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Error Covariance Bounds for Suboptimal Filters with
Lipschitzian Drift and Poisson-Sampled Measurements

Aneel Tanwani Olga Yufereva

Abstract

We design suboptimal filters for a class of continuous-time nonlinear stochastic systems when the measure-
ments are assumed to arrive randomly at discrete times under a Poisson distribution. The proposed filter is a
dynamical system with a differential equation and a reset map which updates the estimate whenever a new
measurement is received. We analyze the performance of the proposed filter by computing the expected value
of the error covariance which is described by a differential equation. We study throughly the conditions under
which the error covariance remains bounded, which depend on the system data and the mean sampling rate
associated with the measurement process. We also study the particular cases when the error covariance is seen
to decrease with the increase in the sampling rate. For the particular case of linear filters, we can also compare
the error covariance bounds with the case when the measurements are continuously available.

1 Introduction

Filtering, or state estimation, in stochastic dynamical systems is one of the fundamental problems in engineering
which has found applications in various disciplines ranging from control theory and signal processing to robotics
and image/audio processing. A recently compiled book [5] provides an overview of the developments carried
out in the area of filtering theory since its inception. While the problem is relatively well-studied for linear
dynamical systems with closed form solutions, the analysis and implementation of nonlinear filters has proven
to be a rather challenging problem. For this reason, many research works have focused on providing relaxed
versions of optimal filters for nonlinear systems, which are more amenable for implementation. However, from
analysis perspective, relatively fewer works exist which rigorously quantify the performance of nonlinear filters.
For these reasons, nonlinear filtering continues to be an active area of research where the search of effective
implementation algorithms and analysis methods is of interest for may applications [8, 11, 37, 33, 39, 32, 17].
This article aims at making a contribution in the area of nonlinear filtering for continuous-time systems where
the amount of information provided by the output measurements is not only limited by continuous white noise,
but also by sampling in time; In particular, it is stipulated that the output measurement arrive randomly at some
discrete time instants only. With this additional uncertainty due to random sampling of the output measurement,
we study the problem of obtaining bounds on the covariance of the state estimation error for certain class of
nonlinear dynamical systems with our proposed filtering algorithms.

The filtering problem aims at minimizing the expected value of squared estimation error at each time condi-
tioned upon the measurements available up to that point. Under some mild assumptions, it is seen that the optimal
estimator, minimizing the aforementioned function, is the expected value of the state variable conditioned upon
the last available measurement. The key element in computing this estimate is thus to get the probability density
function of the state conditioned upon the system output. Pioneering works related to describing the evolution
of density function using partial differential equations have been carried out in [30, 20, 40, 10], see also the his-
torical overview [27] and the book [22]. Analysis, or implementation, of such equations is of course a different,
and possibly a difficult, task. With relevance to this article, the results on analyzing the performance of the filters
by analyzing the estimation error are the most pertinent ones. In this regard, the works [12, 28] provide bounds
on error covariance under certain structural assumption on the system dynamics. We impose similar assumptions
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on our nonlinear system to propose a suboptimal filter and analyze its performance under randomly sampled
measurements.

More specifically, the problem formulation studied in this paper is motivated by the need of controlling dynam-
ical systems over networks [13]. A common feature of the communication across networks is that the underlying
protocols allow transmission of measurements only at randomly chosen discrete time instants [35]. Certain works
in the literature have studied this problem of stabilization and control with randomly sampled measurements:
The reader may refer to [1] for optimal control and the papers [14, 2] for stability conditions. A recently published
book chapter [34] provides an overview of such results and some recent developments.

There have been relatively fewer works which have addressed filtering problem in the presence of measure-
ment errors or communication uncertainties. The papers [23, 29, 15] consider a discrete-time linear dynamical
system and associate randomness with the transmission times of the output measurements. A different toolset,
based on relative entropy, is adopted in [24] to study the stability and convergence of filters under relaxed as-
sumptions on observation channels. For continuous-time dynamical system driven by white noise, one can adopt
the structure of continuous-discrete observer proposed in [16]. However, such filters also suffer from the problem
of implementation.

There are not many works that analyze the performance of continuous-time nonlinear filters in the presence
of communication errors, or measurement errors in general, which is the topic of this paper. For continuous-
time linear systems, filtering problem with randomly sampled measurements has been studied in [25] and [26],
where the authors compute a conditional density function and use it to get the desired expectation. In this article,
instead, we focus on nonlinear dynamics with a certain structure and propose a filter directly for estimating the
expected value of the state. This filter is described by a piecewise deterministic Markov process [6, 7] where the
randomness is due to sampling times of the measurements. To analyze the performance of the proposed filter,
it is seen that the resulting error dynamics are described by an Itô process with resets at random times. Using
stochastic differential rule [18], we first compute an upper bound on the error covariance matrix for a given
sequence of sampling times. Assuming that the sampling process is Poisson, we compute the expected value of
the resulting bound which is a matrix differential equation. In the resulting analysis of this differential equation,
we are aided by the tools appearing in [38] and [9]. Such methods have also found their utility in linear filtering
problems [3].

The remainder of the paper is organized as follows: The dynamical system and the observation process is
described in Section 2. In Section 3, we propose a filter which estimates the mean value of the state trajectory for
fixed sampling times, and compute the bounds on resulting error covariance. The expected value of these bounds
with respect to sampling times are derived in Section 4. We then study the evolution of the mean covariance
bound with respect to time in Section 5, and provide conditions in Section 6 and Section 7 under which the error
covariance stays bounded. Finally, in Section 8, we study dependence with respect to the sampling rate before
concluding the article with some directions of future research, and an appendix which collects some known results
from the literature used in our derivations.

2 Problem Formulation

2.1 System Class

We consider stochastic nonlinear systems of the form

dx t = f (x t)dt + G(x t) dωt (1a)

dzt = h(x t) dt + dηt , (1b)

where (x t)t¾0 is anRn-valued diffusion process describing the state, and (zt)t¾0 describes anRp-valued continuous-
time observation process. Let (Ω,F ,P) denote the underlying probability space. It is assumed that, for each
t ¾ 0, ωt is an Rm-valued standard Wiener process adapted to the filtration Ft ⊂ F , with the property that



E[dωdω>] = Im×m, for each t ¾ 0. Also, in the observation equation (1b), ηt is an Ft -adapted standard Wiener
process, taking values in Rp, and E[dηt dη>t ] = Vt ∈ Rp×p, with Vt assumed to be positive definite. The drift term
f : Rn→ Rn, the matrix of diffusion coefficients G : Rn→ Rn×m, and the output map h : Rn→ Rp are assumed to
be continuous. It is also assumed that the processes (ωt)t¾0, (ηt)t¾0 are independent of each other, and do not
depend on the state either. The solutions of the stochastic differential equation are given by

x t − x0 =

∫ t

0

f (xs) ds+

∫ t

0

G(xs) dωs

where the last integral is interpreted in the sense of Itô, and is referred to as Itô stochastic integral. Further details
about Itô’s integral and its connection to stochastic differential equations can be found in the books [18, 22], or
in a recent article [19] dedicated to the memory of K. Itô.

The conventional filtering problem deals with constructing a mean-square estimate of the state x t , denoted
by bx t so that E[|x t − bx t |2 | (dzs)s¶t] is minimized. The optimal estimate which achieves this minimum value
is E[x t | (dzs)s¶t] and it is typically computed under the premise that the output measurements are available
continuously at all time instants. But here we work under some constraints on the availability of the output
measurements.

2.2 Observation Process

Our goal is to study the state estimation problem when the output measurements are available only at random
times. The motivation to work with randomly time-sampled measurements comes from several applications,
such as, communication over networks which allow information packets to be sent at some discrete randomly
distributed time instants. Thus, we consider a monotone nondecreasing sequence (τn)n∈N taking values in R¾0
which denote the time instants at which the measurements are available for estimation. We introduce the process
Nt defined as

Nt := sup
�

n ∈ N
�

� τn ¶ t
	

for t ∈ R,

and it is assumed that (Nt)t¾0 is a Poisson stochastic process independent of the noise and the state processes.
The discretized, and noisy, observation process is thus defined as1

yτNt
= h(x(τNt

)) + ντNt
, t ¾ 0.

Our goal is to construct the estimate bx t , which minimizes the mean square estimation error, using the observations
Yt := {yτk

| k ¶ Nt}. For a certain class of nonlinear functions f and h in (1), we will derive filtering equations
to construct an estimate, and provide conditions on the sampling process which guarantee bounded covariance
of the estimation error.

2.3 Problem Context

With time-sampled measurements, it is natural to consider the filtering problem:

min
bx t

E
�

|x t − bx t |2
�

� {yτk
}k¶Nt

�

(2)

for each t ¾ 0. It has been shown in [16] that the solution to the minimization problem (2) is given by

bx t = E[x t | {yτk
}k¶Nt

], (3)

1Equation (1b) is formally equivalent to yt = h(x t ) + νt , with the identifications yt ∼
dzt
dt and νt ∼

dηt
dt , so that νt is a white Gaussian

process, νt ∼ N(0, VτNt
); see [16, Chapter 4] for further details.



that is, we need to compute the expected value of x t conditioned upon the last available output measurements. Be-
cause of the discrete nature of the output measurements, it is seen that, between two consecutive sampling instants
τNt

and τNt+1, the conditional expectation is obtained by computing the conditional probability %(x t |{yτk
}k¶Nt

).
Between two successive measurements, we have

%(x t |{yτk
}k¶Nt

) = % (x t |yτNt
), τNt

¶ t < τNt+1,

where % (x t |yτNt
) is obtained by the same evolution rule which governs the propagation of the probability density

function of the state process (x t)t¾0, that is, the Fokker-Planck operator with the initial condition % (xτNt
|yτNt

),
see for example [4]. When a new measurement arrives, the conditional probability density function gets updated,
and can be computed using Bayes’ rule [16, Theorem 6.1]. From these equations for conditional distribution, one
can arrive at the following equations to describe the evolution of the estimate in (3):

dbx t

dt
= bf (x t) = E[ f (x t) |Yt], τNt

¶ t < τNt+1 (4a)

bxτNt
=

E[xτNt
%(yτNt

|xτNt
) |YτNt−1

]

