
HAL Id: hal-02949624
https://laas.hal.science/hal-02949624v1

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

REHAD: Using Low-Frequency Reconfigurable
Hardware for Cache Side-Channel Attacks Detection

Yuxiao Mao, Vincent Migliore, Vincent Nicomette

To cite this version:
Yuxiao Mao, Vincent Migliore, Vincent Nicomette. REHAD: Using Low-Frequency Reconfig-
urable Hardware for Cache Side-Channel Attacks Detection. 2020 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW), Sep 2020, Genova, Italy. �10.1109/Eu-
roS&PW51379.2020.00100�. �hal-02949624�

https://laas.hal.science/hal-02949624v1
https://hal.archives-ouvertes.fr


REHAD: Using Low-Frequency Reconfigurable Hardware for Cache
Side-Channel Attacks Detection

Yuxiao Mao, Vincent Migliore, Vincent Nicomette
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Email: yuxiao.mao@laas.fr, vincent.migliore@laas.fr, vincent.nicomette@laas.fr

Abstract—Cache side-channel attacks consist, for a malicious
process, to infer the current state of the cache by measuring
the time it takes to access the memory, and indirectly
gain knowledge about other processes sharing this same
physical cache. Because cache side-channel attacks leverage
a hardware leakage without requiring any physical access to
the devices, they represent very serious threats. Among the
runtime detection techniques for cache side-channel attacks,
hardware solutions are usually fine-grained and benefit from
less performance overhead than software solutions. However,
they are not flexible enough to suit the rapid evolution
and appearance of software attacks. In this paper we de-
scribe REHAD, a novel attack detection architecture that
uses reconfigurable hardware. More precisely, it includes
a hardware detection module that can be reconfigured by
means of a trusted software kernel, to adapt to the level of
threats and to detect new attacks. This architecture also
benefits from hardware parallelism to fill the frequency
gap between reconfigurable hardware and core processor.
REHAD has been integrated into the ORCA softcore RISC-
V on a FPGA and two common cache side-channel attacks
have been successfully detected.

Index Terms—Reconfigurable architectures, intrusion detec-
tion, microarchitectural timing attacks, RISC-V

1. Introduction

In recent years, more and more attention has been paid
to information leakage at software/hardware interfaces.
During the execution of software, the hardware handles
some information related to the execution. This informa-
tion can be storage information, such as the Branch Target
Buffer (BTB) that memorizes the jump history; it can
also be timing information, such as the waiting time after
requiring a busy peripheral. Even if the running software
itself has no vulnerabilities, this information can still be
leaked through side-channels such as timing channels.
A malicious process may infer the internal state of the
hardware by measuring the time taken to execute some
specific instructions, and obtain information leaked by the
victim process sharing the same hardware, violating by
this way the inter-process isolation. Such attacks are so-
called microarchitectural timing attacks [1].

Cache Side-Channel Attacks (CSCAs) are microarchi-
tectural timing attacks that specifically target the shared
caches. A malicious process can use CSCAs to deduce
memory access sequences of the victim, including in-
structions sequences and data sequences. In this way,

the attacker can learn information about the program
control flow or secret keys, etc. For example, the Last-
Level Cache (LLC) is shared by all processor cores, and
may be used by a malicious process to target any victim
process running on the processor. CSCAs can also be
used as a tool for other attacks, such as Spectre [2]
and Meltdown [3], to read the information leaked by
the victim process during transient execution. As CSCAs
do not require physical access, and do not rely on any
vulnerabilities in the victim process, they are powerful
attacks.

Defense mechanisms against CSCAs can be divided
into two categories: prevention and detection [4]. Preven-
tion at hardware level essentially consists in clock modifi-
cations and redesign of the shared hardware architecture.
Prevention at software level consists in enhancing time
and space isolation. Software developers may also apply
constant time programming for critical code section. As
regards to detection, the mechanisms may either be static
(analysis of binary files), or dynamic (runtime monitoring
of process activities in order to detect malicious behavior).

