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Error Covariance Bounds for Suboptimal Filters with Lipschitzian Drift and Poisson-Sampled Measurements

We design suboptimal filters for a class of continuous-time nonlinear stochastic systems when the measurements are assumed to arrive randomly at discrete times under a Poisson distribution. The proposed filter is a dynamical system with a differential equation and a reset map which updates the estimate whenever a new measurement is received. We analyze the performance of the proposed filter by computing the expected value of the error covariance which is described by a differential equation. We study throughly the conditions under which the error covariance remains bounded, which depend on the system data and the mean sampling rate associated with the measurement process. We also study the particular cases when the error covariance is seen to decrease with the increase in the sampling rate. For the particular case of linear filters, we can also compare the error covariance bounds with the case when the measurements are continuously available.

Introduction

Filtering, or state estimation, in stochastic dynamical systems is one of the fundamental problems in engineering which has found applications in various disciplines ranging from control theory and signal processing to robotics and image/audio processing. A recently compiled book [START_REF] Crisan | The Oxford Handbook of Nonlinear Filtering[END_REF] provides an overview of the developments carried out in the area of filtering theory since its inception. While the problem is relatively well-studied for linear dynamical systems with closed form solutions, the analysis and implementation of nonlinear filters has proven to be a rather challenging problem. For this reason, many research works have focused on providing relaxed versions of optimal filters for nonlinear systems, which are more amenable for implementation. However, from analysis perspective, relatively fewer works exist which rigorously quantify the performance of nonlinear filters. For these reasons, nonlinear filtering continues to be an active area of research where the search of effective implementation algorithms and analysis methods is of interest for may applications [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF][START_REF] Germani | Linear filtering for bilinear stochastic differential systems with unknown inputs[END_REF][START_REF] Van Handel | Nonlinear filtering and systems theory[END_REF][START_REF] Taghvaei | Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem[END_REF][START_REF] Yang | Feedback particle filter[END_REF][START_REF] Sutter | A variational approach to path estimation and parameter inference of hidden diffusion processes[END_REF][START_REF] Kara | Weak Feller property of non-linear filters[END_REF]. This article aims at making a contribution in the area of nonlinear filtering for continuous-time systems where the amount of information provided by the output measurements is not only limited by continuous white noise, but also by sampling in time; In particular, it is stipulated that the output measurement arrive randomly at some discrete time instants only. With this additional uncertainty due to random sampling of the output measurement, we study the problem of obtaining bounds on the covariance of the state estimation error for certain class of nonlinear dynamical systems with our proposed filtering algorithms.

The filtering problem aims at minimizing the expected value of squared estimation error at each time conditioned upon the measurements available up to that point. Under some mild assumptions, it is seen that the optimal estimator, minimizing the aforementioned function, is the expected value of the state variable conditioned upon the last available measurement. The key element in computing this estimate is thus to get the probability density function of the state conditioned upon the system output. Pioneering works related to describing the evolution of density function using partial differential equations have been carried out in [START_REF] Stratonovich | Conditional markov processes[END_REF][START_REF] Kushner | Dynamical equations for optimal nonlinear filtering[END_REF][START_REF] Zakai | On the optimal filtering of diffusion processes[END_REF][START_REF] Fujisaki | Stochastic differential equations for the nonlinear filtering problem[END_REF], see also the historical overview [START_REF] Mitter | Filtering and stochastic control: A historical perspective[END_REF] and the book [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF]. Analysis, or implementation, of such equations is of course a different, and possibly a difficult, task. With relevance to this article, the results on analyzing the performance of the filters by analyzing the estimation error are the most pertinent ones. In this regard, the works [START_REF] Gilman | Cone-bounded nonlinearities and mean-square bounds-Estimation upper bound[END_REF][START_REF] Picard | Efficiency of the extended Kalman filter for nonlinear systems with small noise[END_REF] provide bounds on error covariance under certain structural assumption on the system dynamics. We impose similar assumptions on our nonlinear system to propose a suboptimal filter and analyze its performance under randomly sampled measurements.

More specifically, the problem formulation studied in this paper is motivated by the need of controlling dynamical systems over networks [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. A common feature of the communication across networks is that the underlying protocols allow transmission of measurements only at randomly chosen discrete time instants [START_REF] Tanwani | Stabilization with event-driven controllers over a digital communication channel with random transmissions[END_REF]. Certain works in the literature have studied this problem of stabilization and control with randomly sampled measurements: The reader may refer to [START_REF] Adès | Stochastic optimal control under Poisson-distributed observations[END_REF] for optimal control and the papers [START_REF] Hespanha | Stochastic impulsive systems driven by renewal processes[END_REF][START_REF] Antunes | Volterra integral approach to impulsive renewal systems: Application to networked control[END_REF] for stability conditions. A recently published book chapter [START_REF] Tanwani | Stabilization of continuous-time deterministic systems under random sampling: Overview and recent developments[END_REF] provides an overview of such results and some recent developments.

There have been relatively fewer works which have addressed filtering problem in the presence of measurement errors or communication uncertainties. The papers [START_REF] Matveev | The problem of state estimation via asynchronous communication channels with irregular transmission times[END_REF][START_REF] Sinopoli | Kalman filtering with intermittent observations[END_REF][START_REF] Huang | Stability of Kalman filtering with Markovian packet losses[END_REF] consider a discrete-time linear dynamical system and associate randomness with the transmission times of the output measurements. A different toolset, based on relative entropy, is adopted in [START_REF] Mcdonald | Stability of non-linear filters, observability and relative entropy[END_REF] to study the stability and convergence of filters under relaxed assumptions on observation channels. For continuous-time dynamical system driven by white noise, one can adopt the structure of continuous-discrete observer proposed in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]. However, such filters also suffer from the problem of implementation.

There are not many works that analyze the performance of continuous-time nonlinear filters in the presence of communication errors, or measurement errors in general, which is the topic of this paper. For continuoustime linear systems, filtering problem with randomly sampled measurements has been studied in [START_REF] Micheli | Random sampling of a continuous-time stochastic dynamical system: Analysis, state estimation, and applications[END_REF] and [START_REF] Micheli | Random sampling of a continuous-time stochastic dynamical system[END_REF], where the authors compute a conditional density function and use it to get the desired expectation. In this article, instead, we focus on nonlinear dynamics with a certain structure and propose a filter directly for estimating the expected value of the state. This filter is described by a piecewise deterministic Markov process [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF][START_REF] Davis | Markov Models and Optimization[END_REF] where the randomness is due to sampling times of the measurements. To analyze the performance of the proposed filter, it is seen that the resulting error dynamics are described by an Itô process with resets at random times. Using stochastic differential rule [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF], we first compute an upper bound on the error covariance matrix for a given sequence of sampling times. Assuming that the sampling process is Poisson, we compute the expected value of the resulting bound which is a matrix differential equation. In the resulting analysis of this differential equation, we are aided by the tools appearing in [START_REF] Wonham | On a matrix Riccati equation of stochastic control[END_REF] and [START_REF] Fragoso | A new approach to linearly perturbed Riccati equations arising in stochastic control[END_REF]. Such methods have also found their utility in linear filtering problems [START_REF] Bishop | On the stability of Kalman-Bucy diffusion processes[END_REF].

The remainder of the paper is organized as follows: The dynamical system and the observation process is described in Section 2. In Section 3, we propose a filter which estimates the mean value of the state trajectory for fixed sampling times, and compute the bounds on resulting error covariance. The expected value of these bounds with respect to sampling times are derived in Section 4. We then study the evolution of the mean covariance bound with respect to time in Section 5, and provide conditions in Section 6 and Section 7 under which the error covariance stays bounded. Finally, in Section 8, we study dependence with respect to the sampling rate before concluding the article with some directions of future research, and an appendix which collects some known results from the literature used in our derivations.

Problem Formulation

System Class

We consider stochastic nonlinear systems of the form

dx t = f (x t ) dt + G(x t ) dω t (1a) dz t = h(x t ) dt + dη t , (1b) 
where (x t ) t 0 is an n -valued diffusion process describing the state, and (z t ) t 0 describes an p -valued continuoustime observation process. Let (Ω, , P) denote the underlying probability space. It is assumed that, for each t 0, ω t is an m -valued standard Wiener process adapted to the filtration t ⊂ , with the property that E[dω dω ] = I m×m , for each t 0. Also, in the observation equation (1b), η t is an t -adapted standard Wiener process, taking values in p , and E[dη t dη t ] = V t ∈ p×p , with V t assumed to be positive definite. The drift term f : n → n , the matrix of diffusion coefficients G : n → n×m , and the output map h : n → p are assumed to be continuous. It is also assumed that the processes (ω t ) t 0 , (η t ) t 0 are independent of each other, and do not depend on the state either. The solutions of the stochastic differential equation are given by

x t -x 0 = t 0 f (x s ) ds + t 0 G(x s ) dω s
where the last integral is interpreted in the sense of Itô, and is referred to as Itô stochastic integral. Further details about Itô's integral and its connection to stochastic differential equations can be found in the books [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF][START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF], or in a recent article [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF] dedicated to the memory of K. Itô. 

Observation Process

Our goal is to study the state estimation problem when the output measurements are available only at random times. The motivation to work with randomly time-sampled measurements comes from several applications, such as, communication over networks which allow information packets to be sent at some discrete randomly distributed time instants. Thus, we consider a monotone nondecreasing sequence (τ n ) n∈ taking values in 0 which denote the time instants at which the measurements are available for estimation. We introduce the process N t defined as

N t := sup n ∈ τ n t for t ∈ ,
and it is assumed that (N t ) t 0 is a Poisson stochastic process independent of the noise and the state processes.

