and new Stokes constraints are equivalent. However at
this stage we have not been able to prove equivalence.

The proof of dual attainment builds upon classical tools from linear PDE analysis, thereby
building up a new bridge between infinite-dimensional convex duality and PDE theory, in the
context of the moment-SOS hierarchy. We expect that these ideas can be exploited to prove
regularity properties of linear reformulations of other problems in data science, beyond volume
approximation. For example, it would be desirable to design Stokes constraints tailored to the
infinite-dimensional linear reformulation of the region of attraction problem [6] or its sparse
version [19].
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