
HAL Id: hal-02960842
https://laas.hal.science/hal-02960842

Submitted on 28 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the dynamic energy aware job shop scheduling
problem with the heterogeneous parallel genetic

algorithm
Jia Luo, Didier El Baz, Rui Xue, Jinglu Hu

To cite this version:
Jia Luo, Didier El Baz, Rui Xue, Jinglu Hu. Solving the dynamic energy aware job shop scheduling
problem with the heterogeneous parallel genetic algorithm. Future Generation Computer Systems,
2020, 108, pp.119-134. �10.1016/j.future.2020.02.019�. �hal-02960842�

https://laas.hal.science/hal-02960842
https://hal.archives-ouvertes.fr

Solving the Dynamic Energy Aware Job Shop Scheduling Problem

with the Heterogeneous Parallel Genetic Algorithm

Jia Luoa,b,c,d, Didier El Baz b, Rui Xuea,1*, Jinglu Hu c
a College of Economics and Management, Beijing University of Technology, Beijing, China

b LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

c Graduate School of Information, Production, and Systems, Waseda University, Kitakyushu, Japan

d International Research Fellow of Japan Society for the Promotion of Science

Abstract

Integrating energy savings into production efficiency is considered as one essential factor in

modern industrial practice. A lot of research dealing with energy efficiency problems in

the manufacturing process focuses solely on building a mathematical model within a static

scenario. However, in the physical world shop scheduling problems are dynamic where unexpected

events may lead to changes in the original schedule after the start time. This paper makes an

investigation into minimizing the total tardiness, the total energy cost and the disruption to the

original schedule in the job shop with new urgent arrival jobs. Because of the NP hardness of this

problem, a dual heterogeneous island parallel genetic algorithm with the event driven strategy is

developed. To reach a quick response in the dynamic scenario, the method we propose is made

with a two-level parallelization where the lower level is appropriate for concurrent execution within

GPUs or a multi-core CPU while codes from the two sides can be executed simultaneously at the

upper level. In the end, numerical tests are implemented and display that the proposed approach

can solve the problem efficiently. Meanwhile, the average results have been improved with a

significant execution time decrease.

Key words

Job shop scheduling, Energy efficiency, Dynamic scheduling, Parallel genetic algorithm, Multi-

core processing, GPU computing

1
* Corresponding Author

2

1. Introduction

Energy costs due to production have been traditionally treated as externalities that must be incurred

[1]. With an increasing interest for industrial sustainability, integrating energy savings into

production efficiency is considered as one essential factor in factory practice. There are two kinds

of approaches studying energy saving in manufacturing systems [2]: avoiding peak power

consumption and reducing the overall energy cost. The first one [3, 4, 5] shifts load at energy peaks

when the maximum available energy is met. The second one [6, 7, 8] focuses on decreasing the

total energy cost in manufacturing system by subdividing it and switching them among different

types and different levels. Most of these research works focus solely on building a mathematical

model within a static scenario. However, unexpected events may lead changes in the preset

schedule after the start time. Few works focus on dynamic energy aware shop scheduling problems

and most of them [9, 10, 11] were solved by the complete rescheduling with a risk in instability.

Moreover, scheduling problems in dynamic scenarios are more complicated than scheduling

problems in static scenarios and the time cost to obtain the optimal solution or even a high-quality

solution is heavy. Therefore, an approach proposing an appropriate updated schedule within a

reasonable time is highly desirable in this case.

Parallel computing has been widely used for years. The multi-core CPU can run multiple

instructions at the same time on separate cores to increase the overall speed while Graphics

Processing Units (GPUs) are many-core processor devices providing a highly multi-threaded

environment using the Single Instruction, Multiple Threads (SIMT) model. Since most of latest

computers are furnished with a multi-core CPU and GPUs, the execution on both is an effective

strategy to utilize hardware in an efficient way. Investigation on solving scheduling problems in

manufacturing processes by parallel computing methods [12] has received increasing attention in

the last decades. However, the sophisticated issue as energy aware shop scheduling in dynamic

scenarios was never considered as best as we are aware. On the other side, there is a great number

of successful cases [13,14, 15] proving that parallel GAs are reliable for solving shop scheduling

problems. But most of them either only use the CPU, the GPUs or two of them in sequence which

may end up to an underuse of computing resources due to the hardness of designing schemes that

efficiently exploit simultaneously different hardware architectures. Thus, the design of parallel

GAs on hybrid CPU–GPU frameworks for solving dynamic energy aware shop scheduling

problems is a known research challenge following previous works, and this is what we are trying

to solve in this paper.