The discretized, and noisy, observation process is thus defined as 1

y τ N t = h(x(τ N t )) + ν τ N t , t 0.
Our goal is to construct the estimate x t , which minimizes the mean square estimation error, using the observations

t := { y τ k | k N t }.
For a certain class of nonlinear functions f and h in (1), we will derive filtering equations to construct an estimate, and provide conditions on the sampling process which guarantee bounded covariance of the estimation error.

Problem Context

With time-sampled measurements, it is natural to consider the filtering problem:

min x t E |x t -x t | 2 { y τ k } k N t (2)
for each t 0. It has been shown in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] that the solution to the minimization problem (2) is given by that is, we need to compute the expected value of x t conditioned upon the last available output measurements. Because of the discrete nature of the output measurements, it is seen that, between two consecutive sampling instants τ N t and τ N t +1 , the conditional expectation is obtained by computing the conditional probability

x t = E[x t | { y τ k } k N t ], (3) 
(x t |{ y τ k } k N t ).
Between two successive measurements, we have

(x t |{ y τ k } k N t ) = (x t | y τ N t ), τ N t t < τ N t +1 ,
where (x t | y τ N t ) is obtained by the same evolution rule which governs the propagation of the probability density function of the state process (x t ) t 0 , that is, the Fokker-Planck operator with the initial condition (x τ N t | y τ N t ), see for example [START_REF] Brockett | Stochastic control: Lecture notes[END_REF]. When a new measurement arrives, the conditional probability density function gets updated, and can be computed using Bayes' rule [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]Theorem 6.1]. From these equations for conditional distribution, one can arrive at the following equations to describe the evolution of the estimate in (3):

d x t dt = f (x t ) = E[ f (x t ) | t ], τ N t t < τ N t +1
(4a)

x τ N t = E[x τ N t ( y τ N t |x τ N t ) | τ N t -1 ] E[ ( y τ N t |x τ N t ) | τ N t -1 ] . ( 4b 
)
Similarly, the equation for the covariance of the estimation error conditioned upon the discrete measurements,

P t := E[ |x t -x t | 2 | { y τ k } k N t ]
, is given by

dP t dt = (E[x t f (x t ) | t ] -x t f (x t )) + (E[ f (x t )x t | t ] -f (x t ) x t ) + E[G(x t )G(x t ) | t ] (5a) 
P τ N t = E[x τ N t x τ N t ( y τ N t |x τ N t ) | τ N t -1 ] E[ ( y τ N t |x τ N t ) | τ N t -1 ] -x τ N t x τ N t . (5b) 
In general, solving these equations is not possible. In fact, as noted in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]Chapter 6], "the right-hand sides of (4) and ( 5) involve expectations that require the whole conditional density for their evaluation." Thus, the computation of the estimate (first moment) and the error covariance (the second moment) depend on all the higher order moments of the conditional density (x t | t ), which remain unknown. To bypass aforementioned difficulties, we work with certain assumptions on the system dynamics which allow us to obtain a suboptimal estimate independently of the higher order moments. We analyze the performance of this suboptimal filter by getting bounds on the resulting error covariance which provides an upper bound on [START_REF] Antunes | Volterra integral approach to impulsive renewal systems: Application to networked control[END_REF] 

Structural Assumption on System Nonlinearities

To achieve the performance of the nonlinear filters, we introduce a structural assumption on the nonlinearities in the model (1).

(A1) There exist matrices A ∈ n×n , C ∈ p×n , the constants a, c such that for all δ

∈ n | f (x + δ) -f (x) -Aδ| a |δ|, (6a) 
|h(x + δ) -h(x) -Cδ| c|δ|, ( 6b 
)
and the pair (A, C) is detectable. Moreover, the diffusion term is constant, that is, G(x) = G ∈ n×m for every x ∈ n , with (A, G) stabilizable.

Our goal is to work out the filtering equations in the previous section for this particular class of nonlinear systems, and analyze the covariance of the estimation error as a function of the parameters in the model and the observation process.

Remark 2.1. In other words, the nonlinearities, that we consider, are to be seen as the perturbations in the linear terms and the size of these perturbations is handled by the constants a and c. If we write f (x) = Ax + f nl (x), and h(x) = C x + h nl (x), then Assumption (A1) requires that f nl is Lipschitz continuous with modulus a 0, and that h nl is Lipschitz continuous with modulus c 0. This allows us to cover drift terms with at most linear growth, and output measurements (from sensors) with bias and saturation. Assumption (A1), however, rules out nonlinearities in diffusion coefficient matrix G, and considering such nonlinearities is a topic of further investigations.

Remark 2.2. It is possible to consider time-dependence in nonlinearities f , g, h and the covariances of the noise.

As a result, the matrices A, C, G, the constants a, c, and the covariance matrices E[dω t dω t ], E[dη t dη t ] can also be time-dependent. Such generalities can be addressed within the framework of this paper. In particular, the derivation of bounds in Proposition 3.1, Proposition 3.2, and Proposition 4.1 could be easily generalized without much differences. However, the results of Section 6, Section 7, and Section 8, where we analyze the stability of the differential equations associated with the bounds of the error covariance, require more careful analysis for time-varying systems.

Suboptimal Filtering

In what follows, we consider the dynamical system (1) under the assumption (A1). As already mentioned, the exact filtering equations are not easy to analyse. Thus, we propose a filter structure, which is clearly a suboptimal solution and analyze the performance of this particular filter.

Filtering Equations

For given values of randomly sampled time instants {τ N t } t 0 , or in other words, a fixed sample path of (N t ) t 0 , we define the estimate x t using the filter [START_REF] Davis | Markov Models and Optimization[END_REF], whose sample paths are càdlàg functions; a function φ : [0, ∞) → n is a càdlàg function if lim s t φ s = φ t for each t ∈ [0, ∞), and φ t -:= lim s t φ s exists for each t ∈ (0, ∞).

d x t = f ( x t ) dt (7a) x τ + N t = x τ - N t + K τ N t ( y τ N t -h( x τ - N t )). ( 7b 
)
where x t is the state estimate, and K τ k ∈ n×p , k ∈ , are the injection gains that need to be designed appropriately. The estimate obtained from [START_REF] Davis | Markov Models and Optimization[END_REF] is not necessarily a solution to the optimization problem (2) and, in general, not optimal for minimizing the mean square estimation error. However, by analyzing the performance of the suboptimal filter in [START_REF] Davis | Markov Models and Optimization[END_REF], we can get an upper bound on the minimal mean square estimation error. Because of the randomness in sampling times, it is noted that the filter ( 7) is a piecewise-deterministic Markov process [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF], or more generally, a stochastic hybrid system of the form considered in [START_REF] Teel | Lyapunov conditions certifying stability and recurrence for a class of stochastic hybrid systems[END_REF].

Hence, for the particular choice of filter in [START_REF] Davis | Markov Models and Optimization[END_REF], we are interested in computing bounds on the expectation (with respect to the sampling process) of the error covariance and find conditions (involving the design parameter K τ k , k ∈ ) so that the resulting covariance is bounded. The dependency of the error covariance on the sampling rate is also analyzed for specific cases.

Error Covariance Bounds with Arbitrary Injection Gains

The following statement describes a bound on the covariance of estimation error resulting from [START_REF] Davis | Markov Models and Optimization[END_REF] for a given value of sampling times. Proposition 3.1. Consider system [START_REF] Adès | Stochastic optimal control under Poisson-distributed observations[END_REF] under assumption (A1) and the filter [START_REF] Davis | Markov Models and Optimization[END_REF] with {τ k } k∈ fixed. Let the process P t , with P 0 := E[(x 0 -x 0 )(x 0 -x 0 ) ], be defined by

dP t dt = AP t + P t A + aP t + a tr(P t )I n×n + GG , ( 8a 
)
for τ N t t < τ N t +1 , and for k = N t , let

P τ + k = P τ - k + c P τ - k -K τ k C P τ - k -P τ - k C K τ k + K τ k (1 + c)C P τ - k C + (2c + c 2 ) tr (P τ - k )I p×p + V K τ k . ( 8b 
)
Then, it holds that, for each t 0,

E[(x t -x t )(x t -x t ) | t ] P t . ( 9 
)
Proof. We denote the state estimation error by e t := x t -x t , so that the resulting error dynamics are given by

de t = ( f (x t ) -f ( x t ))dt + Gdω t =: f (x t , x t )dt + Gdω t (10a) for t ∈ [τ N t , τ N t +1 [, and for each k = N t , e τ + k = x τ + k -x τ + k = x τ - k -x τ - k -K τ k ( y τ k -h( x τ - k )) = e τ - k -K τ k ( y τ k -h( x τ - k )). (10b) 
Under the small nonlinearity assumption (A1), we can write

f (x) = Ax + f nl (x) for some Lipschitz function f nl (•) with modulus a, so that f (x t , x t ) = f (x t ) -f ( x t ) = Ae + f nl (x t ) -f nl ( x t ),
where

f nl (•) satisfies the bound, | f nl (x t ) -f nl ( x t )| a|e t | for every x t , x t ∈ n .
In what follows, we denote 

E[(x t -x t )(x t -x t ) | t ]
E[e τ + k e τ + k ] -E[e τ - k e τ - k ] P τ + k -P τ - k .
The bound in (9) then holds by observing that P t satisfies (8a) over [τ N t , τ N t +1 [, and (8b) at t = τ N t , with 

P 0 = E[e 0 e 0 ].