E[%(yτNt
|xτNt

) |YτNt−1
]

. (4b)

Similarly, the equation for the covariance of the estimation error conditioned upon the discrete measurements,
Pt := E[ |x t − bx t |2 | {yτk

}k¶Nt
], is given by

dPt

dt
= (E[x t f >(x t) |Yt]− bx t

bf >(x t)) + (E[ f (x t)x
>
t |Yt]− bf (x t)bx

>
t ) +E[G(x t)G(x t)

> |Yt] (5a)

PτNt
=

E[xτNt
x>τNt

%(yτNt
|xτNt

) |YτNt−1
]

E[%(yτNt
|xτNt

) |YτNt−1
]

− bxτNt
bx>τNt

. (5b)

In general, solving these equations is not possible. In fact, as noted in [16, Chapter 6], “the right-hand sides
of (4) and (5) involve expectations that require the whole conditional density for their evaluation.” Thus, the
computation of the estimate (first moment) and the error covariance (the second moment) depend on all the
higher order moments of the conditional density %(x t |Yt), which remain unknown. To bypass aforementioned
difficulties, we work with certain assumptions on the system dynamics which allow us to obtain a suboptimal
estimate independently of the higher order moments. We analyze the performance of this suboptimal filter by
getting bounds on the resulting error covariance which provides an upper bound on (2). For this choice of bx t , the
value of E[|x t − bx t |2 |Yt] depends on the random sampling times. We then compute the expectation with respect
to sampling times and hence obtain a bound on E[E[|x t − bx t |2 |Yt]].

2.4 Structural Assumption on System Nonlinearities

To achieve the performance of the nonlinear filters, we introduce a structural assumption on the nonlinearities in
the model (1).

(A1) There exist matrices A∈ Rn×n, C ∈ Rp×n, the constants a, c such that for all δ ∈ Rn

| f (x +δ)− f (x)− Aδ|¶ a |δ|, (6a)

|h(x +δ)− h(x)− Cδ|¶ c|δ|, (6b)

and the pair (A, C) is detectable. Moreover, the diffusion term is constant, that is, G(x) = G ∈ Rn×m for
every x ∈ Rn, with (A, G) stabilizable.

Our goal is to work out the filtering equations in the previous section for this particular class of nonlinear systems,
and analyze the covariance of the estimation error as a function of the parameters in the model and the observation
process.



Remark 2.1. In other words, the nonlinearities, that we consider, are to be seen as the perturbations in the linear
terms and the size of these perturbations is handled by the constants a and c. If we write f (x) = Ax + fnl(x), and
h(x) = C x +hnl(x), then Assumption (A1) requires that fnl is Lipschitz continuous with modulus a ¾ 0, and that
hnl is Lipschitz continuous with modulus c ¾ 0. This allows us to cover drift terms with at most linear growth, and
output measurements (from sensors) with bias and saturation. Assumption (A1), however, rules out nonlinearities
in diffusion coefficient matrix G, and considering such nonlinearities is a topic of further investigations.

Remark 2.2. It is possible to consider time-dependence in nonlinearities f , g, h and the covariances of the noise.
As a result, the matrices A, C , G, the constants a, c, and the covariance matrices E[dωtdω

>
t ], E[dηtdη

>
t ] can also

be time-dependent. Such generalities can be addressed within the framework of this paper. In particular, the
derivation of bounds in Proposition 3.1, Proposition 3.2, and Proposition 4.1 could be easily generalized without
much differences. However, the results of Section 6, Section 7, and Section 8, where we analyze the stability of
the differential equations associated with the bounds of the error covariance, require more careful analysis for
time-varying systems.

3 Suboptimal Filtering

In what follows, we consider the dynamical system (1) under the assumption (A1). As already mentioned, the
exact filtering equations are not easy to analyse. Thus, we propose a filter structure, which is clearly a suboptimal
solution and analyze the performance of this particular filter.

3.1 Filtering Equations

For given values of randomly sampled time instants {τNt
}t¾0, or in other words, a fixed sample path of (Nt)t¾0, we

define the estimate bx t using the filter (7), whose sample paths are càdlàg functions; a function φ : [0,∞)→ Rn

is a càdlàg function if lims↘t φs = φt for each t ∈ [0,∞), and φt− := lims↗t φs exists for each t ∈ (0,∞).

dbx t = f (bx t)dt (7a)

bxτ+Nt
= bxτ−Nt

+ KτNt
(yτNt

− h(bxτ−Nt
)). (7b)

where bx t is the state estimate, and Kτk
∈ Rn×p, k ∈ N, are the injection gains that need to be designed appro-

priately. The estimate obtained from (7) is not necessarily a solution to the optimization problem (2) and, in
general, not optimal for minimizing the mean square estimation error. However, by analyzing the performance of
the suboptimal filter in (7), we can get an upper bound on the minimal mean square estimation error. Because of
the randomness in sampling times, it is noted that the filter (7) is a piecewise-deterministic Markov process [6],
or more generally, a stochastic hybrid system of the form considered in [36].

Hence, for the particular choice of filter in (7), we are interested in computing bounds on the expectation (with
respect to the sampling process) of the error covariance and find conditions (involving the design parameter Kτk

,
k ∈ N) so that the resulting covariance is bounded. The dependency of the error covariance on the sampling rate
is also analyzed for specific cases.

3.2 Error Covariance Bounds with Arbitrary Injection Gains

The following statement describes a bound on the covariance of estimation error resulting from (7) for a given
value of sampling times.

Proposition 3.1. Consider system (1) under assumption (A1) and the filter (7) with {τk}k∈N fixed. Let the process
Pt , with P0 := E[(x0 − bx0)(x0 − bx0)>], be defined by

dPt

dt
= APt + PtA

> + aPt + a tr(Pt)In×n + GG>, (8a)



for τNt
¶ t < τNt+1, and for k = Nt , let

Pτ+k = Pτ−k + cPτ−k − Kτk
C Pτ−k − Pτ−k C>K>τk

+ Kτk

�

(1+ c)C Pτ−k C> + (2c + c2) tr (Pτ−k )Ip×p + V
�

K>τk
. (8b)

Then, it holds that, for each t ¾ 0,
E[(x t − bx t)(x t − bx t)

> |Yt]¶ Pt . (9)

Proof. We denote the state estimation error by et := x t − bx t , so that the resulting error dynamics are given by

det = ( f (x t)− f (bx t))dt + Gdωt

=: ef (x t , bx t)dt + Gdωt (10a)

for t ∈ [τNt
,τNt+1[, and for each k = Nt ,

eτ+k = xτ+k − bxτ+k = xτ−k − bxτ−k − Kτk
(yτk
− h(bxτ−k ))

= eτ−k − Kτk
(yτk
− h(bxτ−k )). (10b)

Under the small nonlinearity assumption (A1), we can write f (x) = Ax + fnl(x) for some Lipschitz function fnl(·)
with modulus a, so that

ef (x t , bx t) = f (x t)− f (bx t) = Ae+ fnl(x t)− fnl(bx t),

where fnl(·) satisfies the bound, | fnl(x t) − fnl(bx t)| ¶ a|et | for every x t , bx t ∈ Rn. In what follows, we denote
E[(x t − bx t)(x t − bx t)> |Yt] by E[et e

>
t ], and show that, for each t ∈ [τNt

,τNt+1[,

dE[et e
>
t ]

dt
¶ AE[et e

>
t ] +E[et e

>
t ]A

> + aE[et e
>
t ] + a tr(E[et e

>
t ]) In×n + GG>

and that, at the sampling instants
E[eτ+k e>

τ+k
]−E[eτ−k e>

τ−k
]¶ Pτ+k − Pτ−k .

The bound in (9) then holds by observing that Pt satisfies (8a) over [τNt
,τNt+1[, and (8b) at t = τNt

, with
P0 = E[e0e>0 ].

Continuous part Let us first show that for every t ∈ [τNt
,τNt+1[ we have the inequality

dE[et e
>
t ]

dt ¶ dPt
dt . On this

time interval, let us consider the Itô process in (10a):

det = ef (x t , bx t)dt + Gdωt ,

and the function v : Rn → Rn×n given by, Rn 3 e 7→ v(e) = ee>Rn×n, where an element of the matrix v(e) is
denoted by vk,l(e) = ekel . Consequently, (v ◦ et)t¾0 is an Itô process, and applying Itô’s differential chain rule, we
obtain

dvk,l(et) =
n
∑

i=1

∂ vk,l(et)

∂ ei
t

dei
t +

1
2

n
∑

i, j=1

∂ 2vk,l(et)

∂ ei
t∂ e j

t

dei
tde j

t .

Substituting dei
t = efi(x t , bx t)dt +

∑m
k=1 Gi,k(dωt)k and using Itô’s multiplication table [18, Page 154], we have

(dωt)i · (dωt) j = δi jdt, dt · dt = (dωt)i · dt = dt · (dωt)i = 0, and hence

dvk,l(et) =
n
∑

i=1

∂ vk,l(et)

∂ ei
t

efi(x t , bx t)dt +
1
2

n
∑

i, j=1

∂ 2vk,l(et)

∂ ei
t∂ e j

t

m
∑

ki ,k j=1

δki ,k j
Gi,ki

G j,k j
dt +

n
∑

i=1

m
∑

j=1

∂ vk,l(t, et)

∂ ei
t

Gi, j(dωt) j

=
n
∑

i=1

∂ vk,l(et)

∂ ei
t

efi(x t , bx t)dt +
1
2

n
∑

i, j=1

∂ 2vk,l(et)

∂ ei
t∂ e j

t

〈Gi , G j〉dt +
n
∑

i=1

m
∑

j=1

∂ vk,l(t, et)

∂ ei
t

Gi, j(dωt) j ,



where 〈Gi , G j〉 is the inner product of i-th and j-th rows of the matrix G. We are interested in computing dE[v(et )]
dt ,

and we have the following expression for its coordinates:

dE[vk,l(et)]

dt
= lim
ε→0

E[vk,l(et+ε)]− vk,l(et)

ε
= E

�

1
ε

∫ t+ε

t

dv(es)

�

Substituting the expression for dv(es), and using the fact that ωs is a Wiener process, we get

dE[vk,l(et)]

dt
= lim
ε→0

1
ε

∫ t+ε

t

E

� n
∑

i=1

∂ vk,l(es)

∂ ei
s

efi(xs, bxs) +
1
2

n
∑

i, j=1

∂ 2vk,l(es)

∂ ei
s∂ e j

s

〈Gi , G j〉
�

ds

and hence, recalling that, vk,l(et) = ek
t el

t ,

dE[vk,l(et)]

dt
= E

�

(el
efk(x t , bx t) + ek

efl(x t , bx t))
�

+
1
2
(〈Gk, Gl〉+ 〈Gl , Gk〉) .