An investigation into minimizing the total tardiness and the total energy cost in the job shop with

new urgent arrival jobs is concerned in this paper. To avoid the shortages of the complete

rescheduling, the schedule repair with the event driven strategy is utilized to represent the updated

solution. Since the response time is sensitive in the dynamic scenario, a dual heterogeneous island

parallel GA executed simultaneously on GPUs and a multi-core CPU is utilized. Numerical tests

confirm the proposed method can be implemented to solve the problem efficiently and effectively.

Our main work can be summed up as follows:

1. A dynamic energy aware job shop scheduling model is studied which seeks a trade-off among

the total tardiness, the energy cost and the disruption to the original schedule;

2. A parallel GA is adapted for solving the proposed problem, whose lower level is appropriate

for concurrent execution within GPUs or a multi-core CPU while codes from the two sides can

be executed simultaneously at the upper level;

3. Numerical experiments have been carried out and witness that the adapted parallel GA can not

only solve the proposed problem efficiently but also improve the average results with a

3

significant execution time decrease.

The remaining of our work consists of 5 sections. In section 2, the literature review is presented.

Section 3 exposes the research problem and formulates the mathematical model. Section 4

discusses the design of the parallel GA on hybrid CPU–GPU frameworks and its implementation

for solving dynamic energy aware shop scheduling problems. Afterwards, computational tests and

a case study are conducted in section 5. Finally, conclusions are stated in section 6.

2. Literature review

Due to environmental concerns and continuously rising cost, there is an increasing interest in

energy saving in traditional industrial processes. Since moving the production activities in off-peak

periods or inserting idle times for machine may not be acceptable with intense production process

or fixed working time shifts [1], minimizing the overall energy cost is considered one main

solution. Meng et al. discussed the total energy consumption for flexible job shop scheduling

problems in [16] and solved it by six new mixed integer linear programming models. He et al. [17]

proposed a model synthesizing the optimization of energy consumption and makespan while the

optimal solutions were obtained by the Tabu search. Meanwhile, the GA or the improved GA is

one powerful and frequently used method to deal with the total energy cost integrated scheduling

problems. Liu et al. [6] developed a non-dominant sorting GA and obtained the Pareto front for a

bi-objective job shop scheduling problem that investigated into minimizing total electricity cost

and total tardiness. Similarly, a modified multi-objective GA was studied in [7] and it was utilized

to solve a multi-machine job shop scheduling model with emission aware issues. In one word,

numerous efforts have been given to combine the traditional shop scheduling efficiency with the

overall energy cost. However, the models used in these researches are deterministic in which the

number of jobs is a fixed value [6]. As an ongoing reactive process where the presence of a variety

of unexpected disruptions is usually inevitable [18], the static scheduling obviously cannot meet

the requirements in most real-world environments.

Literature on dynamic scheduling has considered a significant number of works dealing with new

arrival jobs and their effects in various manufacturing systems [18]. Most efforts concentrated only

on the efficiency improvement for traditional scheduling problems while neglecting the energy

cost. In the dynamic scenario, complete rescheduling and schedule repair are the two most common

used strategies. An improved particle swarm optimization was adopted in [9] to allocate the new

jobs and the previous remaining operations simultaneously for an energy saving dynamic

scheduling problem. Zhang et al. studied the dynamic rescheduling considering energy

consumption in [10] where optimal solutions were found by a GA with the complete rescheduling

strategy. Even the complete rescheduling provides the optimal solutions, it can result in instability

and disruption in manufacturing flows, leading to tremendous production costs [19]. On the

opposite, schedule repair only attempts to revise part of the originally created schedule for

responding to the production environment changes. In [2], Pach et al. set up flexible manufacturing

systems using potential fields where resources could switch to less energy consumption mode by

sensing the intentions from products. Zeng et al. [20] presented a particle swarm optimization to

solve the energy consumption based dynamic scheduling problem by introducing idle time

windows. To sum up, some efforts concerning energy efficient scheduling problems in dynamic

scenarios have been conducted. It shows that the schedule repair strategy is more practical to deal

with the dynamic manufacturing system in the real world. But many limitations are still remaining

that must be taken into account. One for instance is to get the appropriate updated schedule within

a reasonable time, especially for large size manufacturing applications.