Continuous part

de t = f (x t , x t )dt + Gdω t ,
and the function v : n → n×n given by, n e → v(e) = ee n×n , where an element of the matrix v(e) is denoted by v k,l (e) = e k e l . Consequently, (v • e t ) t 0 is an Itô process, and applying Itô's differential chain rule, we obtain

dv k,l (e t ) = n i=1 ∂ v k,l (e t ) ∂ e i t de i t + 1 2 n i, j=1 ∂ 2 v k,l (e t ) ∂ e i t ∂ e j t de i t de j t .
Substituting

de i t = f i (x t , x t )dt + m k=1 G i,k (dω t
) k and using Itô's multiplication table [18, Page 154], we have

(dω t ) i • (dω t ) j = δ i j dt, dt • dt = (dω t ) i • dt = dt • (dω t ) i = 0, and hence dv k,l (e t ) = n i=1 ∂ v k,l (e t ) ∂ e i t f i (x t , x t )dt + 1 2 n i, j=1 ∂ 2 v k,l (e t ) ∂ e i t ∂ e j t m k i ,k j =1 δ k i ,k j G i,k i G j,k j dt + n i=1 m j=1 ∂ v k,l (t, e t ) ∂ e i t G i, j (dω t ) j = n i=1 ∂ v k,l (e t ) ∂ e i t f i (x t , x t )dt + 1 2 n i, j=1 ∂ 2 v k,l (e t ) ∂ e i t ∂ e j t 〈G i , G j 〉dt + n i=1 m j=1 ∂ v k,l (t, e t ) ∂ e i t G i, j (dω t ) j ,
where 〈G i , G j 〉 is the inner product of i-th and j-th rows of the matrix G. We are interested in computing dE[v(e t )] dt , and we have the following expression for its coordinates:

dE[v k,l (e t )] dt = lim →0 E[v k,l (e t+ )] -v k,l (e t ) = E 1 t+ t dv(e s )
Substituting the expression for dv(e s ), and using the fact that ω s is a Wiener process, we get where we used the fact that f

dE[v k,l (e t )] dt = lim →0 1 t+ t E n i=1 ∂ v k,l (e s ) ∂ e i s f i (x s , x s ) + 1 2 n i, j=1 ∂ 2 v k,l (e s ) ∂ e i s ∂ e j s 〈G i , G j 〉 ds and hence, recalling that, v k,l (e t ) = e k t e l t , dE[v k,l (e t )] dt = E (e l f k (x t , x t ) + e k f l (x t , x t )) + 1 2 (〈G k , G l 〉 + 〈G l , G k 〉) . Thus, dE[v(e t )] dt = E f (x t ,
(x t , x t ) = Ae t + f nl (x t , x t ), with f nl (x t , x t ) := f nl (x t )-f nl ( x t )
, and the last inequality was obtained using the bound2 e f nl + f nl e a ee + a|e| 2 I n×n and the fact that |e| 2 = tr (ee ).

Jump part

To analyze the jump in error dynamics at time instants when the new measurements are received, we first observe that, under (A1), h(x) = C x + h nl (x), where h nl (x) satisfies the bound, |h nl (xe) -h nl (x)| c|e|, for all x, e ∈ n . Since x t is continuous, recalling that e t = x t -x t and (10b), it follows that, for k = N t ,

e τ + k -e τ - k = -( x τ + k -x τ - k ) = -K τ k ( y τ k -h( x τ - k )) = -K τ k (C x τ k + h nl (x τ - k ) + ν τ k -C x τ - k -h nl ( x τ - k )) = -K τ k (C e τ - k + y τ - k + ν τ k )
where

y τ - k := h nl (x τ - k ) -h nl ( x τ - k ).
With this relation for jump in error value at sampling instants, we can compute the change in the error covariance at the sampling instants. We do so by noting that

E[e τ + k e τ + k ] = E e τ - k -K τ k (C e τ - k + y τ - k + ν τ k ) • e τ - k -K τ k (C e τ - k + y τ - k + ν τ k ) = E[e τ - k e τ - k ] -E[e τ - k (C e τ - k + y τ - k + ν τ k ) K τ k + K τ k (C e τ - k + y τ - k + ν τ k )e τ - k ] + E[K τ k (C e τ - k + y τ - k + ν τ k )(C e τ - k + y τ - k + ν τ k ) K τ k ]. (11) 
We will now get a bound on the second and third terms on the right-hand side. To do so, we observe that, for each K ∈ n×p , ỹ ∈ p , e ∈ n , such that | ỹ| c|e|, we have

-K y e -e y K cee + c|e| 2 K K . ( 12 
)
This indeed follows from the fact that, for each z ∈ n , z (-K y ee y K )z

2 |z e| • |z K y| 2 c |z e| • |K z| |e| c z ee z + c|e| 2 z K K z.
Applying the inequality [START_REF] Gilman | Cone-bounded nonlinearities and mean-square bounds-Estimation upper bound[END_REF], the second term on the right-hand side of ( 11) can be bounded as follows:

-E[e τ - k (C e τ - k + y τ - k + ν τ k ) K τ k -K τ k (C e τ - k + y τ - k + ν τ k )e τ - k ] -E[e τ - k e τ - k ]C K τ k -K τ k CE[e τ - k e τ - k ] + c E[e τ - k e τ - k ] + c |e| 2 K τ k K τ k = -E[e τ - k e τ - k ]C K τ k -K τ k CE[e τ - k e τ - k ] + c E[e τ - k e τ - k ] + c tr (E[e τ - k e τ - k ])K τ k K τ k ,
where we used the fact that |e

τ - k | 2 = tr (E[e τ - k e τ - k ]).
For the last term on the right-hand side of ( 11), we observe that, for each C ∈ p×n , e ∈ n , and y ∈ p satisfying | y| c|e|, we have

C e y + y e C c C ee C + c|e| 2 I p×p . ( 13 
)
This, in turn, leads to

E[K τ k (C e τ - k + y τ - k + ν τ k )(C e τ - k + y τ - k + ν τ k ) K τ k ] = E[K τ k (C e τ - k e τ - k C + C e τ - k y τ - k + y τ - k e τ - k C + y τ - k y τ - k + ν τ k (C e τ - k + y τ - k ) + (C e τ - k + y τ - k )ν τ k + ν τ k ν τ k )K τ k ] = K τ k E[C e τ - k e τ - k C + C e τ - k y τ - k + y τ - k e τ - k C + y τ - k y τ - k + ν τ k (C e τ - k + y τ - k ) + (C e τ - k + y τ - k )ν τ k + ν τ k ν τ k ]K τ k K τ k CE[e τ - k e τ - k ]C + E[c C e τ - k e τ - k C + c|e τ - k | 2 I p×p + c 2 |e τ - k | 2 ] + V K τ k = K τ k CE[x τ - k x τ - k ]C + c CE[e τ - k e τ - k ]C + (c + c 2 ) tr (E[e τ - k e τ - k ])I p×p + V K τ k .
Plugging this last bound in [START_REF] Germani | Linear filtering for bilinear stochastic differential systems with unknown inputs[END_REF], we get

E[e τ + k e τ + k ] E[e τ - k e τ - k ] -E[e τ - k e τ - k ]C K τ k -K τ k CE[e τ - k e τ - k ] + c E[e τ - k e τ - k ] + K τ k (1 + c)CE[e τ - k e τ - k ]C + (2c + c 2 ) tr (E[e τ - k e τ - k ]) + V K τ k
which is the desired statement.

Minimizing Error Covariance with Suboptimal Filters

In the result of Proposition 3. 

K τ k = P τ - k C M -1 P τ k ( 14 
)
where P is obtained from dP t dt = AP t + P t A + aP t + a tr(P t )I + GG , (15a)

P τ + k = (1 + c)P τ - k -P τ - k C M -1 P τ k C P τ - k (15b)
and M P τ k is defined as3 

M P τ k := (1 + c)C P τ - k C + (2c + c 2 ) tr (P τ - k )I p×p + V, ( 16 
)
then, for each t 0, it holds that

E[(x t -x t )(x t -x t ) ] P t P t ( 17 
)
where P t is obtained as a solution of [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF].

The proof of this statement follows from Proposition 3.1. It is noted that K τ k only affects the bound P t at the jump times via (8b). The right-hand side of (8b) is a quadratic convex function of K τ k which is minimized by choosing K τ k as in [START_REF] Hespanha | Stochastic impulsive systems driven by renewal processes[END_REF].

Expectation of Error Covariance

In the previous section, we computed a bound on the error covariance for a fixed sequence of time instants at which measurements are received. That is, P t is an upper bound on E[(x t -x t )(x t -x t ) | t ] along one particular sample path as the realization of P t depends on the observed sampling times. It was initially stipulated that the random sampling instants are governed by a Poisson process. It is thus of interest to compute the expected value of P t along all possible sample paths generated by Poisson sampling process.

Toward this end, it is noted that the evolution of P t in ( 8) is governed by a piecewise deterministic process, where P t is obtained from the differential equation (8a) between two sampling instants, and then at the sampling times, P t is reset according to the equation (8b).