Thus,

dE[v(et)]
dt

= E
�

ef (x t , bx t)e
>
t + et

ef (x t , bx t)
>�+ GG>

= E
�

Aet e
>
t + efnl(x t , bx t)e

>
t + et(Aet)

>�+E
�

et
efnl(x t , bx t)

>�+ GG>

¶ AE
�

et e
>
t

�

+E
�

et e
>
t

�

A> + aE
�

et e
>
t

�

+ aE
�

|et |2
�

In×n + GG>

= AE
�

et e
>
t

�

+E
�

et e
>
t

�

A> + aE
�

et e
>
t

�

+ a tr(E
�

et e
>
t

�

) In×n + GG>,

where we used the fact that ef (x t , bx t) = Aet+ efnl(x t , bx t), with efnl(x t , bx t) := fnl(x t)− fnl(bx t), and the last inequality
was obtained using the bound2

e ef >nl + efnle
> ¶ a ee> + a|e|2 In×n

and the fact that |e|2 = tr (ee>).

Jump part To analyze the jump in error dynamics at time instants when the new measurements are received,
we first observe that, under (A1), h(x) = C x+hnl(x), where hnl(x) satisfies the bound, |hnl(x− e)−hnl(x)|¶ c|e|,
for all x , e ∈ Rn. Since x t is continuous, recalling that et = x t − bx t and (10b), it follows that, for k = Nt ,

eτ+k − eτ−k = −(bxτ+k − bxτ−k ) = −Kτk
(yτk
− h(bxτ−k ))

= −Kτk
(C xτk

+ hnl(xτ−k ) + ντk
− Cbxτ−k − hnl(bxτ−k ))

= −Kτk
(Ceτ−k + eyτ−k + ντk

)

where eyτ−k := hnl(xτ−k )−hnl(bxτ−k ). With this relation for jump in error value at sampling instants, we can compute
the change in the error covariance at the sampling instants. We do so by noting that

E[eτ+k e>
τ+k
] = E

��

eτ−k − Kτk
(Ceτ−k + eyτ−k + ντk

)
�

·
�

eτ−k − Kτk
(Ceτ−k + eyτ−k + ντk

)
�> �

= E[eτ−k e>
τ−k
]−E[eτ−k (Ceτ−k + eyτ−k + ντk

)>K>τk
+ Kτk

(Ceτ−k + eyτ−k + ντk
)e>
τ−k
]

+E[Kτk
(Ceτ−k + eyτ−k + ντk

)(Ceτ−k + eyτ−k + ντk
)>K>τk

]. (11)

2It follows from the fact that, for each z, e ∈ Rn, and fnl ∈ Rn satisfying | fnl| ¶ a|e|, we have that, z>(e ef >nl +
efnle
>)z ¶ 2 |z>e| · |z> efnl| ¶

2 a |z>e| · |z| |e|
¶ a z>ee>z + a|e|2z>z.



We will now get a bound on the second and third terms on the right-hand side. To do so, we observe that, for
each K ∈ Rn×p, ỹ ∈ Rp, e ∈ Rn, such that | ỹ|¶ c|e|, we have

−K eye> − eey>K> ¶ cee> + c|e|2KK>. (12)

This indeed follows from the fact that, for each z ∈ Rn, z>(−K eye> − eey>K>)z ¶ 2 |z>e| · |z>K ey| ¶ 2 c |z>e| ·
|K>z| |e|¶ c z>ee>z+ c|e|2z>KK>z. Applying the inequality (12), the second term on the right-hand side of (11)
can be bounded as follows:

−E[eτ−k (Ceτ−k + eyτ−k + ντk
)>K>τk

− Kτk
(Ceτ−k + eyτ−k + ντk

)e>
τ−k
]

¶ −E[eτ−k e>
τ−k
]C>K>τk

− Kτk
CE[eτ−k e>

τ−k
] + cE[eτ−k e>

τ−k
] + c |e|2Kτk

K>τk

= −E[eτ−k e>
τ−k
]C>K>τk

− Kτk
CE[eτ−k e>

τ−k
] + cE[eτ−k e>

τ−k
] + c tr (E[eτ−k e>

τ−k
])Kτk

K>τk
,

where we used the fact that |eτ−k |
2 = tr (E[eτ−k e>

τ−k
]).

For the last term on the right-hand side of (11), we observe that, for each C ∈ Rp×n, e ∈ Rn, and ey ∈ Rp

satisfying |ey|¶ c|e|, we have

Ceey> + eye>C> ¶ c Cee>C> + c|e|2 Ip×p. (13)

This, in turn, leads to

E[Kτk
(Ceτ−k + eyτ−k + ντk

)(Ceτ−k + eyτ−k + ντk
)>K>τk

]

= E[Kτk
(Ceτ−k e>

τ−k
C> + Ceτ−k ey

>
τ−k
+ eyτ−k e>

τ−k
C> + eyτ−k ey

>
τ−k
+ ντk

(Ceτ−k + eyτ−k )
> + (Ceτ−k + eyτ−k )ν

>
τk
+ ντk

ν>τk
)K>τk
]

= Kτk
E[Ceτ−k e>

τ−k
C> + Ceτ−k ey

>
τ−k
+ eyτ−k e>

τ−k
C> + eyτ−k ey

>
τ−k
+ ντk

(Ceτ−k + eyτ−k )
> + (Ceτ−k + eyτ−k )ν

>
τk
+ ντk

ν>τk
]K>τk

¶ Kτk

�

CE[eτ−k e>
τ−k
]C> +E[c Ceτ−k e>

τ−k
C> + c|eτ−k |

2 Ip×p + c2|eτ−k |
2] + V

�

K>τk

= Kτk

�

CE[ x̃τ−k x̃>
τ−k
]C> + c CE[eτ−k e>

τ−k
]C> + (c + c2) tr (E[eτ−k e>

τ−k
])Ip×p + V

�

K>τk
.

Plugging this last bound in (11), we get

E[eτ+k e>
τ+k
]¶ E[eτ−k e>

τ−k
]−E[eτ−k e>

τ−k
]C>K>τk

− Kτk
CE[eτ−k e>

τ−k
] + cE[eτ−k e>

τ−k
] + Kτk

�

(1+ c)CE[eτ−k e>
τ−k
]C>

+ (2c + c2) tr (E[eτ−k e>
τ−k
]) + V

�

K>τk

which is the desired statement.

3.3 Minimizing Error Covariance with Suboptimal Filters

In the result of Proposition 3.1, we computed bounds on the estimation error covariance for arbitrary choice of
gains. However, by choosing the gains in a certain dynamic manner such that K in (7b) depends on Pt obtained
from equations of form (8a)-(8b), we can minimize Pt and E[et e

>
t ]. For the chosen class of filters, this optimal

choice of dynamic gain and the resulting covariance bound are indicated in the next result.

Proposition 3.2. Consider system (1) under assumption (A1) and the filter (7) with {τk}k∈N given. If the output
injection gains Kτk

, k ∈ N, in (7b) are chosen as

Kτk
= P?

τ−k
C>M−1

Pτk
(14)



where P? is obtained from

dP?t
dt
= AP?t + P?t A> + aP?t + a tr(P?t )I + GG>, (15a)

P?
τ+k
= (1+ c)P?

τ−k
− P?

τ−k
C>M−1

Pτk
C P?

τ−k
(15b)

and MPτk
is defined as3

MPτk
:= (1+ c)C P?

τ−k
C> + (2c + c2) tr (P?

τ−k
)Ip×p + V, (16)

then, for each t ¾ 0, it holds that
E[(x t − bx t)(x t − bx t)

>]¶ P?t ¶ Pt (17)

where Pt is obtained as a solution of (8).

The proof of this statement follows from Proposition 3.1. It is noted that Kτk
only affects the bound Pt at the

jump times via (8b). The right-hand side of (8b) is a quadratic convex function of Kτk
which is minimized by

choosing Kτk
as in (14).

4 Expectation of Error Covariance

In the previous section, we computed a bound on the error covariance for a fixed sequence of time instants at
which measurements are received. That is, Pt is an upper bound on E[(x t−bx t)(x t−bx t)> |Yt] along one particular
sample path as the realization of Pt depends on the observed sampling times. It was initially stipulated that the
random sampling instants are governed by a Poisson process. It is thus of interest to compute the expected value
of Pt along all possible sample paths generated by Poisson sampling process.

Toward this end, it is noted that the evolution of Pt in (8) is governed by a piecewise deterministic process,
where Pt is obtained from the differential equation (8a) between two sampling instants, and then at the sampling
times, Pt is reset according to the equation (8b).