With the huge evolution of multi-core CPUs and GPUs, some works have considered the

cooperation between them to maximally utilize their compute capability. A parallelization mixing

4

the multi-core CPU and the GPUs was studied by Dabah et al in [12] where a group of blocking

job shop scheduling problems were solved efficiently. In [21], Hawick et al. described the use of

threading approaches and multi-core CPUs to control independent GPU devices to speed up

scientific simulations. Hossam et al. [22] introduced a parallel implementation of hybrid CPU/GPU

in which CPU and GPU work cooperatively and seamlessly, combining benefits of both

platforms. All these works have verified that a scheme exploiting a multi-core CPU and GPUs

corporately can increase the hardware occupation and achieve a speedup. However, this strategy is

rarely implemented for GAs, in particular for the implementation of parallel GAs to solve dynamic

energy aware shop scheduling problems, as far our knowledge is concerned.

Considering the above-mentioned requirements, we seek to study parallel GAs for solving the

dynamic energy aware job shop scheduling problem on hybrid CPU–GPU frameworks. All the

previous studies have afforded us with a starting point to design a GA that is well suited for

parallelization on different architectures. Moreover, this implementation is efficient to provide

appropriate solutions for large dynamic energy aware job shop scheduling problems within a short

response time.

3. Problem statement

3.1 EDJSP description

The Job Shop scheduling Problem (JSP) is a NP-hard problem [23] in which there are several jobs

and each job consists of a certain amount of operations. One operation is processed by a particular

machine and every job is assigned to a group of machines following a predetermined route [6]. As

a layout shown in Figure 1, job A and job B need to be processed by 4 machines and their

processing routines are fixed as Machine 0-2-1-3 and Machine 2-0-3-1, respectively.

Fig. 1. A job shop layout

The Energy aware Dynamic Job Shop scheduling Problem (EDJSP) is an extension of the JSP with

machine speed scaling [24] in which machines are available to be set at different speed levels when

dealing with different jobs. The processing time and the energy cost of one operation processed on

one machine at a set speed level are known. When a higher speed level is chosen, the processing

time is shortened but with an energy cost increase. When machines start to handle original jobs

following the preset schedule, a batch of new jobs may arrive and these jobs are requested to be

processed as soon as possible. Therefore, the production line conducts them immediately with the

highest speed level. The operations being processed are terminated and need to be rescheduled with

other unfinished operations of original jobs based on the insertion of new urgent arrival jobs. The

updated schedule using the schedule repair refers to some local adjustment of the original one.

There are two possible schedule repair measures for the impact caused by the schedule changes

[25]: (1) the deviation from the original jobs starting times, (2) the deviation from the original

sequence. In this paper, a measure modified from (1) is taken into consideration where each original

5

job has an importance weight and a larger importance weight indicates a higher penalty for delaying

the finishing time of original jobs from the original schedule. If one operation of a new urgent

arrival job is added before one operation of an original job on the same machine, a higher speed

level with less processing time but more energy cost is required to make the original job to be

completed as close as to its finishing time in the original schedule. Clearly, there are conflicts

among the minimization of total tardiness, the minimization of total energy cost and the

minimization of disruption to the original schedule. Thus, a trade-off must be made among them.

Because of the NP hardness of the JSP, the EDJSP is a NP-hard problem and more complicated

than the JSP.

3.2 Mathematical model of EDJSP

A description of the notations referred within the remaining sections of this paper is summarized

in Table 1.