To compute the expected value of P t with respect to sampling times, we introduce the operator id : n×n → n×n defined as

id (Q) = lim →0 1 E[P(t + ) | P(t) = Q] -Q . ( 18 
)
We will see that this operator defines the evolution of the expected value of the error covariance process, and it is computed in the following result: Proposition 4.1. Consider the process (P t ) t 0 given by [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF] with K τ k = K ∈ n×p for each k ∈ , and assume that the sampling process (N t ) t 0 has intensity λ > 0. Let t := E[P t | P 0 ] denote the expected value of the covariance process at time t 0. Then, it holds that

˙ t = id ( t ) = (A -λKC) t + t (A -λKC) + Π a ( t ) + GG + λ c t + λK M t K , ( 19 
)
where the linear operator Π a : n×n → n×n is defined as Π a (P) := a P + a tr(P)I, [START_REF] Kushner | Dynamical equations for optimal nonlinear filtering[END_REF] and the matrix M t ∈ p×p is given by In particular, if we choose

M t := (1 + c)C t C + (2c + c 2 ) tr ( t )I p×p + V. ( 21 
)
K τ k = P τ - k C M -1 P τ k
, then the expected value of the error covariance process governed by ( 15)

is ˙ t = A t + t A + Π a ( t ) + GG + λ c t -λ t C M -1 t C t . (22) 
Before providing the proof of this result, we present two examples for an illustration of the results presented so far.

Example 1. Consider the nonlinear system described by the equations dx 1,t = sat(x 2,t )dt + dω t , dx 2,t = (x 1,t -x 2,t )dt + dω t with the measurement process dz t = (1 + x 1,t )dt + dη t . The noise processes are normalized as dω t ∼ (0, 1) and dη t ∼ (0, 1). The function sat(•) represents the standard saturation function, that is, for each z ∈ , sat(z) = zf nl (z), where f nl is a Lipschitz function described as,

f nl (z) = z -1, if z 1, f nl (z) = 0 if z ∈ [-1, 1], and f nl (z) = z + 1, if z -1. Hence, by letting A = 0 1 1 -1 , C = [ 1 0 ], G = [ 1 1
] , it is seen that Assumption (A1) holds with a = 1, and c = 0. Associating a Poisson process of intensity λ, the corresponding measurement equations are given by, y τ N t = 1 + x 1,τ N t + v τ N t , where we take v τ N t ∼ (0, 1) for each t 0. For appropriately chosen k 1,τ N t , k 2,τ N t ∈ , the proposed filter is then described by

d x 1,t = sat( x 2,t )dt, x 1,τ + N t = x 1,τ - N t + k 1,τ N t ( y τ N t -x 1,τ - N t ) d x 2,t = ( x 1,t -x 2,t )dt, x 2,τ + N t = x 2,τ - N t + k 2,τ N t ( y τ N t -x 1,τ - N t
).

The simulation results for this example with two different choices of

K τ N t := [k 1,τ N t k 2,τ N t ]
are reported in Figure 1 and Figure 2. For one particular choice of randomly determined sampling times, Figure 1a provides an illustration of (9) in Proposition 3.1, where we plot tr(E[e t e t | t ]) and the bound tr(P t ) obtained from solving [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF], with constant gain K τ N t = [0.5 0.5] for each t 0. Similarly, Figure 1b is obtained by choosing

K τ N t = P τ N t C M -1 P τ N t
and is an illustration of inequality (17) stated in Proposition 3.2. In Figure 2, we compute expectation with respect to the sampling process. Figure 2a 

K τ N t = P τ N t C M -1 P τ N t
, with the the theoretical upper bound tr( t ) obtained from [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF]. We indeed observe that tr( t ) has a smaller value than tr( t ), for each t 0. It is not obvious, for what choices of gains K τ N t , we should get finite values of our bounds; such questions are addressed in subsequent sections.

Example 2. Consider the linear stochastic system

dx t = Ax t dt + Gdω t (23a) dz t = C x t dt + dη t . ( 23b 
)
where dz t is the measurement process, and the processes ω t , η t satisfy the same hypothesis as in system (1). If (A, C) is detectable and (A, G) is stabilizable, then Assumption (A1) holds with a = c = 0. The output observed at randomly sampled time instants is described by

y τ N t = C x τ N t + v τ N t
, where for each t 0, v τ N t ∼ (0, V ). The filter [START_REF] Davis | Markov Models and Optimization[END_REF] takes the form

d x t = A x t dt, x τ + N t = x τ + N t + K τ N t ( y τ N t -h( x τ - N t
)).

Inequality (9) in Proposition 3.1 holds, where P t satisfies Ṗt = AP t + P t A + GG , for τ N t t < τ N t +1 , and for k = N t ,

P τ + k = P τ - k -K τ k C P τ - k -P τ - k C K τ k + K τ k C P τ - k C + V K τ k . By choosing, K τ k = P τ - k C M -1 P τ k
, for each k ∈ , the covariance bound is minimized and the resulting equations are given by ( 15) by setting a = c = 0.

Assuming that the sampling process is Poisson of intensity λ, and the gain K is constant, the expected value

of P t is ˙ t = (A -λKC) t + t (A -λKC) + GG + λK C t C + V K .
However, by choosing

K τ k = P τ - k C M -1 P τ k
, the expected value of the error covariance process governed by [START_REF] Huang | Stability of Kalman filtering with Markovian packet losses[END_REF] in

linear case is ˙ t = A t + t A + GG -λ t C C t C + V -1 C t .
Thus, in linear case, an upper bound on the expectation (with respect to sampling process) of error covariance is obtained by solving a nonlinear differential equations. The boundedness of the solutions of equations in Proposition 4.1 are analyzed in later sections. Here, we end this section with the proof of Proposition 4.1.

Proof of Proposition 4.1. We first note that P t t 0 is Markovian because the future of P t depends only on the last sampling instant τ N t . According to Dynkin's formula,

t = E[P t ] = P 0 + E t 0 id (P s ) ds.
Since id is a linear operator, we readily get ˙ t = id ( t ). To show [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF], we thus compute id (Q) for a given matrix Q in the remainder of the proof. Recalling the definition of id , we observe that

E P(t + ) P t = Q = E P(t + ) 1 {N t+ =N t } + 1 {N t+ =1+N t } + 1 {N t+ -N t 2} P(t) . ( 24 
)
We now compute the conditional probability distribution of P(t + ) for small > 0 given P t . Since the sampling process is independent of the process P t t 0 , by definition of the sampling (Poisson) process we have,

for ↓ 0, P N t+ -N t = 0 N t , P t = 1-λ + o( ), P N t+ -N t = 1 N t , P t = λ + o( ), P N t+ -N t 2 N t , P t = o( ).
Using these expressions we develop [START_REF] Mcdonald | Stability of non-linear filters, observability and relative entropy[END_REF] further for ↓ 0 as

E P(t + ) P t = Q = E P(t + ) 1 {N t+ =N t } + 1 {N t+ =1+N t } P t + o( ) = E P(t + ) P t , N t+ = N t • 1 -λ + o( ) + E P(t + ) P t , N t+ = 1 + N t λ + o( ). (25) 
The two significant terms on the right-hand side of ( 25) are now computed separately. For the event N t+ = N t , given P(t) = Q, Ṗ is governed by (8a), so we have for ↓ 0,

P(t + ) = P(t) + Ṗ(t) + o( ) = Q + (AQ + QA + Π a (Q) + GG ) + o( ),
leading to the first term on the right-hand side of (25) having the estimate

E P(t + ) P(t), N t+ = N t • 1 -λ + o( ) = Q + (AQ + QA + Π a (Q) + GG ) -(λ )Q + o( ), (26) 
for ↓ 0. Concerning the second term on the right-hand side of (25), we observe that conditional on N t+ = 1+N t , the probability distribution of τ N t+ is [31, Theorem 2.3.7] uniform over [t, t + [ by definition of the sampling (Poisson) process. We introduce θ ∈ [0, 1[ such that τ N t+ = t +θ ; then θ is uniformly distributed on [0, 1[ given N t+ = 1 + N t . We now write the right-hand side of (8a) more compactly using the map ψ 1 ,

Q → ψ 1 (Q) = AQ + QA + Π a (Q) + GG
and (8b) using the map ψ 2 ,

Q → ψ 2 (Q) = (1 + c)Q -KCQ -QC K + K (1 + c)CQC + (2c + c 2 ) tr QI p×p + V K.
We thus have, conditioned on the event

N t+ = 1 + N t , P t = Q, P(τ N t+ ) = P(t + θ ) = ψ 2 (P(t + θ ) -).
The above expressions then lead to, conditioned on the same event, and for ↓ 0,

P(t + ) = P(t + θ ) + (1 -θ ) Ṗ(t + θ ) + o( ) = P(t + θ ) + (1 -θ ) ψ 1 P(t + θ ) + o( ) = ψ 2 (P(t) + θ ψ 1 (P(t)) + o( )) + (1 -θ ) ψ 1 P(t + θ ) + o( ) = ψ 2 (P(t)) + θ O( ) + O( ) + o( ).
Therefore, for ↓ 0,

E P(t + ) P t = Q, N t+ = 1 + N t • (λ ) = 1 0 ψ 2 (Q) + θ O( ) + O( ) + o( ) dθ • (λh) = ψ 2 (Q) + O(h) • (λh) = (λh)ψ 2 (Q) + o( ). (27) 
Substituting ( 26) and ( 27) in [START_REF] Micheli | Random sampling of a continuous-time stochastic dynamical system: Analysis, state estimation, and applications[END_REF], we obtain

E P(t + ) P(t) = Q = Q -(λ ) Q -ψ 2 (Q) + AQ + QA + Π a (Q) + GG + o( ).
Substituting these expressions in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF], we see that for each

Q ∈ n×n , id (Q) = AQ + QA + Π a (Q) + GG + λ ψ 2 (Q) -Q ,
which, upon recalling the definition of ψ 2 , leads to the desired expression in [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF].