In this paper, we focus on dynamic monitoring. Such
monitoring technique offers several advantages: 1) as it is
performed at runtime, it allows the operating system to dy-
namically activate or not some defense mechanisms (that
may be costly), according to the outputs of the monitoring,
and 2) it has the potential to detect unknown attacks.
Software-based monitoring can be quickly deployed and
easily updated. However, the hardware internal state used
by CSCAs is not directly visible by the software; hence
software-based monitoring must only rely on accessible
hardware resources, which limits its efficiency. Traditional
hardwired hardware-based monitoring has low overhead
and is fine-grained, but lacks flexibility to respond to the
variety and the rapid evolution of software attacks.

In this paper, we introduce the REHAD (REconfig-
urable Hardware for Attacks Detection) architecture. Our
contributions are:

• A highly flexible hardware/software co-design at-
tack detection architecture, with a hardware detec-
tion module made up of reconfigurable hardware
and communicating with the core processor;

• An adaptative hardware parallelism to fill the fre-
quency gap between the detection module and the
core processor, and the definition of the commu-
nication interface between them;

• The design of simple heuristics, implemented in
the trusted software kernel running on top of the
core processor, that can efficiently detect CSCAs,



by performing simple pattern matching on the
information provided by the detection module;

• The implementation of a proof-of-concept on a
Field-Programmable Gate Array (FPGA), based
on the Orca RISC-V softcore processor [5].
This experiment allowed us to successfully de-
tect two common CSCAs (Flush+Reload and
Prime+Probe) and shows the relevance of attack
detection with low-frequency reconfigurable hard-
ware.

Section II presents CSCAs attacks and describes some
research works that focus on 1) CSCAs detection and
2) the use of reconfigurable hardware with processors.
Section III provides an overview of the REHAD archi-
tecture as well as the different components of the archi-
tecture. Section IV is dedicated to the presentation of an
experiment, showing the relevance of our architecture and
Section V concludes and discusses future work.

2. Background and State of the Art

2.1. Cache side-channel attacks

Modern processors run at a high-frequency and mem-
ory accesses often require hundreds of processor clock
cycles to be executed. In order to reduce the processor’s
waiting time to fetch instructions and data from main
memory, a memory cache is used. When the processor
wants to access some data, this data as well as the data
nearby are first loaded into the cache for later use. There-
fore, the time required to read an information when it is
in the cache (cache hit) or not (cache miss) is different.
This timing difference is the leakage used in CSCAs.

The cache is a faster and smaller structure compared to
the main memory, and can be implemented with different
strategies (direct-mapped, fully associative and set asso-
ciative). In direct-mapped cache strategy, a given memory
address can only be present in a single cache line whereas
it can be present in all cache lines in fully associative
cache. The set associative strategy is an intermediary
strategy in which a given memory address can be present
in specific set of lines (generally between 2 and 24).

Two common CSCAs strategies exist. The
Flush+Reload [6] strategy requires a shared memory
between the attacker and the victim, such as shared
libraries or deduplicated memory pages. The attacker
first flushes a line of the shared memory off the cache,
and waits for the victim process to run. The attacker
then measures the time it takes to access this memory
line, to determine whether this line has been used or
not by the victim. The Prime+Probe [7] strategy targets
set associative caches and does not require any shared
memory between the target and the victim processes. The
attacker first primes a cache set with his own data, which
ensures that the victim has no cache line in the given
cache set, and waits for the victim process to execute.
The attacker then probes the overall access time to the
data previously filled by himself, to identify whether one
or more cache lines in this set has been used or not by
the victim.

1 rdtscp ; get timer value
2 mov %eax, %esi

3 mov (%r9), %eax ; 1 memory access
4 rdtscp ; get timer value
5 sub %esi, %eax ; compute difference
6 ... ; other instructions
7 clflush (%r9) ; flush memory line

Listing 1. Time measurement logic of Flush+Reload attack on x86

1 rdtscp ; get timer value
2 mov %eax,%r10d
3 mov (%rdi),%rax ; 8 memory access
4 mov (%rax),%rax ; using pointer-chasing
5 mov (%rax),%rax
6 mov (%rax),%rax
7 mov (%rax),%rax
8 mov (%rax),%rax
9 mov (%rax),%rax

10 mov (%rax),%rdi
11 rdtscp ; get timer value
12 sub %r10d,%eax ; compute difference

Listing 2. Time measurement logic of Prime+Probe attack on x86

For better accuracy, these attacks try to use as few
instructions as possible between time measurements. In
Mastik toolkit [8], the measurement is performed for only
one memory access instruction in Flush+Reload attack, as
shown in Listing 1, and 8 memory access instructions in
a Prime+Probe attack targeting a set of size 8, as shown
in Listing 2. Our detection logic is based on this feature
of CSCAs.