Table 1 The used notations

Notation Description

𝑗, 𝑖, l, x, z Job indices

𝑠, 𝑡, y Operation indices

𝑚 Machine index

p, q, w Speed level indices

𝑛 Amount of original jobs

𝑛′ Amount of new urgent arrival jobs

r1
Amount of completed operations of original jobs before the rescheduling

point

r2
Sum of completed operations of original jobs before the rescheduling

point and operations of new urgent arrival jobs

𝑜𝑗 Amount of operations of job j

𝑔 Amount of machines

h Amount of speed levels

𝐽 Set of original jobs, 𝐽 = {0,1,2, … , 𝑛 − 1}

𝐽′ Set of new arrival jobs, 𝐽′ = {0,1,2, … , 𝑛′ − 1}

𝑂𝑗 Set of operations of job j, 𝑂𝑗 = {0,1,2, … , 𝑜𝑗 − 1}

M Set of machines, 𝑀 = {0,1,2, … , 𝑔 − 1}

L Set of speed levels, L = {0,1,2, … , ℎ − 1}

𝑅𝑗 Release time of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′

𝐷𝑗 Due time of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′

𝑇𝑗 Tardiness of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′

𝑀𝑗𝑠 Target machine handling operation s of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗

𝑅𝑆 Rescheduling point

𝑃𝑗𝑠𝑚𝑝
Processing time when operation s of job j handled by target machine m

at speed level p, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 , 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿

𝑄𝑗𝑠𝑚𝑝
Energy cost when operation s of job j handled by target machine m at

speed level p, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 , 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿

𝑍𝑗𝑠𝑚𝑝
Boolean variable, it is equal to 1 if operation s of job j is handled by

target machine m at speed level p, otherwise, it equals to 0, 𝑗 ∈ 𝐽 ∪
𝐽′, 𝑠 ∈ 𝑂𝑗, 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿

𝑆𝑗𝑠𝑚
Original start time of operation s of original job j on machine m, 𝑗 ∈
𝐽, 𝑠 ∈ 𝑂𝑗, 𝑚 𝜖 𝑀

6

𝑆𝑗𝑠𝑚
′

New start time of operation s of job j on machine m, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗,

𝑚 𝜖 𝑀

TT Total tardiness of all jobs

𝐸𝑇𝑚𝑎𝑥 Estimated maximum value of TT

𝐸𝑇𝑚𝑖𝑛 Estimated minimum value of TT
TE Total energy cost

𝐸𝐸𝑚𝑎𝑥 Estimated maximum value of TE
𝐸𝐸𝑚𝑖𝑛 Estimated minimum value of TE

𝑤𝑡𝑗 Importance weight of original job j, 𝑗 ∈ 𝐽

DEV
Weighted finishing time deviation of the updated schedule from the

original one

𝐸𝐷𝑚𝑎𝑥 Estimated maximum value of DEV

𝐸𝐷𝑚𝑖𝑛 Estimated minimum value of DEV

𝛼, 𝛽, 𝛾 Weight of each normalized objective function.

𝜃 Migration threshold value, 0 ≤ 𝜃 ≤ 1

𝜆 Migration rate, 0 ≤ 𝜆 ≤ 1

𝜑
Migration policy execution gap, the frequency to perform the migration

policy as defined in equation (12).

𝑓𝑖𝑡𝐴 The best individual’s fitness value of subpopulation A on island A

𝑓𝑖𝑡𝐵 The best individual’s fitness value of subpopulation B on island B

a, b, c, f Gene indices in a chromosome

𝑣𝑗 Index of occurrence time of job j

𝑢𝑗 Occurrence time of job j

U Set of occurrence time of a job number, 𝑈 = {0,1,2, … , 𝑢𝑗 − 1}

𝑘 Current generation number of the GA

𝑋(𝑘) Operation permutation of original schedule at generation k

𝑌(𝑘) Speed level permutation of original schedule at generation k

𝑋′(𝑘) Operation permutation of new schedule at generation k

𝑌′(𝑘) Speed level permutation of new schedule at generation k

𝑜𝑗𝑠 Operation s of job j

d, e Indices for operations on machine m

𝑜𝑚
′

Number of operations on machine m before operation s of job j is

assigned on it

𝑂𝑚
′

Set of operations on machine m before operation s of job j is assigned on

it, 𝑂𝑚
′ = {0,1,2, … , 𝑜𝑚

′ − 1}

N The number of orthogonal arrays in the Taguchi method

F The response values in the Taguchi method

𝑃𝑐𝑒𝑐 The crossover rate of the cellular GA

𝑃𝑐𝑒𝑚 The mutation rate of the cellular GA

7

𝑃𝑐𝑎𝑐 The crossover rate of the classic GA

𝑃𝑐𝑎𝑚 The mutation rate of the classic GA

To minimize the total tardiness, the total energy cost and the delay caused by the schedule changes,

the formal mathematical model of the EDJPS is derived from the mathematical models presented

in [25, 26]. The formalization is given as follows.