The derivation of ( 22) follows the same recipe: the only difference arises in the definition of the function ψ 2 which now represents the right-hand side of (15b). Remark 4.2. In ( 22), if we introduce the variable t := t C M -1 t , then ( 22) is equivalently written as

˙ t = (A -λ t C) t + t (A -λ t C) + Π a ( t ) + GG + λ c t + λ t M t t
. This last equation resembles [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF], the only difference being that a constant K is replaced by a time-varying term t .

Evolution of Error Covariance

We are interested in studying the solutions of the equation ( 19) and [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF], which characterize the expected value of the error covariance resulting from the suboptimal nonlinear filter when the available measurements are Poisson distributed. In particular, we want to study conditions on the system dynamics and the sampling rates which guarantee boundedness of the solution. In doing so, the following algebraic equation also plays an important role:

0 = A + A + Π a ( ) + λc + GG -λ C M -1 C . ( 28 
)
In the remainder of this section, we provide a statement of the existence of solution to the differential equation [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF], and then study boundedness of its solution and connections to steady state algebraic equations in the next section.

To study Carathédory solutions to the differential equation [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF], we introduce the notation,

Ψ( , M , K) := A λK + A λK + Π( ) + GG + λK M K. ( 29 
)
where M is defined as in ( 21), and we take

A λK := (A -λKC) (30a) Π( ) := Π a ( ) + λ c = a + a tr( )I + λc . ( 30b 
)
It is readily seen that the particular choice of K = = C M -1 minimizes Ψ( , M , K) with respect to the ordering in the cone of positive semidefinite matrices. Indeed,

Ψ( , M , ) = (A -λ C) + (A -λ C) + Π( ) + GG + λ M = (A -λKC) + (A -λKC) + Π( ) + GG + λK M K -λ(K -)M (K -) = Ψ( , M , K) -λ(K -)M (K -) Ψ( , M , K). ( 31 
)
We can apply similar arguments to prove the following lemma which compares the solutions of equations ( 19) and [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF].

Lemma 5.1. Let t be the solution of

˙ t = Ψ( t , M t , t C M -1 t ), 0 = 0 ,
and let t be the solution of

˙ t = Ψ( t , M t , K), 0 0 given,
where M t and M t are defined as in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]. Then, it holds that t t , ∀ t 0.

Proof. Notice that for (t) = tt the minimum property [START_REF] Suhov | Markov chains: a primer in random processes and their applications[END_REF] implies

˙ = Ψ( t , M t , K) -Ψ( t , M t , t C M -1 t ) Ψ( t , M t , K) -Ψ( t , M t , K) = A λK t + t A λK + Π( t ) + λK M t K ,
where M = M t -M t is consistent and depends linearly on t . So, we have

˙ = A λK + A λK + Π( ) + λK M K + R t ,
for some R t 0. Since (0) = 0, for t 0, t is a solution of the following Volterra equation t = t 0 e s A λK (Π( s ) + λK M s K)e sA λK ds.

The matrix on the right-hand side is positive semidefinite, and hence t t , for each t 0.

A direct consequence of this observation is that the right-hand side of ( 19) is minimized by choosing K τ k as in [START_REF] Hespanha | Stochastic impulsive systems driven by renewal processes[END_REF]. Even though the perturbation Π is linear in , the aforementioned choice of K makes the right-hand side of ( 19) a nonlinear function in , which is different from the quadratic nonlinearity seen in Riccati differential equations. We are thus interested in knowing whether there exists a solution to the resulting equation. To this end, we will focus our attention on the initial value problem [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF] with (0) = 0 , where 0 is a positive semidefinite matrix.

Proposition 5.2. For each symmetric positive semidefinite matrix 0 ∈ n×n and a given T > 0, there exists a unique absolutely continuous solution : [0, T ] → n×n in the class of symmetric positive definite matrices such that (0) = 0 and the differential equation [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF] 

holds for almost every t ∈ [0, T ].
The proof of this result is given in Appendix A. In the infinite-time horizon case we have a unique continuous solution : [0, +∞) → n×n in the class of symmetric positive semidefinite matrices satisfying [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF].

Conditions for Bounded Covariance

In this section, we study the conditions under which the error covariance t stays bounded for all t 0. In doing so, we recall that the error covariance can be compactly represented as ˙ t = Ψ( t , M t , K) where Ψ is defined in [START_REF] Sinopoli | Kalman filtering with intermittent observations[END_REF]. For the purposes of this section, it is convenient to write Ψ in an alternate form. To do so, we let Π c (P) := c P + c KC P C K + (2c + c 2 ) tr(P)K K , and let

Π K λ (P) := Π a (P) + λΠ c (P),
then we can write

Ψ( , M , K) = A + A + Π K λ ( ) + GG + λK V K + λ KC C K -KC -C K = A - λ 2 I + A - λ 2 I + Π K λ ( ) + GG + λK V K + λ -C K -KC + KC C K = A - λ 2 I + A - λ 2 I + Π K λ ( ) + GG + λK V K + λ (I -KC) (I -KC) .
More compactly, by letting A λ := Aλ 2 I , J K := (I -KC), we get

Ψ( , M , K) := A λ + A λ + Π K λ ( ) + GG + λK V K + λJ K J K . ( 32 
)
Based on this representation, we can write the solution t to equation ( 19) as follows:

t = e A λ t 0 e A λ t + t 0 e A λ (t-s) Π K λ ( s ) + λJ K s J K + GG + λK V K e A λ (t-s) ds.
Naturally, to study the bounds on t for large t, we consider the operator K λ : n×n → n×n defined as:

K λ (P) := ∞ 0 e A λ t Π K λ (P) + λJ K P J K e A λ t dt. ( 33 
)
This dependence is stated in the following result: Theorem 6.1. Consider the matrix valued function t described by [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF], and the following statements:

(S1) All the eigenvalues of the operator K λ , defined in [START_REF] Taghvaei | Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem[END_REF], lie inside the unit disk of the complex plane, that is,

ρ( K λ ) < 1
where ρ(•) denotes the spectral radius of its argument.

(S2) There exists a positive semidefinite solution to the algebraic equation

0 = A λ + A λ + Π K λ ( ) + GG + λK V K + λ(I -KC) (I -KC) . ( 34 
)
Statement (S1) implies that (S2) holds. If (A, G) is controllable, then (S2) implies that lim t→∞ t = , ( 35 
)
where t is the solution of [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF] and is obtained from (S2). The implication that (S2) implies ( 35) can be obtained as a result of Lemma C.2 given in Appendix C. To apply this result, we need to show that (A λ , G) is controllable, where G is such that λK V K + GG = G G . This indeed follows from the fact that (A, G) is controllable. To see this, we use Lemma C.1 and show that (A λ , G) is controllable. To prove the later statement, let us proceed by contradiction. If (A λ , G) is not controllable, there exists v ∈ n such that v (A -0.5λI) = (µ -0.5λ)v and v G = 0, where µ is an eigenvalue of A. This implies that v A = µv and v G = 0, meaning (A, G) is not controllable, which is a contradiction.

We now prove a similar result for the nonlinear differential equation [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF]. Theorem 6.2. Consider the matrix valued function t described by the nonlinear equation differential equation [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF], and the following statement:

(S3) There exists a positive semidefinite solution to the algebraic equation

0 = A + A + Π a ( ) + λ c -λ C M -1 C + GG (36)
1. If (A, G) is stabilizable and there exists K such that (S1) holds, then (S3) holds and (Aλ C M -1 ) is a Hurwitz matrix.

If

(A, G) is controllable, (S3) implies that, lim t→∞ t = , ( 37 
)
where t solves [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF] and is obtained from (S3).

Proof. To prove the first item, we first choose K 1 such that (S1) holds. Therefore, there exists a positive semidefinite matrix 1 that solves the matrix equation ( 34), and 1 satisfies the fixed point equation, 1 = [START_REF] Taghvaei | Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem[END_REF], and

K 1 λ ( 1 )+G K 1 , where K 1 λ (•) is defined as in
G K 1 = ∞ 0 e A λ t (GG + λK 1 V K 1 )e A λ t dt. Due to linearity of K 1 λ , it readily follows that 1 = K 1 λ ( 1 ) + G K 1 = ( K 1 λ ) i ( 1 ) + i-1 j=0 ( K 1 λ ) j (G K 1 )
, for each i ∈ . Further, since the spectral radius of

K 1
λ is strictly less than one, there exist γ 0 and 0 < δ < 1 such that (

K 1 λ ) i γδ i for each i ∈ . Consequently, let K 1 ,i 1 ( ) := ( K 1 λ ) i 1 ( ) + i 1 -1 j=0 ( K 1 λ ) j (G K 1 )
where i 1 is chosen such that γδ i 1 < 1. Since K 1 ,i 1 is a contraction mapping, there is a unique solution of the equation = K 1 ,i 1 ( ), which we have denoted by 1 . Further, let

K 2 := M -1 1 C 1 , 2 = K 2 ,i 1 ( 2 )
, where 2 can be obtained by successive approximations:

(1)

2 = 0, (k+1) 2 = K 2 λ ( (k) 2 ) + G K 2 ; Indeed, K 2 ,i 1 ( 2 ) is well-defined since A λ is Hurwitz. Notice that the sequence of (k)
2 is nondecreasing and nonnegative.