To compute the expected value of Pt with respect to sampling times, we introduce the operator Lid : Rn×n→
Rn×n defined as

Lid(Q) = lim
ε→0

1
ε

�

E[P(t + ε) | P(t) =Q]−Q
�

. (18)

We will see that this operator defines the evolution of the expected value of the error covariance process, and it
is computed in the following result:

Proposition 4.1. Consider the process (Pt)t¾0 given by (8) with Kτk
= K ∈ Rn×p for each k ∈ N, and assume that

the sampling process (Nt)t¾0 has intensity λ > 0. Let Pt := E[Pt | P0] denote the expected value of the covariance
process at time t ¾ 0. Then, it holds that

Ṗt =Lid(Pt) = (A−λKC)Pt +Pt(A−λKC)> +Πa(Pt) + GG> +λ cPt +λKMPt
K>, (19)

where the linear operator Πa : Rn×n→ Rn×n is defined as

Πa(P) := a P + a tr(P)I , (20)

and the matrix MPt
∈ Rp×p is given by

MPt
:= (1+ c)CPt C

> + (2c + c2) tr (Pt)Ip×p + V. (21)

3For a given matrix P, the notation MP used in (16) will be used extensively in the remainder of this article where we will change the
matrix appearing in the subscript. With V assumed to be symmetric positive definite, MP is a symmetric positive definite matrix, whenever P
is symmetric positive semidefinite.



(a) Constant gain K = [0.5 0.5]>. (b) Dynamic gain Kt = P?t C>M−1
P?t

.

Figure 1: Plot of tr(et e
>
t ) (blue curve) and tr(Pt) (yellow curve) along one sample path (of sampling times) for

two choices of Kτk
with λ= 10.

In particular, if we choose Kτk
= P?

τ−k
C>M−1

Pτk
, then the expected value of the error covariance process governed by (15)

is
Ṗ ?

t = AP ?
t +P

?
t A> +Πa(P ?

t ) + GG> +λ cP ?
t −λP

?
t C>M−1

P ?
t
CP ?

t . (22)

Before providing the proof of this result, we present two examples for an illustration of the results presented
so far.

Example 1. Consider the nonlinear system described by the equations

dx1,t = sat(x2,t)dt + dωt , dx2,t = (x1,t − x2,t)dt + dωt

with the measurement process dzt = (1+ x1,t)dt + dηt . The noise processes are normalized as dωt ∼ N (0,1)
and dηt ∼ N (0,1). The function sat(·) represents the standard saturation function, that is, for each z ∈ R,
sat(z) = z − fnl(z), where fnl is a Lipschitz function described as, fnl(z) = z − 1, if z ¾ 1, fnl(z) = 0 if z ∈ [−1, 1],
and fnl(z) = z+1, if z ¶ −1. Hence, by letting A=

�

0 1
1 −1

�

, C = [ 1 0 ], G = [ 1 1 ]>, it is seen that Assumption (A1)
holds with a = 1, and c = 0. Associating a Poisson process of intensity λ, the corresponding measurement
equations are given by, yτNt

= 1+ x1,τNt
+ vτNt

, where we take vτNt
∼ N (0,1) for each t ¾ 0. For appropriately

chosen k1,τNt
, k2,τNt

∈ R, the proposed filter is then described by

dbx1,t = sat(bx2,t)dt, bx1,τ+Nt
= bx1,τ−Nt

+ k1,τNt
(yτNt

− bx1,τ−Nt
)

dbx2,t = (bx1,t − bx2,t)dt, bx2,τ+Nt
= bx2,τ−Nt

+ k2,τNt
(yτNt

− bx1,τ−Nt
).

The simulation results for this example with two different choices of KτNt
:= [k1,τNt

k2,τNt
]> are reported in

Figure 1 and Figure 2. For one particular choice of randomly determined sampling times, Figure 1a provides an
illustration of (9) in Proposition 3.1, where we plot tr(E[et e

>
t |Yt]) and the bound tr(Pt) obtained from solving

(8), with constant gain KτNt
= [0.5 0.5]> for each t ¾ 0. Similarly, Figure 1b is obtained by choosing KτNt

=
P?τNt

C>M−1
P?τNt

and is an illustration of inequality (17) stated in Proposition 3.2. In Figure 2, we compute expectation

with respect to the sampling process. Figure 2a plots tr(E[E[ee> |Yt]]), and its upper bound tr(Pt) obtained from
(19) with constant gain KτNt

= [0.5 0.5]> for each t ¾ 0, and choosing the intensity of Poisson sampling process



(a) Constant gain K = [0.5 0.5]>. (b) Dynamic gain Kt = P?t C>M−1
P?t

.

Figure 2: Experimental value (blue curve) and theoretical upper bound (red curve) for expectation (with respect
to sampling process) of trace of error covariance with λ= 10 for two choices of K .

λ = 10. In Figure 2b, we choose KτNt
= P?τNt

C>M−1
P?τNt

, with the the theoretical upper bound tr(P ?
t ) obtained

from (22). We indeed observe that tr(P ?
t ) has a smaller value than tr(Pt), for each t ¾ 0. It is not obvious, for

what choices of gains KτNt
, we should get finite values of our bounds; such questions are addressed in subsequent

sections.

Example 2. Consider the linear stochastic system

dx t = Ax tdt + Gdωt (23a)

dzt = C x tdt + dηt . (23b)

where dzt is the measurement process, and the processes ωt , ηt satisfy the same hypothesis as in system (1). If
(A, C) is detectable and (A, G) is stabilizable, then Assumption (A1) holds with a = c = 0. The output observed at
randomly sampled time instants is described by yτNt

= C xτNt
+ vτNt

, where for each t ¾ 0, vτNt
∼ N (0, V ). The

filter (7) takes the form
dbx t = Abx t dt, bxτ+Nt

= bxτ+Nt
+ KτNt

(yτNt
− h(bxτ−Nt

)).

Inequality (9) in Proposition 3.1 holds, where Pt satisfies

Ṗt = APt + PtA
> + GG>,

for τNt
¶ t < τNt+1, and for k = Nt ,

Pτ+k = Pτ−k − Kτk
C Pτ−k − Pτ−k C>K>τk

+ Kτk

�

C Pτ−k C> + V
�

K>τk
.

By choosing, Kτk
= Pτ−k C>M−1

Pτk
, for each k ∈ N, the covariance bound is minimized and the resulting equations

are given by (15) by setting a = c = 0.

Assuming that the sampling process is Poisson of intensity λ, and the gain K is constant, the expected value
of Pt is

Ṗt = (A−λKC)Pt +Pt(A−λKC)> + GG> +λK
�

CPt C
> + V

�

K>.

However, by choosing Kτk
= P?

τ−k
C>M−1

Pτk
, the expected value of the error covariance process governed by (15) in

linear case is
Ṗ ?

t = AP ?
t +P

?
t A> + GG> −λP ?

t C>
�

CPt C
> + V

�−1
CP ?

t .



Thus, in linear case, an upper bound on the expectation (with respect to sampling process) of error covari-
ance is obtained by solving a nonlinear differential equations. The boundedness of the solutions of equations in
Proposition 4.1 are analyzed in later sections. Here, we end this section with the proof of Proposition 4.1.

Proof of Proposition 4.1. We first note that
�

Pt

�

t¾0 is Markovian because the future of Pt depends only on the last
sampling instant τNt

. According to Dynkin’s formula,

Pt = E[Pt] = P0 +E
�

∫ t

0

Lid(Ps)
�

ds.

Since Lid is a linear operator, we readily get Ṗt = Lid(Pt). To show (19), we thus compute Lid(Q) for a given
matrix Q in the remainder of the proof. Recalling the definition of Lid, we observe that

E
�

P(t + ε)
�

� Pt =Q
�

= E
��

P(t + ε)
��

1{Nt+ε=Nt} + 1{Nt+ε=1+Nt} + 1{Nt+ε−Nt¾2}
� �

� P(t)
�

. (24)

We now compute the conditional probability distribution of
�

P(t + ε)
�

for small ε > 0 given
�

Pt

�

. Since the
sampling process is independent of the process

�

Pt

�

t¾0, by definition of the sampling (Poisson) process we have,

for ε ↓ 0, P
�

Nt+ε−Nt = 0
�

�Nt , Pt

�

= 1−λε+o(ε), P
�

Nt+ε−Nt = 1
�

�Nt , Pt

�

= λε+o(ε), P
�

Nt+ε−Nt ¾ 2
�

�Nt , Pt

�

=
o(ε). Using these expressions we develop (24) further for ε ↓ 0 as

E
�

P(t + ε)
�

� Pt =Q
�

= E
�

P(t + ε)
�

1{Nt+ε=Nt} + 1{Nt+ε=1+Nt}
� �

� Pt

�

+ o(ε)

= E
�

P(t + ε)
�

� Pt , Nt+ε = Nt

�

·
�

1−λε + o(ε)
�

+E
�

P(t + ε)
�

� Pt , Nt+ε = 1+ Nt

��

λε
�

+ o(ε).
(25)

The two significant terms on the right-hand side of (25) are now computed separately. For the event Nt+ε = Nt ,
given P(t) =Q, Ṗ is governed by (8a), so we have for ε ↓ 0,

P(t + ε) = P(t) + ε Ṗ(t) + o(ε)

=Q+ ε(AQ+QA> +Πa(Q) + GG>) + o(ε),

leading to the first term on the right-hand side of (25) having the estimate

E
�

P(t + ε)
�

� P(t), Nt+ε = Nt

�

·
�

1−λε + o(ε)
�

=Q+ ε(AQ+QA> +Πa(Q) + GG>)− (λε)Q+ o(ε), (26)

for ε ↓ 0. Concerning the second term on the right-hand side of (25), we observe that conditional on Nt+ε = 1+Nt ,
the probability distribution of τNt+ε

is [31, Theorem 2.3.7] uniform over [t, t + ε[ by definition of the sampling
(Poisson) process. We introduce θ ∈ [0,1[ such that τNt+ε

= t+θε; then θ is uniformly distributed on [0,1[ given
Nt+ε = 1+ Nt . We now write the right-hand side of (8a) more compactly using the map ψ1,

Q 7→ψ1(Q) = AQ+QA> +Πa(Q) + GG>

and (8b) using the map ψ2,

Q 7→ψ2(Q) = (1+ c)Q− KCQ−QC>K + K
�

(1+ c)CQC> + (2c + c2) trQIp×p + V
�

K .

We thus have, conditioned on the event Nt+ε = 1+ Nt , Pt =Q,

P(τNt+ε
) = P(t + θε) =ψ2(P(t + θε)

−).