2.2. Cache side-channel attacks detection

CSCAs detection mechanisms can be divided into two
categories: static analysis and runtime monitoring.

Static analysis aims at analyzing a binary file before
its execution [9], [10]. The instructions of the file are
analyzed in order to identify whether it contains a CSCA
or not. A suspicious program may not be allowed to run,
or may be allowed to only run under strict conditions.
This method is suitable for scans in the applications
store, for example. However, when the attack payload is
protected by encryption, obfuscation or dynamic loading,
static analysis is not efficient anymore.

Runtime monitoring may be performed with or with-
out hardware modification. The monitoring techniques
without hardware modification simply read information
provided by the existing hardware, and take a decision
with software logic. The existing hardware may be the
Hardware Performance Counters (HPCs) for instance,
present in most modern processors. The software logic
then uses thresholds, heuristics, or machine learning al-
gorithms to identify CSCAs [11].

Thanks to hardware modification, it is possible to
collect more precise and useful information for attack
detection. Chen et al. [12] propose to modify the structure
of the cache and other shared hardware, in order to include
custom counters, that they use instead of HPCs. This
approach is interesting but it requires some modification of
every hardware component shared between the processes
that are supposed to be protected, which is costly and hard
to maintain.

Ozsoy et al. [13] propose malware-aware processors
for malware detection. They extract information directly
from the processor, and analyze this information us-
ing hardware-implemented machine learning. The authors
mention that the thresholds used in machine learning



methods can be configurable. This work has some sim-
ilarities with REHAD, but is limited to a single analysis
algorithm, and puts aside the possibilities to improve and
replace the algorithm in the future. The main contribution
of REHAD is to ensure the flexibility of the detection
module by using reconfigurable hardware.

2.3. Reconfigurable hardware

Reconfigurable hardware, such as FPGAs, is hardware
that can be reconfigured by the user after fabrication,
so that it can be implemented with any arbitrary logic.
For that purpose, FPGAs offer numerous logic, routing
and memory resources to the user. Taking into account
this high level of flexibility, FPGAs usually require large
circuits and suffer from much lower frequency than hard-
wired implementation for the same logic [14].

Using reconfigurable hardware along with hardwired
processors is not a new research topic [15]. Reconfig-
urable hardware benefits from highly parallel execution
capabilities to speed up the processor’s calculations, and
can be reconfigured to implement different algorithms.
It has been successfully used in many fields such as
image processing and communication. Regarding the se-
curity domain, reconfigurable hardware has been proposed
for cryptography acceleration and secret protection, for
power and communication monitoring against hardware
attacks [16]. However, to the best of our knowledge, no
research work has proposed the use of reconfigurable
hardware to monitor the running software on a processor
for CSCA detection.

3. REHAD Architecture

3.1. Overall architecture

The REHAD architecture is shown in Fig. 1. This
architecture is composed of a main processor core, a
detection module made up of reconfigurable hardware,
interconnected by three communication channels made up
of static hardware, and a trusted software kernel located in
the processor. The detection module aims to analyze data
provided by the processor core in real-time, and provides
hardware relevant information to the trusted software ker-
nel for further decision. Furthermore, the detection module
can be reconfigured to adapt to new threats or attacks.

Our architecture contains two clock domains. The pro-
cessor core runs at high-frequency whereas the detection
module runs at a lower frequency due to its flexibility. As
a consequence, the three communications channels (made
up of static hardware) between the processor core and the
detection module must perform clock domain crossing.
The detection module uses hardware parallelism to process
simultaneously in one single (slow) clock cycle multiple
data from multiple (fast) clock cycles of processor. For
example, a detection module running at 200 MHz, and
processing 16 information data at the same time, can
support a modern processor with a clock frequency of
3.2 GHz. This level of parallelism and these execution
frequencies sound reasonable.