Recall that 1 satisfies Ψ( 1 , M 1 , K 1 ) = 0, so that, from (31) and our choice of K 2 , we have 0

= -Ψ( 1 , M 1 , K 1 ) -Ψ( 1 , M 1 , K 2 ) which leads to (recall that J K 2 = (I -K 2 C)), 0 - ∞ 0 e A λ t A λ 1 + 1 A λ + J K 2 1 J K 2 + Π K 2 λ ( 1 ) + GG + λK 2 V K 2 e A λ t dt 1 - ∞ 0 e A λ t Π K 2 λ ( 1 ) + J K 2 1 J K 2 e A λ t dt -G K 2 .
Let us show by induction that

(k) 2 
1 for each k. Firstly it holds for k = 1, and for k > 1,

(k+1) 2 = K 2 λ ( (k) 2 ) + G K 2 = ∞ 0 e tA λ Π K 2 λ ( (k) 2 ) + λJ K 2 ( (k) 2 )J K 2 e tA λ dt + G K 2 1 - ∞ 0 e tA λ Π K 2 λ ( 1 - (k) 2 ) + λJ K 2 ( 1 - (k) 
2 )J K 2 e tA λ dt.

Since the second-term on the right-hand side is negative definite, for each k ∈ ,

2 is no greater than 1 and consequently 0 2 1 . This procedure can be repeated to construct the sequences {K i } and { i } similarly. Since 0 i+1 i there exists = lim i→∞ i , and moreover, for

M = (1 + c)C C + (2c + c 2 ) tr ( )I n×n + V, we obtain, K = lim i→∞ K i = M -1 C
, and get Ψ( , M , K) = 0 where 0.

To complete the proof of first item, we next show that A-λK C is stable. It is seen that satisfies the equation

= ∞ 0 e sA λK Π( ) + GG + λK M K e sA λK ds
∞ 0 e sA λK GG e sA λK ds.

Existence of positive semidefinite implies that the integral on the right-hand side is bounded and since (A, G) is assumed to be stabilizable, it follows that A λK is Hurwitz.

For the proof of second item in Theorem 6.2, we show that there are t and t such that t t t and both converge to . Set

K = C M -1 , A = A -λK C,
where A is Hurwitz stable by the first item.

Denote by t the solution of ˙

t = Ψ( t , M t , K ) = A λ t + t A λ + Π K λ ( t ) + GG + λK V K + λ(I - K C) t (I -K C)
, with 0 = 0 0. By the minimum property (Lemma 5.1) t t . Let G be such that λK V K + GG = G G . Using the same reasoning as in the proof of Theorem 6.1, it follows from Lemma C.1 that (A λ , G ) is controllable. Then, applying Lemma C.2, we have t → as t → +∞.

Next, consider the function t obtained by solving the equation, ˙

t = Ψ( t , M t , t C M -1 t ), with (0) 
= 0. Due to zero initial condition, t enjoys a monotonicity property which is stated in the following lemma and its proof appears in Appendix B.

Lemma 6.3. The solution t of the following Cauchy problem

d t dt = Ψ( t , M t , t C M -1 t ), 0 = 0 is monotone nondecreasing for t ∈ [0, +∞).
Notice that the limit lim t→+∞ t exists as t is monotone function by Lemma 6. 

d t dt = Ψ( t , M t , K t ) -Ψ( t , M t , t C M -1 t ) Ψ( t , M t , K t ) -Ψ( t , M t , K t ) = (A -λK t C) + (A -λK t C) + Π( t ) + λK t M t K t .
This leads to

t = Φ(t, 0) 0 Φ (t, 0) + t 0 Φ(t, s) Π( s ) + λK s M s K s Φ (t, s) ds t 0 Φ(t, s) Π( s ) + λK s M s K s Φ (t, s) ds,
where Φ(t, s) is the fundamental matrix associated with A -λK t C. From this expression 4 , we obtain t 0 and hence t t .

Sufficient Conditions for Boundedness

In this section, we study some particular cases which provide sufficient conditions to guarantee the boundedness of the error covariance matrix, based on the results given in the previous section.

Eigenvalue Assignment Condition

Since the conventional design of the state estimators provide conditions for bounded estimation error based on the eigenvalues of certain matrix, we rewrite the conditions from previous section as an eigenvalue test.

Proposition 7.1. For a given λ > 0 and K ∈ n×p , consider the matrices, 5

λK := (I ⊗ (A -λKC) ) + ((A -λKC) ⊗ I) + λ((KC) ⊗ (KC) ) Σ a := a(I ⊗ I + vec(I) • vec(I) ) Σ c := c(I ⊗ I + (KC) ⊗ (KC) ) + (2c + c 2 ) • (vec(I) • vec(I) ) • (I ⊗ K K )
and the following statement,

(S4) The matrix λK + Σ a + λΣ c ∈ n 2 ×n 2 is Hurwitz.
Then (S4) implies (S2) stated in Theorem 6.1.

Proof. To prove this result, we will make use of [9, Theorem 3.1(ii)]. Using this result, we just need to show that, if (S4) holds, then the matrix-valued function : [0, ∞) → n×n satisfying the differential equation ˙ = Σ( ) has the property that t converges to zero, as t → ∞, where Σ( ) = A λ + A λ + λJ K J K + Π * λ,K ( ) and Π * λ,K denotes the adjoint 6 of Π K λ . In particular,

Π * λ,K ( ) = a + a tr( )I + λc + λcC K KC + λ(2c + c 2 ) tr(K K )I.
We now write the matrix differential equation in vectorial form, so that, vec( ˙ ) = vec(Σ( )), and using the properties of the Kronecker product of the matrices, we observe that 7

vec(Σ(R)) = (I ⊗ A ) vec(R) + (A ⊗ I) vec(R) -λ(I ⊗ I) vec(R) + λ(J K ⊗ J K ) vec(R) + vec(Π * λ,K ( )). (38) 
Recalling the definition of Σ a and Σ c , the last term in [START_REF] Wonham | On a matrix Riccati equation of stochastic control[END_REF] can be written as, vec(Π * λ,K (R)) = Σ a vec(R) + λΣ c vec(R). Also, since J K = (I -KC), the second to last term in [START_REF] Wonham | On a matrix Riccati equation of stochastic control[END_REF] is rewritten as

(I -KC) ⊗ (I -KC) = (I ⊗ I) -((KC) ⊗ I) -(I ⊗ (KC) ) + ((KC) ⊗ (KC) ) so that, vec(Σ( )) = ( λK + Σ a + λΣ c ) vec( ).
Clearly, if the matrix ( λK + Σ a + λΣ c ) is Hurwitz, then vec( t ) converges to 0, as t → ∞, and, in particular, t converges to 0 as well. 4 If 5 The symbol ⊗ denotes the matrix Kronecker product. 6 For a linear operator Π : n×n → n×n , its adjoint is a linear operator Π * : n×n → n× that satisfies 〈Π(M 1 ), M 2 〉 = 〈M 1 , Π * (M 2 )〉, for all matrices M 1 , M 2 ∈ n×n . Here, the inner product over the space of matrices is defined as 〈M 1 , M 2 〉 = tr(M 1 M 2 ). 

Q t t 0 Φ(t, s)(Π(Q s ) + λK s M Q s K s )Φ (t, s)ds, then Q t 0.

A sufficient condition with C square and invertible

In the particular case, when C is square and invertible, one can provide certain conditions under which a particular choice of the gain matrix K bounds the error covariance. This is captured by the following result: Proposition 7.2. Consider the system (1) and the filter [START_REF] Davis | Markov Models and Optimization[END_REF]. Assume that C ∈ n×n is invertible and take K = C -1 . Let α := ∞ 0 e (A-0.5λI)t e (A-0.5λI) t dt [START_REF] Yang | Feedback particle filter[END_REF] Then, the error covariance is bounded if

a(n + 1) + 2λc + λn(2c + c 2 ) C -2 < 1 α . ( 40 
)
Proof. Based on the result of Theorem 6.1, it suffices to show that (40) leads to the spectral radius of K λ being strictly less than 1. By letting K = C -1 , it is seen that K λ (P) = ∞ 0 e A λ t Π K λ (P)e A λ t dt. We can now introduce the bound -P Π K λ (I) Π K λ (P) Π K λ (I) P so that, using the definition of α in [START_REF] Yang | Feedback particle filter[END_REF],

K λ (P) α Π K λ (I) P . Condition (40) ensures that α Π K λ < 1 because Π K λ (I) = a(1 + tr(I))I + 2λcI + λ(2c + c 2 ) tr(I)C -2 .
As a result, K λ < 1 and in particular, the spectral radius of K λ is less than 1.

In the proof of Proposition 7.2, we basically showed that, if C is invertible and the nonlinearities are small enough, then for certain choice of K and λ such that

K λ < 1 (41)
it follows that the spectrum of K λ lies within the unit disk of the complex plane, that is, the statement (S1) holds. However, if C is not invertible, then even for linear systems (a = 0 and c = 0), there may not exist λ and K such that (41) holds. This is shown by the following example.

Example 3. Consider the dynamical system (1) with f (t, x) = Ax and h(x) = C x, G = I 2×2 , where A = 1 1 0 1 ; C = [ 1 0 ]. With this example, even if there are no nonlinearities, that is, a, c = 0, it is seen that, for any λ > 0, there does not exist a K ∈ 2 such that (41) holds for this system. To see this, observe that (41) translates to finding a matrix K such that, λ ∞ 0 e t(A-0.5λI) J K J K e t(A-0.5λI) dt < 1. We let K =

k 1 k 2 , for some k 1 , k 2 ∈ .
However, with straightforward computations involving matrix exponential, we see that, the integral is finite for each λ > 2, and e t(A-0.5λI) J K J K e t(A-0.5λI) = * * * e (1-0.5λ)t (1 + k 2

2 )e (1-0.5λ)t .