The above expressions then lead to, conditioned on the same event, and for ε ↓ 0,

P(t + ε) = P(t + θε) + (1− θ )ε Ṗ(t + θε) + o(ε)

= P(t + θε) + (1− θ )εψ1

�

P(t + θε)
�

+ o(ε)

=ψ2(P(t) + θεψ1(P(t)) + o(ε)) + (1− θ )εψ1

�

P(t + θε)
�

+ o(ε)

=ψ2(P(t)) + θO(ε) +O(ε) + o(ε).



Therefore, for ε ↓ 0,

E
�

P(t + ε)
�

� Pt =Q, Nt+ε = 1+ Nt

�

· (λε) =
∫ 1

0

�

ψ2(Q) + θO(ε) +O(ε) + o(ε)
�

dθ · (λh)

=
�

ψ2(Q) +O(h)
�

· (λh) = (λh)ψ2(Q) + o(ε). (27)

Substituting (26) and (27) in (25), we obtain

E
�

P(t + ε)
�

� P(t) =Q
�

=Q− (λε)
�

Q−ψ2(Q)
�

+ ε
�

AQ+QA> +Πa(Q) + GG>
�

+ o(ε).

Substituting these expressions in (18), we see that for each Q ∈ Rn×n,

Lid(Q) = AQ+QA> +Πa(Q) + GG> +λ
�

ψ2(Q)−Q
�

,

which, upon recalling the definition of ψ2, leads to the desired expression in (19).

The derivation of (22) follows the same recipe: the only difference arises in the definition of the function ψ2
which now represents the right-hand side of (15b).

Remark 4.2. In (22), if we introduce the variable Kt :=P ?
t C>M−1

P ?
t
, then (22) is equivalently written as

Ṗ ?
t = (A−λKt C)P ?

t +P
?
t (A−λKt C)

> +Πa(P ?
t ) + GG> +λ cP ?

t +λKt MP ?
t
K >t .

This last equation resembles (19), the only difference being that a constant K is replaced by a time-varying term
Kt .

5 Evolution of Error Covariance

We are interested in studying the solutions of the equation (19) and (22), which characterize the expected value of
the error covariance resulting from the suboptimal nonlinear filter when the available measurements are Poisson
distributed. In particular, we want to study conditions on the system dynamics and the sampling rates which
guarantee boundedness of the solution. In doing so, the following algebraic equation also plays an important
role:

0= AP +P A> +Πa(P ) +λcP + GG> −λP C>M−1
P

CP . (28)

In the remainder of this section, we provide a statement of the existence of solution to the differential equation
(22), and then study boundedness of its solution and connections to steady state algebraic equations in the next
section.

To study Carathédory solutions to the differential equation (19), we introduce the notation,

Ψ(P , MP , K) := AλKP +P A>λK +Π(P ) + GG> +λK>MP K . (29)

where MP is defined as in (21), and we take

AλK := (A−λKC) (30a)

Π(P ) := Πa(P ) +λ cP = aP + a tr(P )I +λcP . (30b)

It is readily seen that the particular choice of K = K = P C>M−1
P minimizes Ψ(P , MP , K) with respect to the

ordering in the cone of positive semidefinite matrices. Indeed,

Ψ(P , MP ,K ) = (A−λK C)P +P (A−λK C)> +Π(P ) + GG> +λK MPK >

= (A−λKC)P +P (A−λKC)> +Π(P ) + GG> +λKMP K> −λ(K −K )MP (K −K )>

= Ψ(P , MP , K)−λ(K −K )MP (K −K )>

¶ Ψ(P , MP , K). (31)



We can apply similar arguments to prove the following lemma which compares the solutions of equations (19)
and (22).

Lemma 5.1. Let P ?
t be the solution of

Ṗ ?
t = Ψ(P

?
t , MP ?

t
,P ?

t C>M−1
P ?

t
), P ?

0 =P0,

and let Pt be the solution of

Ṗt = Ψ(Pt , MPt
, K), P0 ¾ 0 given,

where MP ?
t

and MPt
are defined as in (16). Then, it holds that

P ?
t ¶Pt , ∀ t ¾ 0.

Proof. Notice that for fP (t) =Pt −P ?
t the minimum property (31) implies

Ý̇P = Ψ(Pt , MPt
, K)−Ψ(P ?

t , MP ?
t
,P ?

t C>M−1
P ?

t
)

¾ Ψ(Pt , MPt
, K)−Ψ(P ?

t , MP ?
t
, K)

= AλK fPt + fPtA
>
λK +Π(fPt) +λKM

fPt
K>,

where M
fP = MPt

−MP ?
t

is consistent and depends linearly on fPt . So, we have

Ý̇P = AλK fP + fP A>λK +Π(fP ) +λKM
fP K> + Rt ,

for some Rt ¾ 0. Since fP (0) = 0, for t ¾ 0, fPt is a solution of the following Volterra equation

fPt =

∫ t

0

es AλK (Π(fPs) +λK>M
fPs

K)esA>
λK ds.

The matrix on the right-hand side is positive semidefinite, and hence Pt ¾P ?
t , for each t ¾ 0.

A direct consequence of this observation is that the right-hand side of (19) is minimized by choosing Kτk
as in

(14). Even though the perturbation Π is linear in P , the aforementioned choice of K makes the right-hand side
of (19) a nonlinear function in P , which is different from the quadratic nonlinearity seen in Riccati differential
equations. We are thus interested in knowing whether there exists a solution to the resulting equation. To this end,
we will focus our attention on the initial value problem (22) with P (0) =P0, where P0 is a positive semidefinite
matrix.

Proposition 5.2. For each symmetric positive semidefinite matrix P0 ∈ Rn×n and a given T > 0, there exists a
unique absolutely continuous solution P : [0, T] → Rn×n in the class of symmetric positive definite matrices such
that P (0) =P0 and the differential equation (22) holds for almost every t ∈ [0, T].

The proof of this result is given in Appendix A. In the infinite-time horizon case we have a unique continuous
solution P : [0,+∞)→ Rn×n in the class of symmetric positive semidefinite matrices satisfying (22).

6 Conditions for Bounded Covariance

In this section, we study the conditions under which the error covariance Pt stays bounded for all t ¾ 0. In
doing so, we recall that the error covariance can be compactly represented as Ṗt = Ψ(Pt , MPt

, K) where Ψ is



defined in (29). For the purposes of this section, it is convenient to write Ψ in an alternate form. To do so, we let
Πc(P) := c P + c KC PC>K> + (2c + c2) tr(P)KK>, and let

ΠK
λ(P) := Πa(P) +λΠc(P),

then we can write

Ψ(P , MP , K) = AP +P A> +ΠK
λ(P ) + GG> +λKV K> +λ

�

KCP C>K> − KCP −P C>K>
�

=
�

A−
λ

2
I
�

P +P
�

A−
λ

2
I
�>
+ΠK

λ(P ) + GG>

+λKV K> +λ
�

P −P C>K> − KCP + KCP C>K>
�

=
�

A−
λ

2
I
�

P +P
�

A−
λ

2
I
�>
+ΠK

λ(P ) + GG>

+λKV K> +λ
�

(I − KC)P (I − KC)>
�

.

More compactly, by letting Aλ :=
�

A− λ
2 I
�

, JK := (I − KC), we get

Ψ(P , MP , K) := AλP +P A>λ +Π
K
λ(P ) + GG> +λKV K> +λJKP J>K . (32)

Based on this representation, we can write the solution Pt to equation (19) as follows:

Pt = eAλ tP0eA>
λ

t +

∫ t

0

eAλ(t−s)
�

ΠK
λ(Ps) +λJKPsJ

>
K + GG> +λKV K>

�

eA>
λ
(t−s) ds.

Naturally, to study the bounds on Pt for large t, we consider the operator F K
λ

: Rn×n→ Rn×n defined as:

F K
λ (P) :=

∫ ∞

0

eAλ t
�

ΠK
λ(P) +λJK PJ>K

�

eA>
λ

t dt. (33)

This dependence is stated in the following result:

Theorem 6.1. Consider the matrix valued function Pt described by (19), and the following statements:

(S1) All the eigenvalues of the operator F K
λ

, defined in (33), lie inside the unit disk of the complex plane, that is,

ρ(F K
λ )< 1

where ρ(·) denotes the spectral radius of its argument.

(S2) There exists a positive semidefinite solution Q to the algebraic equation

0= AλQ +QA>λ +Π
K
λ(Q) + GG> +λKV K> +λ(I − KC)Q(I − KC)>. (34)

Statement (S1) implies that (S2) holds. If (A, G) is controllable, then (S2) implies that

lim
t→∞

Pt =Q, (35)

where Pt is the solution of (19) and Q is obtained from (S2).

Proof. The implication that (S2) follows from (S1) is a consequence of [9, Theorem 3.1: (d)⇒ (b)].

The implication that (S2) implies (35) can be obtained as a result of Lemma C.2 given in Appendix C. To

apply this result, we need to show that (Aλ, G) is controllable, where G is such that λKV K> +GG> = G G
>

. This
indeed follows from the fact that (A, G) is controllable. To see this, we use Lemma C.1 and show that (Aλ, G) is
controllable. To prove the later statement, let us proceed by contradiction. If (Aλ, G) is not controllable, there
exists v ∈ Rn such that v>(A− 0.5λI) = (µ− 0.5λ)v> and v>G = 0, where µ is an eigenvalue of A. This implies
that v>A= µv> and v>G = 0, meaning (A, G) is not controllable, which is a contradiction.



We now prove a similar result for the nonlinear differential equation (22).

Theorem 6.2. Consider the matrix valued function Pt described by the nonlinear equation differential equation
(22), and the following statement:

(S3) There exists a positive semidefinite solution Q to the algebraic equation

0= AQ +QA> +Πa(Q) +λ c Q −λQC>M−1
Q CQ + GG> (36)

1. If (A, G) is stabilizable and there exists K such that (S1) holds, then (S3) holds and (A− λQC>M−1
Q ) is a

Hurwitz matrix.