Objective Function:

Min: 𝛼 ×
𝑇𝑇−𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑚𝑎𝑥−𝐸𝑇𝑚𝑖𝑛
+ 𝛽 ×

𝑇𝐸−𝐸𝐸𝑚𝑖𝑛

𝐸𝐸𝑚𝑎𝑥−𝐸𝐸𝑚𝑖𝑛
+ 𝛾 ×

𝐷𝐸𝑉−𝐸𝐷𝑚𝑖𝑛

𝐸𝐷𝑚𝑎𝑥−𝐸𝐷𝑚𝑖𝑛
 (1)

Subject to:

𝑆𝑗0𝑀𝑗0

′ ≥ 𝑅𝑗 𝑗 ∈ 𝐽 ∪ 𝐽′ (2)

𝑆𝑗(𝑠+1)𝑀𝑗(𝑠+1)

′ ≥ 𝑆𝑗𝑠𝑀𝑗𝑠

′ + ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗, 𝑠 > 0, 𝑝 𝜖 𝐿 (3)

𝑆𝑖𝑡𝑀𝑖𝑡

′ ≥ 𝑆𝑗𝑠𝑀𝑗𝑠

′ + ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝

𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑖 ∈ 𝐽 ∪ 𝐽′, 𝑗 ≠ 𝑖, 𝑠 ∈ 𝑂𝑗, 𝑡 ∈ 𝑂𝑖, 𝑀𝑗𝑠 == 𝑀𝑖𝑡, 𝑝 𝜖 𝐿, 𝑆𝑗𝑠𝑚 ≤ 𝑆𝑖𝑡𝑚

(4)

𝑇𝑇 = ∑

𝑗∈𝐽

𝑚𝑎𝑥 (𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

′

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 – 𝐷𝑗 , 0)

(5)

∑

𝑝∈𝐿

𝑍𝑗𝑠𝑀𝑗𝑠𝑝 = 1 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 (6)

𝑇𝐸 = ∑

𝑗∈𝐽

∑

 𝑠∈𝑂𝑗

∑

𝑝 𝜖 𝐿

𝑄𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝 (7)

𝑆𝑗𝑠𝑀𝑗𝑠

′ ≥ 𝑅𝑆 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑂𝑗, 𝑆𝑗𝑠𝑀𝑗𝑠
+ ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝 ≥ 𝑅𝑆 (8)

𝑆𝑗𝑠𝑀𝑗𝑠

′ = 𝑆𝑗𝑠𝑀𝑗𝑠
 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑂𝑗𝑆𝑗𝑠𝑀𝑗𝑠

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝 < 𝑅𝑆 (9)

𝑅𝑗 ≥ 𝑅𝑆 𝑗 ∈ 𝐽′ (10)

𝐷𝐸𝑉 = ∑

𝑗∈𝐽

𝑤𝑡𝑗 × 𝑚𝑎𝑥 ((𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

′

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝) − (𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

+ ∑

𝑞 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑞 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑞), 0)

(11)

8

In this optimization problem, 𝑆𝑗𝑠𝑚
′ and 𝑍𝑗𝑠𝑚𝑝 are the decision variables. A weighted additive utility

function with three normalized objectives is described as (1) where all objectives can be assessed

on the same scale. The linear weighted sum approach is taken for this application instead of the

Pareto optimal solution for two reasons. Firstly, the most widely used parallel cellular model on

GPUs is still immature for solving multi-objective problems where the main stream

implementation manages a central Pareto front sequentially [26, 27]. Second, most of the existing

literature on the multi-objective job shop scheduling problems adopt the linear weighted sum

approach [28] whose computational complexity is relatively lower. Meanwhile, this design is

suitable for dealing with large size problems in the dynamic scenario by obtaining an adequate

renewed scheduling plan in a reasonable time.

Constraints (2) and (3) enforce that the first operation can only be processed after the release time

while the others are authorized to start after its precedent one. The precedence for sequencing

operations on machines is insured by constraint (4). Moreover, equation (5) defines the total

tardiness of original jobs. As far as the energy cost, constraint (6) states each operation can only be

handled by one machine with a fixed speed level whereas the total energy cost is given by equation

(7). Finally, constraint (8), (9) and (10) impose the definition of rescheduling and equation (11)

indicates the weighted finishing time deviation of the updated schedule from the original one.