For embedded devices that run at lower frequency, a
serial detection logic can be considered because paral-
lelism is not required anymore (the core processor and

Figure 1. Overall design of REHAD, a highly flexible hardware / soft-
ware co-design attack detection architecture, with a hardware detection
module made up of reconfigurable hardware.

FPGA run at the same frequency clock). However, our
parallel design is still relevant because a low-frequency
detection module exhibits price and energy consumption
advantages.

3.2. Communication channels

The communication between the processor and the de-
tection module goes through three clock domain crossing
channels. The first channel is a serial-to-parallel circuit
and is the most important channel for runtime monitoring.
The high-frequency serial data are buffered and converted
into low-frequency parallel data. It is used to transfer
information (such as the instruction flow) extracted from
the processor to detection module for further analysis.
The second channel is an interruption mechanism used
to notify the processor of any urgent abnormal situation.
This channel can be disabled to avoid penalizing the
normal execution of programs too much, and replaced by a
periodic polling mechanism from the kernel using the third
channel. This third channel is a memory-mapped bus,
which allows the software kernel to access the detection
module as if it was a peripheral. Various actions such
as counter reading, thresholds setting and requests of
reconfiguration are possible through this channel.

Since processor microarchitecture and communication
channels cannot be modified during their entire lifetime,
data extracted from the processor and sent to the detec-
tion module through the first channel must be chosen
wisely. For Flush+Reload and Prime+Probe attacks, short
sequences with frequent time measurement instructions,
as shown in Listing 1 and 2, must be repeated. Thus, the
observation of the instructions executed by the processor
appears as a good choice to efficiently detect CSCAs
attacks. Let us note that the observation of the instructions
executed may also help to take into account the hardware
impact of transient execution used by Spectre attack for
instance. In other words, the choice of using instructions
as input for the CSCAs detection increases the likelihood
of detecting other software-based attacks that exhibit spe-
cific instruction patterns.



3.3. Trusted software kernel

As hardware-level events alone are not sufficient to
take complex decisions, a trusted software kernel is in-
cluded in REHAD architecture. It may be embedded in the
operating system kernel itself or an hypervisor running on
the main processor and communicating with the detection
module. This kernel plays multiple roles in REHAD.

During runtime detection, the kernel receives interrup-
tions and data such as counter values from the detection
module. It synthesizes the situation with other known
information about the running process and the execution
environment, figures out whether the process is suspicious
or not and its corresponding threat level. When a suspi-
cious process is found, the kernel can decide to apply
suitable countermeasures according to the threat level and
security policy, such as killing the process or forcing its
migration into a completely isolated environment.

The security requirements may vary according to the
software running on the system. For example, when an
encryption process is running, the system needs higher
detection sensibility to prevent any possible leak of secret;
when a benchmark process is running, the system may
choose to lower the security level to deal with unwanted
false positives. The kernel can provide thresholds and
configuration parameters to the detection module through
the memory-mapped bus or even decides to reconfigure
it with a special logic suited for one attack type. This
allows to keep the detection module up to date when new
attacks emerge, as long as the adequate hardware redesign
is available.

3.4. Hardware detection logic against cache side-
channel attacks

Hardware monitoring is only designed to run at the
same frequency as the main processor. We want to take
full advantage of the parallel nature of the hardware to
maximize out detection capability in this parallel input
context.

The detection module takes the executed instructions
as input, as mentioned in Section 3.2. Fig. 2 illustrates
the situation in which the number of parallel inputs is 4,
and the attack pattern to be detected corresponds to two
relatively close instructions getting the value of the inter-
nal timer of the processor (such as rdtscp instruction
in Listing 1).