2. If (A, G) is controllable, (S3) implies that,
lim

t→∞
Pt =Q, (37)

where Pt solves (22) and Q is obtained from (S3).

Proof. To prove the first item, we first choose K1 such that (S1) holds. Therefore, there exists a positive semidefin-
ite matrixQ1 that solves the matrix equation (34), andQ1 satisfies the fixed point equation,Q1 =F

K1

λ
(Q1)+GK1

,

whereF K1

λ
(·) is defined as in (33), and GK1

=
∫∞

0 eAλ t(GG>+λK1V K>1 )e
A>
λ

tdt. Due to linearity ofF K1

λ
, it readily

follows that Q1 = F
K1

λ
(Q1) +GK1

= (F K1

λ
)i(Q1) +

∑i−1
j=0(F

K1

λ
) j(GK1

), for each i ∈ N. Further, since the spectral

radius of F K1

λ
is strictly less than one, there exist γ ¾ 0 and 0 < δ < 1 such that ‖(F K1

λ
)i‖ ¶ γδi for each i ∈ N.

Consequently, let

GK1,i1(Q) := (F K1

λ
)i1(Q) +

i1−1
∑

j=0

(F K1

λ
) j(GK1

)

where i1 is chosen such that γδi1 < 1. Since GK1,i1 is a contraction mapping, there is a unique solution of the
equation Q = GK1,i1(Q), which we have denoted by Q1. Further, let K2 := M−1

Q1
C>Q1, Q2 = GK2,i1(Q2), where

Q2 can be obtained by successive approximations:

Q(1)2 = 0, Q(k+1)
2 =F K2

λ
(Q(k)2 ) +GK2

;

Indeed, GK2,i1(Q2) is well-defined since Aλ is Hurwitz. Notice that the sequence of Q(k)2 is nondecreasing and
nonnegative.

Recall that Q1 satisfies Ψ(Q1, MQ1
, K1) = 0, so that, from (31) and our choice of K2, we have

0= −Ψ(Q1, MQ1
, K1)¶ −Ψ(Q1, MQ1

, K2)

which leads to (recall that JK2
= (I − K2C)),

0¶ −
∫ ∞

0

eAλ t
�

AλQ1 +Q1A>λ + JK2
Q1J>K2

+ΠK2

λ
(Q1) + GG> +λK2V K>2

�

eA>
λ

tdt

¶Q1 −
∫ ∞

0

eAλ t
�

Π
K2

λ
(Q1) + JK2

Q1J>K2

�

eA>
λ

tdt −GK2
.

Let us show by induction that Q(k)2 ¶Q1 for each k. Firstly it holds for k = 1, and for k > 1,

Q(k+1)
2 =F K2

λ
(Q(k)2 ) +GK2

=

∫ ∞

0

etAλ
�

Π
K2

λ
(Q(k)2 ) +λJK2

(Q(k)2 )J
>
K2

�

etA>
λdt +GK2

¶Q1 −
∫ ∞

0

etAλ
�

Π
K2

λ
(Q1 −Q

(k)
2 ) +λJK2

(Q1 −Q
(k)
2 )J

>
K2

�

etA>
λdt.



Since the second-term on the right-hand side is negative definite, for each k ∈ N, Q(k)2 is no greater than Q1 and
consequently 0¶Q2 ¶Q1.

This procedure can be repeated to construct the sequences {Ki} and {Qi} similarly. Since 0 ¶ Qi+1 ¶ Qi
there exists Q = limi→∞Qi , and moreover, for MQ = (1 + c)CQC> + (2c + c2) tr (Q)In×n + V, we obtain, K =
limi→∞ Ki = M−1

Q
C>Q, and get Ψ(Q, MQ , K) = 0 where Q ¾ 0.

To complete the proof of first item, we next show that A−λKC is stable. It is seen thatQ satisfies the equation

Q =
∫ ∞

0

esAλK

�

Π(Q) + GG> +λKMQK>
�

esA>
λK ds ¾

∫ ∞

0

esAλK GG>esA>
λK ds.

Existence of positive semidefinite Q implies that the integral on the right-hand side is bounded and since (A, G)
is assumed to be stabilizable, it follows that AλK is Hurwitz.

For the proof of second item in Theorem 6.2, we show that there are P t and P t such that P t ¶ Pt ¶ P t

and both converge to Q. Set KQ = QC>M−1
Q , AQ = A− λKQC , where AQ is Hurwitz stable by the first item.

Denote by P t the solution of Ṗ t = Ψ(P t , MP t
, KQ) = AλP t +P tA

>
λ
+ΠKQ

λ
(P t) + GG> + λKQV KQ

> + λ(I −
KQC)P t(I − KQC)>, with P 0 =P0 ¾ 0. By the minimum property (Lemma 5.1) Pt ¶P t . Let GQ be such that

λKQV K>Q +GG> = GQG
>
Q . Using the same reasoning as in the proof of Theorem 6.1, it follows from Lemma C.1

that (Aλ, GQ) is controllable. Then, applying Lemma C.2, we have P t →Q as t → +∞.

Next, consider the functionP t obtained by solving the equation, Ṗ t = Ψ(P t , MP t
,P t C

>M−1
P t
), withP (0) =

0. Due to zero initial condition, P t enjoys a monotonicity property which is stated in the following lemma and
its proof appears in Appendix B.

Lemma 6.3. The solution Pt of the following Cauchy problem

dPt

dt
= Ψ(Pt , MPt

,Pt C
>M−1

Pt
), P0 = 0

is monotone nondecreasing for t ∈ [0,+∞).

Notice that the limit limt→+∞P t exists as P t is monotone function by Lemma 6.3 and this limit is bounded

because of minimal property in Lemma 5.1 and Theorem 6.1. Moreover, this means that dP
dt and d2P

dt2 are bounded

too. As P t ¾ 0 the equality limt→+∞P t =
∫ +∞

0
dP t
dt dt implies that

dP t
dt → 0 as t →∞. Since Q is a unique

solution of the algebraic equation, it follows that P t →Q as t →∞.

It remains to prove that P t ¶Pt . Let KPt
:=Pt C

>M−1
Pt

and consider fPt :=Pt −P t , so that fP0 =P0, and

dfPt

dt
= Ψ(Pt , MPt

, KPt
)−Ψ(P t , MP t

,P t C
>M−1

P t
)

¾ Ψ(Pt , MPt
, KPt

)−Ψ(P t , MP t
, KPt

)

= (A−λKPt
C)fP + fP (A−λKPt

C)> +Π(fPt) +λKPt
M
fPt

KPt
.

This leads to

fPt = Φ(t, 0)P0Φ
>(t, 0) +

∫ t

0

Φ(t, s)
�

Π(fPs) +λKPs
M
fPs

K>Ps

�

Φ>(t, s)ds

¾
∫ t

0

Φ(t, s)
�

Π(fPs) +λKPs
M
fPs

K>Ps

�

Φ>(t, s)ds,



where Φ(t, s) is the fundamental matrix associated with A−λKPt
C . From this expression4, we obtain fPt ¾ 0 and

hence P t ¶Pt .

7 Sufficient Conditions for Boundedness

In this section, we study some particular cases which provide sufficient conditions to guarantee the boundedness
of the error covariance matrix, based on the results given in the previous section.

7.1 Eigenvalue Assignment Condition

Since the conventional design of the state estimators provide conditions for bounded estimation error based on
the eigenvalues of certain matrix, we rewrite the conditions from previous section as an eigenvalue test.

Proposition 7.1. For a given λ > 0 and K ∈ Rn×p, consider the matrices,5

AλK := (I ⊗ (A−λKC)>) + ((A−λKC)> ⊗ I)

+λ((KC)> ⊗ (KC)>)

Σa := a(I ⊗ I + vec(I) · vec(I)>)

Σc := c(I ⊗ I + (KC)> ⊗ (KC)>)

+ (2c + c2) · (vec(I) · vec(I)>) · (I ⊗ KK>)

and the following statement,

(S4) The matrixAλK +Σa +λΣc ∈ Rn2×n2
is Hurwitz.

Then (S4) implies (S2) stated in Theorem 6.1.

Proof. To prove this result, we will make use of [9, Theorem 3.1(ii)]. Using this result, we just need to show that,
if (S4) holds, then the matrix-valued function R : [0,∞)→ Rn×n satisfying the differential equation Ṙ = Σ(R)
has the property that ‖Rt‖ converges to zero, as t →∞, where Σ(R) = A>

λ
R +RAλ +λJ>KRJK +Π∗λ,K(R) and

Π∗
λ,K denotes the adjoint6 of ΠK

λ
. In particular,

Π∗λ,K(R) = aR + a tr(R)I +λcR +λcC>K>RKC +λ(2c + c2) tr(KK>R)I .

We now write the matrix differential equation in vectorial form, so that, vec(Ṙ) = vec(Σ(R)), and using the
properties of the Kronecker product of the matrices, we observe that7

vec(Σ(R)) = (I ⊗ A>)vec(R) + (A> ⊗ I)vec(R)−λ(I ⊗ I)vec(R) +λ(J>K ⊗ J>K )vec(R) + vec(Π∗λ,K(R)). (38)

Recalling the definition of Σa and Σc , the last term in (38) can be written as, vec(Π∗
λ,K(R)) = Σa vec(R) +

λΣc vec(R). Also, since JK = (I − KC), the second to last term in (38) is rewritten as (I − KC)> ⊗ (I − KC)> =
(I ⊗ I)− ((KC)> ⊗ I)− (I ⊗ (KC)>) + ((KC)> ⊗ (KC)>) so that, vec(Σ(R)) = (AλK +Σa +λΣc)vec(R). Clearly,
if the matrix (AλK + Σa + λΣc) is Hurwitz, then vec(Rt) converges to 0, as t → ∞, and, in particular, ‖Rt‖
converges to 0 as well.

4If Q t ¾
∫ t

0 Φ(t, s)(Π(Qs) +λKs MQs
Ks)Φ>(t, s)ds, then Q t ¾ 0.