4. Solving approach

4.1 Event-driven strategy

With the event-driven policy, rescheduling is triggered in response to an unexpected event that

alters the current system status [18]. In the case of EDJSP, the unexpected event is considered as

an arrival of urgent jobs. These jobs are requested to be processed as soon as possible even if the

original schedule has started. Operations that are being executed need to be terminated and

unfinished operations of original jobs must be rearranged in order to leave the machines available

to firstly handle urgent jobs. Thus, new urgent arrival jobs are assigned to machines with the highest

speed levels at the beginning when the rescheduling is triggered. If the amount of new urgent arrival

jobs is not unique, they are scheduled as the regular JSP with the objective of minimizing the total

tardiness. Unfinished operations of original jobs are considered at the next step according to the

remaining spaces on machines. A dual heterogeneous island parallel GA on hybrid CPU–GPU

frameworks is adapted to generate an adequate schedule for them in a limited time. The flow of the

event-driven strategy is summarized as in Figure 2.

9

Fig.2. The flow of the event-driven strategy for the EDJSP

4.2 Dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks

The general procedure of the dual heterogeneous island parallel GA on hybrid CPU–GPU

frameworks is a further development from our previously designed parallel GA and its

implementations to solve large scale flexible flow shop scheduling in static scenarios [30]. The

algorithm divides the population into two islands. There is an identical amount of individuals on

every island in which island A deals with the cellular GA [31] and island B deals with the classic

GA [32]. At a certain point, a migration operation is executed to swap individuals between them.

The procedure of the dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks is

shown in Fig.3. As far as the software and the hardware levels are concerned, four obvious

advantages of this design are summarized as follows:

● Since the cellular GA and the classical GA get new search points in the exploring space using

different mechanisms, this design enlarges the range of the searching process and decreases

the probability that premature convergence occurs.

● Because of the independent evolution, individuals from heterogeneous islands obtain distinct

characters from different solution range. Therefore, the performance of migration is enhanced.

● With respect to the underlying architectures, the cellular GA is designed to be entirely

executed in parallel on GPUs while the classic GA can be partially parallelized on a multi-

core CPU.

● To utilize the computing resources maximally, codes from the host and the device can also be

executed simultaneously, in addition to the parallelization within GPUs or a multi-core CPU.

10

Fig.3. The procedure of the dual heterogeneous island parallel GA

The implementation for the cellular GA on island A is done with the Compute Unified Device

Architecture (CUDA) for GPUs. All CUDA threads in a grid execute the same kernel function

where a grid is organized as 2D array of blocks and each block is arranged as 2D array of threads

[33]. The cellular GA maps individuals in a grid environment [34]. Therefore, it can be completely

parallelized on CUDA and absolutely matches the underlying architectures. Since the texture

memory of CUDA is optimized for 2D spatial locality [35], the overlapping communication region

of the cellular GA is designed to be circled as in Fig. 4. At first, two parent individuals are selected

from this region and their chromosomes are reassembled to produce a new offspring individual.

After the mutation operation, this newly constituted individual substitutes the initial one only if its

fitness value is better. Upon the fitness values, all individuals are finally ordered by the Bitonic-

Merge sort [36], if the algorithm complies with the island termination condition but not with the

final termination condition. The crossover, the replacement and the Bitonic-Merge sort are

managed via the global memory whereas the mutation and the fitness evaluation are performed

thought the local memory.

11

Fig.4 The procedure to generate new solutions by the cellular GA

Because of the high frequency use of the roulette wheel selection, the classic GA on island B

utilizes it for selecting individuals from the population according to their fitness values. As the next

step, two randomly paired parent individuals carry out the crossover and the new offspring

individual implements the mutation. After these steps, the all-time best individual is maintained

and is used to replace the worst individual in the current generation. At the end, all individuals are

sorted under the same condition as the cellular GA on GPUs. To respect the original mechanism

without requesting specific underlying architecture, a master-slave model is utilized to parallelize

the classic GA. In this case, only the fitness evaluation and the Bitonic-Merge sort are performed

on a multi-core CPU as slave nodes while the rest procedures are handled at the master side in

sequential. When this procedure is implemented, the OpenMP [37] (Open Multi-Processing) is

used for programming parallel threads in multi-core applications.