First, each instruction executed on the core processor
is analyzed in order to identify whether it is related to
the timer manipulation or not. As the clock rate of the
detection module is four times slower than the clock rate
of the processor in this example, four instructions may be
executed during one clock cycle of the detection module.
If one of these instructions manipulates the timer (so-
called a ”timer instruction”), a bit is set in a specific
register (so-called detection register) dedicated to the
current clock cycle of the detection module. Each bit of
this detection register indicates the presence or not of
instructions of some specific category during the current
cycle. Each bit is set to 0 or 1 if at least an instruction of
this category has been executed or not during the current
cycle. Let us note that we do not count the exact number
of occurrences of each instruction because it may slow

Figure 2. One possible design of detection module in REHAD. It takes
4 32-bit instructions as input, converts them to serial information about
instruction, and uses simple pattern matching to detect attacks.

down the detection module. As for now, for our current
experiments, the detection register includes only two bits,
i.e., two categories of instructions (one bit for the timer
instructions and one bit for the instructions that flush the
cache). The detection registers corresponding to the three
latest clock cycles are stored to be used for the detection.
Then the detection logic consists in finding a specific
pattern using these three detection registers in a sliding
window strategy. In this example, the pattern corresponds
to the presence of at least one timer instruction in the
current clock cycle (i.e., the bit corresponding to the timer
instruction is set to 1 in the current detection register)
and a second timer instruction in one of the previous two
clock cycles. If such a pattern is identified, a dedicated
attack pattern counter is incremented. When the counter
exceeds a specific threshold set by software kernel and
the hardware interruption is enabled, the detection module
interrupts the processor to warn of an abnormal situation.

This detection logic converts parallel instructions to
a simple serial form, loosing information such as in-
struction execution order and multiple appearance of the
same instruction into a single cycle. Nevertheless, this
method is still precise enough to detect the presence of
CSCAs. As this part of logic is fully reconfigurable, some
other detection logic, such as machine learning algorithms
specifically designed, can also be used instead.

4. REHAD implementation for Flush+Reload
and Prime+Probe detection

This section describes an experiment that was carried
out in order to assess the relevance of our architec-
ture. First, we present the implementation details of the



different components of our proof of concept, then we
describe the Flush+Reload and Prime+Probe experiments
we performed. Finally, we present the result of our im-
plementations.

4.1. Hardware and software configuration

This implementation was carried out on a Xilinx
ML605 Evaluation Board (including a Xilinx Virtex-6
FPGA) using the Orca RISC-V softcore processor as
processor cores, configured with the RV32IM standard
of RISC-V Instruction Set Architecture (ISA): 32-bit in-
struction size, with extension for integer multiplication
and division. It is an in-order processor with separate
direct-mapped data cache and instruction cache. Each
cache is 512-byte size, divided into 16 cache lines of
32 bytes. It has two memory-mapped bus interfaces, a
cached one with an AXI4 interface connected to a 32
KB main memory implemented using one chip Block
RAMs and an uncached one with an AXI4Lite interface
connected to detection module. It also includes a Universal
Asynchronous Receiver-Transmitter (UART) that we can
use to send commands (as illustrated in the next section).
We modified the processor to observe the instruction
transmitted from pipeline decode stage to the execute
stage, and 1-bit indicating the end of execution of the
given instruction.

We modeled the frequency difference between the
processor and the reconfigurable detection module with
a 1/16 clock divider. We coded the three communication
channels and the detection module in VHDL language.
The detection module is placed into a dedicated area that
can be partially reconfigured in FPGA, to simulate the
situation where the detection module can be reconfigured
while other hardware remains unmodified.

Regarding the software logic, we used a bare metal
loop to run different processes one after the other. For
now, the kernel is only responsible for reading information
from the detection module, setting thresholds, and reacting
to interruptions.

We implemented Flush+Reload attack and
Prime+Probe attack on RISC-V ISA architecture by
adapting the code of the Mastik toolkit which includes
exploits coded for the x86 ISA architecture. In RISC-V
ISA, the instructions that are able to supply an accurate
time value are instructions that access the processor
internal timer, such as rdtime. The cache flush
instruction has not yet an official definition, but we found
its implementation in Orca by analyzing its code. As
such, in our adapted version of attacks, the rdtime
instruction was used instead of the rdtscp instruction
of x86 ISA, and the processor-specific flush instruction
was used instead of clflush.