5The symbol ⊗ denotes the matrix Kronecker product.
6For a linear operator Π : Rn×n→ Rn×n, its adjoint is a linear operator Π∗ : Rn×n→ Rn× that satisfies 〈Π(M1), M2〉= 〈M1,Π∗(M2)〉, for all

matrices M1, M2 ∈ Rn×n. Here, the inner product over the space of matrices is defined as 〈M1, M2〉= tr(M>1 M2).
7For given matrices A, B, C , D of appropriate dimensions, we have: 1) (A⊗ B)(C ⊗ D) = AC ⊗ BD, and 2) If ABC = D, then vec(D) =

(C> ⊗ A)vec(B).



7.2 A sufficient condition with C square and invertible

In the particular case, when C is square and invertible, one can provide certain conditions under which a particular
choice of the gain matrix K bounds the error covariance. This is captured by the following result:

Proposition 7.2. Consider the system (1) and the filter (7). Assume that C ∈ Rn×n is invertible and take K = C−1.
Let

α :=

∫ ∞

0

e(A−0.5λI)te(A−0.5λI)> tdt (39)

Then, the error covariance is bounded if

a(n+ 1) + 2λc +λn(2c + c2)‖C−2‖<
1
α

. (40)

Proof. Based on the result of Theorem 6.1, it suffices to show that (40) leads to the spectral radius of F K
λ

being

strictly less than 1. By letting K = C−1, it is seen that F K
λ
(P) =

∫∞
0 eAλ tΠK

λ
(P)eAλ t dt. We can now introduce the

bound
−‖P‖ΠK

λ(I)¶ Π
K
λ(P)¶ Π

K
λ(I)‖P‖

so that, using the definition of α in (39), ‖F K
λ
(P)‖ ¶ α‖ΠK

λ
(I)‖‖P‖. Condition (40) ensures that α‖ΠK

λ
‖ < 1

because

ΠK
λ(I) = a(1+ tr(I))I + 2λcI +λ(2c + c2) tr(I)C−2.

As a result, ‖F K
λ
‖< 1 and in particular, the spectral radius of F K

λ
is less than 1.

In the proof of Proposition 7.2, we basically showed that, if C is invertible and the nonlinearities are small
enough, then for certain choice of K and λ such that

‖F K
λ ‖< 1 (41)

it follows that the spectrum ofF K
λ

lies within the unit disk of the complex plane, that is, the statement (S1) holds.
However, if C is not invertible, then even for linear systems (a = 0 and c = 0), there may not exist λ and K such
that (41) holds. This is shown by the following example.

Example 3. Consider the dynamical system (1) with f (t, x) = Ax and h(x) = C x , G = I2×2, where A =
�

1 1
0 1

�

;
C = [ 1 0 ]. With this example, even if there are no nonlinearities, that is, a, c = 0, it is seen that, for any λ > 0,
there does not exist a K ∈ R2 such that (41) holds for this system. To see this, observe that (41) translates to

finding a matrix K such that, λ
�

�

�

∫∞
0 et(A−0.5λI)JK J>K et(A−0.5λI)>dt

�

�

� < 1. We let K =
�

k1
k2

�

, for some k1, k2 ∈ R.

However, with straightforward computations involving matrix exponential, we see that, the integral is finite for
each λ > 2, and

et(A−0.5λI)JK J>K et(A−0.5λI)> =

�

∗ ∗
∗ e(1−0.5λ)t(1+ k2

2)e
(1−0.5λ)t

�

.

Clearly, with λ > 2, λ
∫∞

0 e(1−0.5λ)t(1+ k2
2)e
(1−0.5λ)t > 1, and hence the condition (41) does not hold true.

However, it is possible to check that for each λ > 2, we can find K such that (S4) holds true. For simulation
purposes, we choose λ = 10 and see that K = [1 2]> satisfies the condition (S4), where we take Σa = Σc = 0.
The simulation results are reported in Figure 3. Moreover, since eigenvalues of a matrix are continuous functions
of its entries, the matrix AλK +Σa + λΣc also has eigenvalues in open left-half of the complex plane, for small
enough values of a and c.



(a) Expectation with respect to sampling times with constant
gain K = [1 2]>.

(b) One sample path with bound minimizing gain.

Figure 3: Trace of error covariance and their theoretical upper bounds for Example 3 with λ= 10.

8 Dependence on Sampling Rate

A natural question for analyzing the performance of our proposed estimator is to study the dependence of error
covariance with respect to the sampling rate λ of the Poisson measurement process. This question has not been
straightforward for the class of systems studied in this paper, that is, the systems with ( f , h) Lipschitz continuous.
However, some constructive statements can be derived if we assume that f , h are linear, that is, f (x) = Ax and
h(x) = C x , so that the system is described as in Example 2 using equation (23).

8.1 A lower bound on sampling rate

We first provide a necessary lower bound on the sampling rate which ensures that the error covariance remains
bounded for all times. In what follows, we denote an eigenvalue of A by µ j(A) and its real part by ℜµ j(A),
j = 1, . . . , n.

Proposition 8.1. Consider system (23) with (A, C) detectable and (A, G) controllable. Then, for eachλ < 2max{ℜµ j(A) |
j = 1, . . . , n}, the solution to (19), with a = c = 0, is such that limt→∞P (t) =∞.

Proof. We first look at the differential equation, Q̇ t = AλQ t +Q tA
>
λ
+ GG> with initial condition Q0 = P0. It is

clear that Q t stays bounded if and only if, 0 = AλQ +QA>
λ
+ GG> has a symmetric positive definite solution Q.

With (A, G) controllable, this is the case if and only if Aλ is Hurwitz, that is, λ > 2max{ℜµ j(A) | j = 1, . . . , n}. We
claim that Q t ¶Pt , for every t ¾ 0. To see this, let Q0 =P0. Let eQ t =Pt −Q t , then

ėQ t =ψ1(eQ t) +λ
�

(I − KC)Pt(I − KC)> + KV K>
�

where ψ1(eQ t) = AλeQ t + eQ tA
>
λ
+ GG>. Because of the zero initial condition, this equation has the solution given

by

eQ t =

∫ t

0

eAλ(t−s)
�

λ(I − KC)Ps(I − KC)> + GG> +λKV K>
�

eA>
λ
(t−s) ds ¾ 0

and hence eQ t ¾ 0, that is, Pt ¾Q t for each t ¾ 0. As a result, Pt goes to +∞ when Q t grows unbounded.



8.2 Monotonicity relation

After deriving a lower bound which is necessary for boundedness, the next question is to study how this steady
state upper bound on the error covariance changes as a function of the sampling rate.

Proposition 8.2. Consider system (1) under (A1) with a = 0, c = 0. Let λ1,λ2 ¾ 0 describe the rate of Poisson
measurement process and P λ1

t , P λ2
t denote the corresponding solutions to (22) with a = c = 0 and P λ1(0) =

P λ2(0). For each λ2 ¾ λ1, we have
P λ2

t ¶P
λ1
t , ∀ t ¾ 0. (42)

Proof. For a given λ, the solution to (22) satisfies the equation, Ṗ λ
t = Ψλ(P

λ
t , MP λ

t
,P λ

t C>M−1
P λ

t
), where, due to

the linearity of the measurement map,

Ψλ(P λ
t , MP λ

t
,P λ

t C>M−1
P λ

t
) = AP λ

t +P
λ
t A> + GG> −λP λ

t C>M−1
P λ

t
CP λ

t .

It therefore holds that ∂Ψλ∂ λ ¶ 0 and thus, for each λ2 ¾ λ1, we have Ψλ2
¶ Ψλ1

, for every λ2 ¾ λ1. In particular,

Ṗ λ2
t ¶ Ṗ

λ2
t , for each t ¾ 0 and hence (42) holds.

8.3 Convergence with large sampling rate

Building up on the monotonicity relation stated in Proposition 8.2, we now compare the error covariance of the
sampled system with the error covariance of an estimator with continuous time measurements. Toward this end,
let us consider the optimal Kalman-Bucy filter for (23) with continuously available output measurements, which
is given by

dbzt = Abzt dt + Kcont
t (dzt − Cbzt dt), (43)

with bz0 = E[x0]. To minimize the error covariance, the injection gain Kcont
t for this estimator is obtained as

Kcont
t =Rt C

>V−1 (44a)

d
dt
Rt = ARt +RtA

> + GG> −Rt C
>V−1CRt . (44b)

When t →∞, the error covariance E[|x t − bzt |2 |Yt] is given by the matrix R that solves

0= AR +RA> + GG> −RC>V−1CR . (45)

We are interested in knowing how the steady state error covariance for the estimator using sampled measurements
compares with R when we increase the sampling rate λ, and in particular, when we let λ go to∞.

The next result addresses these issues and to formulate it, we consider the operator F
K
λ which is obtained

from F K
λ

by setting ΠK
λ
= 0 in (33), that is,

F
K
λ(P) := λ

∫ ∞

0

etAλ(I − KC)P(I − KC)>etA>
λ dt, (46)

with ρ
�

F
K
λ

�

denoting its spectral radius. We denote the Neumann series associated with F
K
λ by Nλ, so that

Nλ :=
�

I −F
K
λ

�−1
=
∑∞

j=0(F
K
λ)

j . Thus, if ρ
�

F
K
λ

�

< 1, there exists ` such that













�

F
K
λ

�`












< 1, and we can write

Nλ =
�

I +F
K
λ + · · ·+

�

F
K
λ

�`−1
��

I +
�

F
K
λ

�`
+
�

F
K
λ

�2`
+ · · ·

�

=
�

I +F
K
λ + · · ·+

�

F
K
λ

�`−1
��

I −
�

F
K
λ

�`
�−1

.



Using triangle inequality8, it follows that ‖Nλ‖¶ βλ :=




I +F
K
λ + · · ·+

�

F
K
λ

�`−1 




À�

1−






�

F
K
λ

�` 




�

.