When a migration point is reached, individuals executed on GPUs are transferred to the CPU and

the migration between the two islands is carried out by the CPU. To reduce the amount of factors

required to be controlled manually, the migration’s execution is decided by a migration threshold

value 𝜃. Moreover, the migration rate 𝜆 is formulated as

𝜆 = {1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴

} 0 1 − 𝑚𝑖𝑛{

𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴}

< 𝜃

1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴}

≥ 𝜃
(12)

The migration is only executed when 1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴}

< 𝜃 where the 𝜆 percent individuals with

the best fitness values are exchanged between the two islands to replace the 𝜆 percent individuals

with the worst fitness values in the others. This mechanism helps to diffuse the best individuals

efficiently while saving the execution time by avoiding useless information sharing.

4.3 Hybrid encoding representation

To solve the EDJSP, a modified operation-based encoding is adopted for representing the

chromosomes. In terms of the schedule of original jobs, the chromosome contains two

permutations: operation permutation X(k) (13) and speed level permutation Y(k) (14). X(k) utilizes

the operation-based encoding where each job is represented by a natural number and each number

is present as many times as the number of operations of the job it represents [38]. By scanning X(k)

from left to right, the 𝑣𝑗
th occurrence of a job j refers to the 𝑣𝑗

th operation in the technological

sequence of this job [39]. According to the example provided in [40], a feasible solution for a 3× 3

job shop is presented as [2, 1, 0, 0, 1, 2, 2, 1, 0] where 2 on the fifth gene position (indexed from

12

0) indicates the operation 1 (after the operation 0) of job 2 as it is the 1st occurrence (after the 0th

occurrence) of number 2. Thus, X(k) can be translated to a list of ordered operations as

[𝑜20, 𝑜10, 𝑜00, 𝑜01, 𝑜11, 𝑜21, 𝑜22, 𝑜12, 𝑜02]. Moreover, each element 𝑦𝑎(𝑘) shows the selected speed

level of its related element 𝑥𝑎(𝑘) on the target machine.

X[k] = [𝑥0(𝑘), 𝑥1(𝑘), ⋯ , 𝑥𝑎(𝑘), ⋯ , 𝑥
∑𝑗∈𝐽 𝑜𝑗−1

(𝑘)] (13)

where 𝑥𝑎(𝑘)𝜖[0, 𝑛 − 1], 𝑢𝑗 == 𝑜𝑗 .

Y[k] = [𝑦0(𝑘), 𝑦1(𝑘), ⋯ , 𝑦𝑎(𝑘), ⋯ , 𝑦
∑𝑗∈𝐽 𝑜𝑗−1

(𝑘)] (14)

where 𝑦𝑎(𝑘)𝜖[0, ℎ − 1].

To leave machines available to conduct new urgent arrival jobs firstly with the highest speed level

and rearrange unfinished operations of original jobs, the chromosome of the updated schedule also

includes an operation permutation 𝑋′(𝑘) (15) and a speed level permutation 𝑌′(𝑘) (16). The

initialization rule for both are shown in Algorithm 1. Moreover, the decoding rule is displayed in

Algorithm 2.

𝑋′(𝑘) = [𝑥0
′ (𝑘), 𝑥1

′ (𝑘), ⋯ , 𝑥𝑎
′ (𝑘), ⋯ , 𝑥

∑
𝑗∈𝐽∪𝐽′ 𝑜𝑗−1

′ (𝑘)] (15)

where 𝑥𝑎
′ (𝑘)𝜖[0, 𝑛 + 𝑛′ − 1], 𝑢𝑗 == 𝑜𝑗.

𝑌′(𝑘) = [𝑦0
′ (𝑘), 𝑦1

′ (𝑘), ⋯ , 𝑦𝑎
′ (𝑘), ⋯ , 𝑦

∑
𝑗∈𝐽∪𝐽′ 𝑜𝑗−1

′ (𝑘)] (16)

where 𝑦𝑎
′ (𝑘)𝜖[0, ℎ − 1].