4.2. Flush+Reload detection

The Flush+Reload attack experiment was performed
by implementing a malicious process and a victim process
running on top of the kernel. The scenario is the follow-
ing one: The malicious process executes Flush+Reload
instructions on 8 memory addresses (shared with the
victim process) associated with different cache lines, at
each execution slot. At the same time, the victim process

performs one access to a memory address as indicated by
the command sent from the UART. In this architecture,
when data in a given memory address is in the cache,
the access time measured for this address is 2 processor
cycles; when it is in the main memory, the access time
measured is 20 processor cycles due to time used to
fill one cache line. As a consequence, when the attacker
performs the Flush+Reload attack, two timer instructions
that are either 2 or 20 processor clock cycles away are
executed. From the point of view of the detection module,
this means that the bit related to the timer instruction is set
to 1 in either 1 or 2 of the three detection registers (1 clock
cycle of the detection module corresponds to 16 cycles
of the core processor). We chose the following pattern
to detect the attack: “an attack is detected if 2 out of 3
detection registers contain at least one timer instruction”.
Let us note that this can ensure that the 20 cycles cache
miss event is detected but that the 2 cycles cache hit may
be not (in the case where the two timer instructions are
executed within the same detection module clock cycle).
However, as the attack both requires cache miss and cache
hit to be successful, we are actually able to detect it.

Let us note that, in our experiment, the malicious
process can only detect the victim accesses to 5 out of
8 lines of monitored memory. This limitation is due to
the fact that malicious process also needs to use the data
cache for its normal execution, that it uses the monitored
cache line and influences the monitored result. We counted
the number of slow cycles during which at least one
cache flush instruction was executed, and the number of
timer instructions that occur twice in three slow cycles.
Both approaches were able to detect the presence of
Flush+Reload attacks.

4.3. Prime+Probe detection

As cache size is small in our architecture, our
Prime+Probe attack is adapted from a version that targets
L1 data cache, which probes all sets in a cache. To
have a more realistic Prime+Probe attack, we emulate
a 2-Way associative cache from the attacker perspective.
It is convenient from our 16 line direct mapped cache
by accessing lines with a step of 8 line instead of 16.
The malicious process performs Prime+Probe for each
set, at each execution slot. An analysis of the assembly
code shows that there were 18 instructions between the
two timer instructions, Two of them are memory access
instruction, and the timing difference measured is between
69 cycles and 112 cycles. With a threshold appropriately
chosen, the malicious process can detect victim access to
5 out of 8 sets.

The attacker evicts the cache by priming with his own
data and does not need to execute any flush instruction.
The distance between two timer instructions is longer than
in Flush+Reload. As a consequence, the aforementioned
attack detection designed for Flush+Reload becomes in-
effective. We increased the size of the sliding window to
include 8 detection registers and reconfigured the detec-
tion module, this permitted the detection of the presence
of Prime+Probe attack.

In comparison with our implementation for
Flush+Reload attack detection, we use the exactly
same hardware, with just a different configuration of



the detection module. The reconfiguration process does
not require any hardware replacement and is fully
controlled by trusted software kernel. To sump up, the
use of reconfiguration hardware in REHAD architecture
makes hardware-based detection of Prime+Probe attacks
possible.

4.4. Implementation results

The hardware resource utilization and detection capa-
bility of the two configurations of detection module are
summarized in Table 1. Both configurations are based
on the same REHAD implementation with clock division
rate set to 1/16. The internal logic of detection module
only differs. The first configuration (config1, as decribed
in section 4.2) is implemented for Flush+Reload attack
detection. The second configuration (config2, as decribed
in section 4.3) is based on config1 and has a larger sliding
window to also detect Prime+Probe attack in which two
timer instructions are separated from a longer distance
due to greater number of memory accesses measured. As
expected, config2 needs more hardware resources due to
additional storage and pattern matching logic. Let us note
that this implementation result is given for two specific
and simple configurations of a reconfigurable hardware.
For a real usage, we should prepare a reconfigurable
hardware with sufficient resources able to adapt to future
needs.