Clearly, with λ > 2, λ ∞ 0 e (1-0.5λ)t (1 + k 2

2 )e (1-0.5λ)t > 1, and hence the condition (41) does not hold true. However, it is possible to check that for each λ > 2, we can find K such that (S4) holds true. For simulation purposes, we choose λ = 10 and see that K = [1 2] satisfies the condition (S4), where we take Σ a = Σ c = 0. The simulation results are reported in Figure 3. Moreover, since eigenvalues of a matrix are continuous functions of its entries, the matrix λK + Σ a + λΣ c also has eigenvalues in open left-half of the complex plane, for small enough values of a and c. 

Dependence on Sampling Rate

A natural question for analyzing the performance of our proposed estimator is to study the dependence of error covariance with respect to the sampling rate λ of the Poisson measurement process. This question has not been straightforward for the class of systems studied in this paper, that is, the systems with ( f , h) Lipschitz continuous. However, some constructive statements can be derived if we assume that f , h are linear, that is, f (x) = Ax and h(x) = C x, so that the system is described as in Example 2 using equation [START_REF] Matveev | The problem of state estimation via asynchronous communication channels with irregular transmission times[END_REF].

A lower bound on sampling rate

We first provide a necessary lower bound on the sampling rate which ensures that the error covariance remains bounded for all times. In what follows, we denote an eigenvalue of A by µ j (A) and its real part by ℜµ j (A), j = 1, . . . , n. Proposition 8.1. Consider system [START_REF] Matveev | The problem of state estimation via asynchronous communication channels with irregular transmission times[END_REF] with (A, C) detectable and (A, G) controllable. Then, for each λ < 2 max{ℜµ j (A) | j = 1, . . . , n}, the solution to [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF], with a = c = 0, is such that lim t→∞ (t) = ∞.

Proof. We first look at the differential equation, Qt

= A λ Q t + Q t A λ + GG with initial condition Q 0 = 0 . It is clear that Q t stays bounded if and only if, 0 = A λ Q + QA λ + GG has a symmetric positive definite solution Q. With (A, G) controllable, this is the case if and only if A λ is Hurwitz, that is, λ > 2 max{ℜµ j (A) | j = 1, . . . , n}. We claim that Q t t , for every t 0. To see this, let Q 0 = 0 . Let Q t = t -Q t , then ˙ Q t = ψ 1 ( Q t ) + λ (I -KC) t (I -KC) + K V K where ψ 1 ( Q t ) = A λ Q t + Q t A λ + GG .
Because of the zero initial condition, this equation has the solution given by

Q t = t 0 e A λ (t-s) λ(I -KC) s (I -KC) + GG + λK V K e A λ (t-s) ds 0
and hence Q t 0, that is, t Q t for each t 0. As a result, t goes to +∞ when Q t grows unbounded. denote the corresponding solutions to [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF] with a = c = 0 and λ 1 (0) = λ 2 (0). For each λ 2 λ 1 , we have

Monotonicity relation

λ 2 t λ 1 t , ∀ t 0. ( 42 
)
Proof. For a given λ, the solution to [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF] satisfies the equation, ˙

λ t = Ψ λ ( λ t , M λ t , λ t C M -1 λ t
), where, due to the linearity of the measurement map,

Ψ λ ( λ t , M λ t , λ t C M -1 λ t ) = A λ t + λ t A + GG -λ λ t C M -1 λ t C λ t .
It therefore holds that 

Convergence with large sampling rate

Building up on the monotonicity relation stated in Proposition 8.2, we now compare the error covariance of the sampled system with the error covariance of an estimator with continuous time measurements. Toward this end, let us consider the optimal Kalman-Bucy filter for [START_REF] Matveev | The problem of state estimation via asynchronous communication channels with irregular transmission times[END_REF] with continuously available output measurements, which is given by d

z t = A z t dt + K cont t (dz t -C z t dt), (43) 
with z 0 = E[x 0 ]. To minimize the error covariance, the injection gain K cont t for this estimator is obtained as

K cont t = t C V -1 (44a) d dt t = A t + t A + GG -t C V -1 C t . ( 44b 
)
When t → ∞, the error covariance E[|x t -z t | 2 | t ] is given by the matrix that solves

0 = A + A + GG -C V -1 C . ( 45 
)
We are interested in knowing how the steady state error covariance for the estimator using sampled measurements compares with when we increase the sampling rate λ, and in particular, when we let λ go to ∞.

The next result addresses these issues and to formulate it, we consider the operator

K λ which is obtained from K λ by setting Π K λ = 0 in (33), that is, K λ (P) := λ ∞ 0 e tA λ (I -KC)P(I -KC) e tA λ dt, (46) 
with ρ K λ denoting its spectral radius. We denote the Neumann series associated with K λ by λ , so that

λ := I - K λ -1 = ∞ j=0 ( K λ ) j . Thus, if ρ K λ < 1, there exists such that K λ
< 1, and we can write

λ = I + K λ + • • • + K λ -1 I + K λ + K λ 2 + • • • = I + K λ + • • • + K λ -1 I - K λ -1
.

Using triangle inequality 8 , it follows that

λ β λ := I + K λ + • • • + K λ -1 1 - K λ .
Theorem 8.3. Consider system (1) under (A1) with a = 0, c = 0, and assume that (A, G) is controllable. Let denote the steady state minimal covariance of the estimator (43) that satisfies (45). Let K = K cont = C V -1 and assume that the operator

K λ in (46) satisfies ρ K λ < 1, (47) 
for each λ > 0. Then the matrix λ 0 that solves [START_REF] Tanwani | Stabilization of continuous-time deterministic systems under random sampling: Overview and recent developments[END_REF], and provides an upper bound on the error covariance due to filter [START_REF] Davis | Markov Models and Optimization[END_REF] with Poisson measurement process of intensity λ, satisfies

λ = + λ ∞ 0 e A λ t K (1 -λ)V + λC C K e A λ t dt . ( 48 
)
In particular, if β ∞ = lim sup λ→∞ β λ , then

lim sup λ→∞ λ + β ∞ K(C C -V )K . ( 49 
)
Proof. Consider the solution λ t of ( 19) with Π K λ = 0 and K := C V -1 . Let λ t = λ t -, then λ t satisfies the following relation

˙ λ t = A λ λ t + λ t A λ + (1 + λ)K V K + λ(I -KC) λ t (I -KC) -λ = A λ λ t + λ t A λ + (1 + λ)K V K -λ + λ(I -KC) λ t (I -KC) + λ(I -KC) (I -KC) = A λ λ t + λ t A λ + K V K -λK V K + λ(I -KC) λ t (I -KC) + λKC C K
where the last equality followed from the fact that

(I -KC) (I -KC) -= KC C K -2 C V -1 C = -2K V K + KC C K .
Because of condition (47) and Theorem 6.1, we have lim t→∞ λ t (t) = λ . Hence, by letting λ := λ -(which is not necessarily positive definite), we have that lim t→∞ λ t (t) = λ . Moreover, λ solves the following algebraic equation:

0 = A λ λ + λ A λ + K V K -λK V K + λ(I -KC) λ (I -KC) + λKC C K Alternatively, the matrix λ satisfies the equation, λ = K λ ( λ ) + G K λ , where G K λ := ∞ 0 e A λ t K (1 -λ)V + λC C K e A λ t dt. Iterating the fixed point equation, we get λ = K λ k (G K λ ) + k-1 j=0 K λ j (G K λ ) k→∞ = (I - K λ ) -1 (G K λ ),
and hence we arrive at (48

): λ = + (I - K λ ) -1 (G K λ ).
The inequality in (49) is obtained by taking the norms and using the bound e tA λ = e tA • e -0.5tλI e ( A -0.5λ)t , which results in

lim sup λ→∞ G K λ K(C C -V )K ,
along with the bound λ β λ . 8 We use the fact that I -

K λ -1 I + K λ + K λ 2 + • • • = ∞ j=0 K λ j = 1 - K λ -1
.

In this paper, we studied the problem of filter design for Lipschitz nonlinear systems under randomly sampled output measurements. We provided filter design equations and derived equations for computing the covariance of the state estimation error resulting from our filter design. Conditions were provided under which the expected error covariance remains bounded, and the dependence on the sampling rate was also studied in some special cases.

To build on this line of work, it could be interesting to address similar questions with other types of distributions on the measurement process as most of the developments in the current work are specific to Poisson processes of constant intensity. Such generalizations could start with considering sampling processes where the rate depends on the state. It would be interesting to see if the tools developed in process allow us to handle a broader system class with state-dependent diffusion coefficient matrix G. One could also think of developing more general tools for studying dependence on the sampling rate, which at the moment is presented only for the linear measurement case. In this regard, one can also draw connections with the results that appear in the literature on cheap control and quantifying filtering error bounds when the coefficient next to diffusion terms in the system dynamics converge to zero [START_REF] Kwakernaak | The maximally achievable accuracy of linear optimal regulators and linear optimal filters[END_REF][START_REF] Picard | Efficiency of the extended Kalman filter for nonlinear systems with small noise[END_REF].