Theorem 8.3. Consider system (1) under (A1) with a = 0, c = 0, and assume that (A, G) is controllable. Let R
denote the steady state minimal covariance of the estimator (43) that satisfies (45). Let K = Kcont = RC>V−1 and
assume that the operator F

K
λ in (46) satisfies

ρ
�

F
K
λ

�

< 1, (47)

for each λ > 0. Then the matrix P λ ¾ 0 that solves (34), and provides an upper bound on the error covariance due
to filter (7) with Poisson measurement process of intensity λ, satisfies

P λ =R +Nλ

�∫ ∞

0

eAλ t K
�

(1−λ)V +λCRC>
�

K>eA>
λ

tdt

�

. (48)

In particular, if β∞ = lim supλ→∞ βλ, then

lim sup
λ→∞

‖P λ‖¶ ‖R‖+ β∞‖K(CRC> − V )K>‖. (49)

Proof. Consider the solution P λ
t of (19) with ΠK

λ
= 0 and K := RC>V−1. Let Qλt = P

λ
t −R , then Qλt satisfies

the following relation

Q̇λt = AλQλt +Q
λ
t A>λ + (1+λ)KV K> +λ(I − KC)P λ

t (I − KC)> −λR

= AλQλt +Q
λ
t A>λ + (1+λ)KV K> −λR +λ(I − KC)Qλt (I − KC)> +λ(I − KC)R(I − KC)>

= AλQλt +Q
λ
t A>λ + KV K> −λKV K> +λ(I − KC)Qλt (I − KC)> +λKCRC>K>

where the last equality followed from the fact that

(I − KC)R(I − KC)> −R = KCRC>K> − 2RC>V−1CR

= −2KV K> + KCRC>K>.

Because of condition (47) and Theorem 6.1, we have limt→∞P λ
t (t) = P λ. Hence, by letting Qλ := P λ −R

(which is not necessarily positive definite), we have that limt→∞Qλt (t) =Qλ. Moreover,Qλ solves the following
algebraic equation:

0= AλQλ +QλA>λ + KV K> −λKV K> +λ(I − KC)Qλ(I − KC)> +λKCRC>K>

Alternatively, the matrix Qλ satisfies the equation,

Qλ =F
K
λ(Qλ) +G

K
λ ,

where G
K
λ :=

∫∞
0 eAλ t K

�

(1−λ)V +λCRC>
�

K>eA>
λ

tdt. Iterating the fixed point equation, we get

Qλ =
�

F
K
λ

�k
(G

K
λ) +

k−1
∑

j=0

�

F
K
λ

� j
(G

K
λ)

k→∞
= (I −F

K
λ)
−1(G

K
λ),

and hence we arrive at (48): P λ =R + (I −F
K
λ)
−1(G

K
λ). The inequality in (49) is obtained by taking the norms

and using the bound




etAλ




=




etA · e−0.5tλI




¶ e(‖A‖−0.5λ)t , which results in

limsup
λ→∞








G
K
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along with the bound ‖Nλ‖¶ βλ.

8We use the fact that
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9 Conclusions

In this paper, we studied the problem of filter design for Lipschitz nonlinear systems under randomly sampled
output measurements. We provided filter design equations and derived equations for computing the covariance
of the state estimation error resulting from our filter design. Conditions were provided under which the expected
error covariance remains bounded, and the dependence on the sampling rate was also studied in some special
cases.

To build on this line of work, it could be interesting to address similar questions with other types of distri-
butions on the measurement process as most of the developments in the current work are specific to Poisson
processes of constant intensity. Such generalizations could start with considering sampling processes where the
rate depends on the state. It would be interesting to see if the tools developed in process allow us to handle
a broader system class with state-dependent diffusion coefficient matrix G. One could also think of developing
more general tools for studying dependence on the sampling rate, which at the moment is presented only for
the linear measurement case. In this regard, one can also draw connections with the results that appear in the
literature on cheap control and quantifying filtering error bounds when the coefficient next to diffusion terms in
the system dynamics converge to zero [21, 28].

Appendix

A Proof of Proposition 5.2

Proof. To prove the existence of solution to equation (22), we first consider the differential equation (19) with
a time-varying K(·). The resulting time-varying differential equation, subject to the initial condition P (0) =P0,
has the solution

Pt = ϕ(t,P , MP , K) := Φ(t, 0)P0Φ
>(t, 0) +

∫ t

0

Φ(t, s)
�

GG> +Π(Ps) +λKs MPs
K>s
�

Φ>(t, s)ds.

For any given K(·) and a positive definite matrix MP ∈ Rp×p (affine inP ), we can find a solution of the Volterra
equation Pt = ϕ(t,P , MP , K) by successive approximation. Let us construct a sequence of these solutions Pi for
i ¾ 1 such that M0 = Ip×p, K0 = C>,Pi+1(t) = ϕ(t,Pi+1, Mi , Ki), Mi+1 = (1+c)CPi+1C>+(2c+c2) tr Pi+1 Ip×p+V,
and Ki+1 = M−1

i+1C>Pi+1. Notice that all Pi are positive semidefinite, all Mi are positive definite and so invertible,
all matrices Ki , Mi ,Pi , i ∈ N, are measurable and bounded with respect to t. Consider Q i(t) = Pi(t)−Pi+1(t)
with Q i(0) = 0. From (19) and (31), we get

Q̇ i = Ψ(Pi , Mi , Ki)−Ψ(Pi+1, Mi+1, Ki+1)
¾ Ψ(Pi , Mi , Ki)−Ψ(Pi+1, Mi+1, Ki)

= (A−λKiC)Q i +Q i(A−λKiC)
> +Π(Q i) +λKi(Mi −Mi+1)K

>
i

= (A−λKiC)Q i +Q i(A−λKiC)
> +Π(Q i) +λ(1+ c)KiCQ iC

>K>i +λ tr (Q i)(2c + c2)KiK
>
i

= (A−λKiC)Q i +Q i(A−λKiC)
> +Π(Q i) +λKi

�

(1+ c)CQ iC
> + tr (Q i)(2c + c2)Ip

�

K>i

so there exists a positive semidefinite matrix R such that

Q̇ i = (A−λKiC)Q i +Q i(A−λKiC)
> +Π(Q i) +λKi

�

(1+ c)CQ iC
> + tr (Q i)(2c + c2)Ip

�

K>i + R.

Hence, Q i(t) can be rewritten as a solution of the equation

Q i(t) =

∫ t

0

Φ(t, s)(Π(Q i) +λKi MQ i
K>i + R)Φ>(t, s)ds,



implying that Q i(t) ¾ 0 for each i ¾ 1 and t ∈ [0, T], as it can be calculated by successive approximation with
Q i(0) = 0. Consequently, the sequence {Pi(t)}i∈N is non-increasing for each t ∈ [0, T]. It also means that on
the finite segment [0, T], Pi(t) is uniformly bounded by the number, sup{|P1(t)| | t ∈ [0, T]}, for every i ¾ 1
and t ∈ [0, T]; consequently Mi(t) and Ki(t) are uniformly bounded as well. Moreover, we let Pt = lim

i→∞
Pi(t),

Mt = lim
i→∞

Mi(t) = (1 + c)CPt C
> + (2c + c2) tr(Pt)In×n + V , Kt = lim

i→∞
Ki(t) = P C>M−1. So, the Volterra

equation has the form: Pt = ϕ(t,P , M , K) for Mt and Kt defined above, meaning that the chosen solution P is
well-defined and unique.

B Proof of Lemma 6.3

Let KPt
=Pt C

>M−1
Pt

and let Φ(t, s) denote the fundamental matrix associated with A−λKPt
C . Then

Pt =

∫ t

0

Φ(t, s)(Π(Ps) + GG> +λKPs
MPs
K >Ps
)Φ>(t, s)ds. (50)

Let us fix an arbitrary τ ¾ 0 and define fKPt
= KPt+τ

. Further, let eΦ(t, s) be the fundamental matrix associated
with A−λ fKPt

C; then eΦ(t, s) = Φ(t +τ, s+τ). Let fPt be the solution of

Ý̇Pt = Ψ(fPt , M
fPt

, fKPt
), fP0 = 0,

then Pt ¶ fPt , for each t ¾ 0, by minimum property. Moreover, we have the following representations of fPt−τ:

fPt−τ =

∫ t−τ

0

eΦ(t −τ, s)(Π(fPs) + GG> +λ fKPs
M
fPs
fK >Ps
)eΦ>(t −τ, s)ds

=

∫ t−τ

0

Φ(t, s+τ)(Π(fPs) + GG> +λKPs+τ
M
fPs
K >Ps+τ

)Φ>(t, s+τ)ds

=

∫ t

τ

Φ(t, s)(Π(fPs−τ) + GG> +λKPs
M
fPs−τ
K >Ps
)Φ>(t, s)ds

¶
∫ t

0

Φ(t, s)(Π(fPs−τ) + GG> +λKPs
M
fPs−τ
K >Ps
)Φ>(t, s)ds.

The last inequality, combined with (50), yields

Pt − fPt−τ ¾
∫ t

0

Φ(t, s)(Π(Ps − fPs−τ) +λKPs
M(Ps−fPs−τ)

K>Ps
)Φ>(t, s)ds

and hence we get Ps − fPs−τ ¾ 0, for each s ¾ τ. By letting s = t +τ, we obtain the desired monotonicity, that is,
Pt ¶ fPt ¶Pt+τ, and this completes the proof.

C Auxiliary Results

Lemma C.1 ([38, Lemma 4.1]). Consider the equation, GG> + KK> = GG
>

, and let F be an arbitrary matrix of
suitable dimension.

1. If (A, G) is controllable, then (A+ KF, G) is controllable.

2. If (A, G) is stabilizable, then (A+ KF, G) is stabilizable.

Lemma C.2 ([38, Lemma 5.1]). Let (A, G) be controllable, P0 ¾ 0 and let P satisfy

Ṗt = APt +PtA
> +Π(Pt) + GG>, P (0) =P0.

If there exists a constant matrix Q ¾ 0 such that AQ +QA> +Π(Q) + GG> = 0, then Pt →Q as t → +∞.
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