TABLE 1. RESOURCES UTILIZATION AND DETECTION CAPABILITY
OF TWO CONFIGURATIONS OF REHAD DETECTION MODULE

config1 config2
Sliding window size 3 8

Flush+Reload Detection yes yes
Prime+Probe Detection no yes
Look-Up Tables (LUTs) 208 215

Flip-Flops (FFs) 65 70
BRAMs 0 0

5. Conclusion and Future Work

In this paper, we introduced REHAD, an architecture
that uses a reconfigurable detection module and a hard-
ware/software co-design for software-based CSCAs detec-
tion. We proposed to benefit from the hardware parallelism
to make a high-frequency microprocessor work with a
low-frequency reconfigurable hardware. We implemented
this architecture on FPGA and proved that it can success-
fully detect two CSCAs, Flush+Reload and Prime+Probe
with different configurations on the reconfigurable detec-
tion module. Futhermore, we believe that REHAD has the
capability to evaluate and detect other attacks, such as
other microarchitectural timing attacks, transient attacks
and return-oriented programming attacks which have very
short and repetitive instruction sequences.

For future work, we plan to improve our detection
module and evaluate the performance and area overhead
of REHAD architecture. We also plan to work on the
implementation of the trusted software kernel, to include
new functionalities such as the transfer of runtime infor-
mation to the detection module regarding the execution
environment, and the process currently executed in order
to perform hardware-software co-detection.

We also want to take into account multi-core systems
and context changes in order to detect the use of another
counting thread to replace accuracy timer in the CSCAs as
well as attacks that use multiple threads. We finally plan
to investigate a proper method aiming at including in this
architecture existing hardware counters such as HPCs and
benefit from state of art HPC-based detection.

References

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1,
pp. 1–27, Apr. 2018.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre Attacks: Exploiting Speculative Execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019,
pp. 1–19.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in
27th USENIX Security Symposium (USENIX Security 18), 2018.

[4] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on
Caches and Countermeasures,” Journal of Hardware and Systems
Security, vol. 2, no. 1, pp. 33–50, Mar. 2018.

[5] VectorBlox, “Orca,” Dec. 2019. [Online]. Available: https:
//github.com/VectorBlox/orca

[6] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, Aug. 2014, pp.
719–732.

[7] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: The Case of AES,” in Topics in Cryptology CT-
RSA 2006, vol. 3860. Berlin, Heidelberg: Springer, Feb. 2006, pp.
1–20.

[8] Y. Yarom, “Mastik: A Micro-Architectural Side-Channel Toolkit,”
2016. [Online]. Available: https://cs.adelaide.edu.au/∼yval/Mastik/

[9] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Preventing
Microarchitectural Attacks Before Distribution,” in Proceedings of
the Eighth ACM Conference on Data and Application Security and
Privacy, 2018, pp. 377–388.

[10] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “SCADET: a
side-channel attack detection tool for tracking prime+probe,” in
Proceedings of the International Conference on Computer-Aided
Design - ICCAD ’18. San Diego, California: ACM Press, 2018,
pp. 1–8.

[11] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Applied Soft Computing, vol. 49, pp. 1162–1174, Dec.
2016.

[12] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering Covert
Timing Channels on Shared Processor Hardware,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, Dec. 2014, pp. 216–228.

[13] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient on-
line malware detection,” in 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE,
Feb. 2015, pp. 651–661.

[14] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and
ASICs,” IEEE Transactions on computer-aided design of integrated
circuits and systems, vol. 26, no. 2, pp. 203–215, 2007.

[15] K. Compton and S. Hauck, “Reconfigurable computing: a survey
of systems and software,” ACM Computing Surveys (csuR), vol. 34,
no. 2, pp. 171–210, Jun. 2002.

[16] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and
R. Vaslin, “Reconfigurable Hardware for High-Security/ High-
Performance Embedded Systems: The SAFES Perspective,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 2, pp. 144–155, Feb. 2008.

https://github.com/VectorBlox/orca
https://github.com/VectorBlox/orca
https://cs.adelaide.edu.au/~yval/Mastik/

	Introduction
	Background and State of the Art
	Cache side-channel attacks
	Cache side-channel attacks detection
	Reconfigurable hardware

	REHAD Architecture
	Overall architecture
	Communication channels
	Trusted software kernel
	Hardware detection logic against cache side-channel attacks

	REHAD implementation for Flush+Reload and Prime+Probe detection
	Hardware and software configuration
	Flush+Reload detection
	Prime+Probe detection
	Implementation results

	Conclusion and Future Work
	References