Appendix A Proof of Proposition 5.2

Proof. To prove the existence of solution to equation [START_REF] Liptser | Statistics of Random Processes. Part I & II[END_REF], we first consider the differential equation ( 19) with a time-varying K(•). The resulting time-varying differential equation, subject to the initial condition (0) = 0 , has the solution t = ϕ(t, , M , K) := Φ(t, 0) 0 Φ (t, 0) + t 0 Φ(t, s) GG + Π( s ) + λK s M s K s Φ (t, s)ds.

For any given K(•) and a positive definite matrix M ∈ p×p (affine in ), we can find a solution of the Volterra equation t = ϕ(t, , M , K) by successive approximation. Let us construct a sequence of these solutions P i for i 1 such that M 0 = I p×p , K 0 = C , i+1 (t) = ϕ(t, i+1 , M i , K i ), M i+1 = (1+ c)C i+1 C +(2c + c 2 ) tr P i+1 I p×p + V, and K i+1 = M -1 i+1 C i+1 . Notice that all i are positive semidefinite, all M i are positive definite and so invertible, all matrices K i , M i , i , i ∈ , are measurable and bounded with respect to t. Consider Q i (t) = i (t) -i+1 (t) with Q i (0) = 0. From [START_REF] Kunita | Itô's stochastic calculus: Its surprising power for applications[END_REF] and [START_REF] Suhov | Markov chains: a primer in random processes and their applications[END_REF], we get Qi = Ψ( i , M i , K i ) -Ψ( i+1 , M i+1 , K i+1 )

Ψ( i , M i , K i ) -Ψ( i+1 , M i+1 , K i ) = (A -λK i C)Q i + Q i (A -λK i C) + Π(Q i ) + λK i (M i -M i+1 )K i = (A -λK i C)Q i + Q i (A -λK i C) + Π(Q i ) + λ(1 + c)K i CQ i C K i + λ tr (Q i )(2c + c 2 )K i K i = (A -λK i C)Q i + Q i (A -λK i C) + Π(Q i ) + λK i (1 + c)CQ i C + tr (Q i )(2c + c 2 )I p K i
so there exists a positive semidefinite matrix R such that Qi = (A -

λK i C)Q i + Q i (A -λK i C) + Π(Q i ) + λK i (1 + c)CQ i C + tr (Q i )(2c + c 2 )I p K i + R.
Hence, Q i (t) can be rewritten as a solution of the equation

Q i (t) = t 0 Φ(t, s)(Π(Q i ) + λK i M Q i K i + R)Φ (t, s)ds,
implying that Q i (t) 0 for each i 1 and t ∈ [0, T ], as it can be calculated by successive approximation with Q i (0) = 0. Consequently, the sequence { i (t)} i∈ is non-increasing for each t ∈ [0, T ]. It also means that on the finite segment [0, T ], i (t) is uniformly bounded by the number, sup{| If there exists a constant matrix 0 such that A + A + Π( ) + GG = 0, then t → as t → +∞.

  (a) Constant gain K = [0.5 0.5] . (b) Dynamic gain K t = P t C M -1 P t .

Figure 1 :

 1 Figure 1: Plot of tr(e t e t ) (blue curve) and tr(P t ) (yellow curve) along one sample path (of sampling times) for two choices of K τ k with λ = 10.

  (a) Constant gain K = [0.5 0.5] . (b) Dynamic gain K t = P t C M -1 P t .

Figure 2 :

 2 Figure 2: Experimental value (blue curve) and theoretical upper bound (red curve) for expectation (with respect to sampling process) of trace of error covariance with λ = 10 for two choices of K.

Proof.

  The implication that (S2) follows from (S1) is a consequence of [9, Theorem 3.1: (d) ⇒ (b)].

7

 7 For given matrices A, B, C, D of appropriate dimensions, we have: 1) (A ⊗ B)(C ⊗ D) = AC ⊗ BD, and 2) If ABC = D, then vec(D) = (C ⊗ A) vec(B).

  (a) Expectation with respect to sampling times with constant gain K = [1 2] . (b) One sample path with bound minimizing gain.

Figure 3 :

 3 Figure 3: Trace of error covariance and their theoretical upper bounds for Example 3 with λ = 10.

  The conventional filtering problem deals with constructing a mean-square estimate of the state x t , denoted by x t so that E[|x t -x t | 2 | (dz s ) s t ] is minimized. The optimal estimate which achieves this minimum value is E[x t | (dz s ) s t ] and it is typically computed under the premise that the output measurements are available continuously at all time instants. But here we work under some constraints on the availability of the output measurements.

  . For this choice of x t , the value of E[|x t -x t | 2 | t ] depends on the random sampling times. We then compute the expectation with respect to sampling times and hence obtain a bound on E[E[|x t -x t | 2 | t ]].

  Let us first show that for every t ∈ [τ N t , τ N t +1 [ we have the inequality

dE[e t e t ] dt dP t dt . On this time interval, let us consider the Itô process in (10a):

  1, we computed bounds on the estimation error covariance for arbitrary choice of gains. However, by choosing the gains in a certain dynamic manner such that K in (7b) depends on P t obtained from equations of form (8a)-(8b), we can minimize P t and E[e t e t ]. For the chosen class of filters, this optimal choice of dynamic gain and the resulting covariance bound are indicated in the next result.

Proposition 3.2. Consider system

[START_REF] Adès | Stochastic optimal control under Poisson-distributed observations[END_REF] 

under assumption (A1) and the filter

[START_REF] Davis | Markov Models and Optimization[END_REF] 

with {τ k } k∈ given. If the output injection gains K τ k , k ∈ , in (7b) are chosen as

  Since is a unique solution of the algebraic equation, it follows that t → as t → ∞.

		3 and this limit is bounded
	because of minimal property in Lemma 5.1 and Theorem 6.1. Moreover, this means that too. As t 0 the equality lim t→+∞ t = +∞ 0 d t dt dt implies that d t	d dt and	d 2 dt 2 are bounded
	It remains to prove that t	t . Let K	

dt → 0 as t → ∞. t := t C M -1 t and consider t := tt , so that 0 = 0 , and

  After deriving a lower bound which is necessary for boundedness, the next question is to study how this steady state upper bound on the error covariance changes as a function of the sampling rate.

	Proposition 8.2. Consider system (1) under (A1) with a = 0, c = 0. Let λ 1 , λ 2 measurement process and λ 1 λ 2 t , t	0 describe the rate of Poisson

  , for each λ 2 λ 1 , we have Ψ λ 2 Ψ λ 1 , for every λ 2 λ 1 . In particular, ˙ λ 2

	∂ Ψ λ ∂ λ	0 and thus

t ˙ λ 2

t , for each t 0 and hence (42) holds.

of Lemma 6.3

  1 (t)| | t ∈ [0, T ]}, for every i 1 and t ∈ [0, T ]; consequently M i (t) and K i (t) are uniformly bounded as well. Moreover, we lett = lim (t) = (1 + c)C t C + (2c + c 2 ) tr( t )I n×n + V , K t = lim i→∞ K i (t) = C M -1 .So, the Volterra equation has the form: t = ϕ(t, , M , K) for M t and K t defined above, meaning that the chosen solution is well-defined and unique. Let t = t C M -1 t and let Φ(t, s) denote the fundamental matrix associated with Aλ t C. Then Let us fix an arbitrary τ 0 and define t = t+τ . Further, let Φ(t, s) be the fundamental matrix associated with Aλ = 0, then t t , for each t 0, by minimum property. Moreover, we have the following representations of t-τ : ([38, Lemma 4.1]). Consider the equation, GG + K K = GG , and let F be an arbitrary matrix of suitable dimension. 1. If (A, G) is controllable, then (A + K F, G) is controllable. 2. If (A, G) is stabilizable, then (A + K F, G) is stabilizable.

							i→∞	i (t),
	M t = lim						
	t						
	t =	Φ(t, s)(Π( s ) + GG + λ		s M	s	s	)Φ (t, s)ds.	(50)
	0						
				s-τ	s	)Φ (t, s)ds
	t						
	Φ(t, s)(Π( s-τ ) + GG + λ	s M	s-τ	s	)Φ (t, s)ds.
	0						
	The last inequality, combined with (50), yields					
	Lemma C.2 ([38, Lemma 5.1]). Let (A, G) be controllable, 0 0 and let	satisfy
	˙						

i→∞ M i B Proof t C; then Φ(t, s) = Φ(t + τ, s + τ). Let t be the solution of ˙ t = Ψ( t , M t , t ), 0 t-τ = t-τ 0 Φ(tτ, s)(Π( s ) + GG + λ s M s s ) Φ (tτ, s)ds = t-τ 0 Φ(t, s + τ)(Π( s ) + GG + λ s+τ M s s+τ )Φ (t, s + τ)ds = t τ Φ(t, s)(Π( s-τ ) + GG + λ s M tt-τ t 0 Φ(t, s)(Π( ss-τ ) + λ s M ( s -s-τ ) K s )Φ (t, s)ds

and hence we get ss-τ 0, for each s τ. By letting s = t + τ, we obtain the desired monotonicity, that is, t t t+τ , and this completes the proof.

C Auxiliary Results

Lemma C.1 t = A t + t A + Π( t ) + GG , (0) = 0 .

It follows from the fact that, for each z, e ∈ n , and f nl ∈ n satisfying | f nl | a|e|, we have that, z (e f nl + f nl e )z 2 |z e| • |z f nl | 2 a |z e| • |z| |e| a z ee z + a|e| 2 z z.

For a given matrix P, the notation M P used in[START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] will be used extensively in the remainder of this article where we will change the matrix appearing in the subscript. With V assumed to be symmetric positive definite, M P is a symmetric positive definite matrix, whenever P is symmetric positive semidefinite.