13

Algorithm 1. The initialization rule of permutations 𝑋′(𝑘) and 𝑌′(𝑘)

a ← 0;

for 𝑏 ← 0 𝑡𝑜 ∑𝑗∈𝐽 𝑜𝑗 − 1 do

j ← 𝑥𝑏(0);
s ← 𝑣𝑗;

p ← 𝑦𝑏(0);
if 𝑆𝑗𝑠𝑀𝑗𝑠

+ 𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝 ≤ 𝑅𝑆 then

 𝑥𝑎
′ (0) ← 𝑥𝑏(0);

 𝑦𝑎
′ (0) ← 𝑦𝑏(0);

 a ← a+1;

end if

end for

r1← a;

for 𝑐 ← 0 𝑡𝑜 ∑𝑖∈𝐽′ 𝑜𝑖 − 1 do

 𝑥𝑎
′ (0) ← 𝑥𝑐(0);

 𝑦𝑎
′ (0) ← 𝑦𝑐(0) //ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙;

a ← a+1;

end for

r2← a;

for 𝑎 ← 𝑟2 𝑡𝑜 ∑𝑙∈𝐽∪𝐽′ 𝑜𝑙 − 1 do

 initialize 𝑥𝑎
′ (0) following the rule of operation-based encoding;

initialize 𝑦𝑎
′ (0) randomly in the range of machine speed level;

end for

14

Algorithm 2. The decoding rule

for 𝑎 ← 𝑟2 𝑡𝑜 ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1 do

j ← 𝑥𝑎
′ (𝑘);

s ← 𝑣𝑗;

p ← 𝑦𝑎
′ (𝑘);

 if s == 0 then

 if 𝑅𝑗 ≤ 𝑅𝑆 then

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑅𝑆;

else

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑅𝑗;

end if

else

for 𝑏 ← 0 𝑡𝑜 ∑𝑖∈𝐽∪𝐽′ 𝑜𝑖 − 1 do

if i == j and 𝑣𝑖 == 𝑠 − 1 then

 w ← 𝑦𝑏
′ (𝑘);

end if

 end for

if 𝑆𝑗(𝑠−1)𝑀𝑗(𝑠−1)
+ 𝑃𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤 × 𝑍𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤 ≤ 𝑅𝑆 then

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑅𝑆;

else

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑆𝑗(𝑠−1)𝑀𝑗(𝑠−1)

′ + 𝑃𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤 × 𝑍𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤;

end if

end if

d← 0;

for 𝑐 ← 𝑟1 𝑡𝑜 𝑎-1 do

 l ← 𝑥𝑐
′ (𝑘);

t ← 𝑣𝑙;

if 𝑀𝑗𝑠 == 𝑀𝑙𝑡 then

 𝑂𝑀𝑗𝑠

′ [𝑑] ← 𝑜𝑙𝑡;

d ← d+1;

end if

 end for

 Sort elements in 𝑂𝑀𝑗𝑠

′ [𝑑] in ascending order by the starting time;

for 𝑒 ← 0 𝑡𝑜 𝑜𝑚
′ − 1 do

 x ← job number in 𝑂𝑀𝑗𝑠

′ [𝑒];

 y ← operation number of job x in 𝑂𝑀𝑗𝑠

′ [𝑒];

for 𝑓 ← 0 𝑡𝑜 ∑𝑧∈𝐽∪𝐽′ 𝑜𝑧 − 1 do

if z == x and 𝑣𝑧 == 𝑦 then

 q ← 𝑦𝑓
′ (𝑘);

end if

 end for

if [𝑆𝑗𝑠𝑀𝑗𝑠

′ , 𝑆𝑗𝑠𝑀𝑗𝑠

′ + 𝑃𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝) ∩ [𝑆𝑥𝑦𝑀𝑥𝑦

′ , 𝑆𝑥𝑦𝑀𝑥𝑦

′ + 𝑃𝑥𝑦𝑀𝑥𝑦𝑞 × 𝑍𝑥𝑦𝑀𝑥𝑦𝑞) ≠ ∅

then

𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑆𝑥𝑦𝑀𝑥𝑦

′ + 𝑃𝑥𝑦𝑀𝑥𝑦𝑞 × 𝑍𝑥𝑦𝑀𝑥𝑦𝑞;

 end if

15

end for

end for

4.4 Crossover and mutation operators

To work with the modified operation-based encoding, the operation-based order crossover [6] is

utilized as the crossover operator and works for genes in the chromosome within the range

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1]. Firstly, it randomly chooses the same operations from two paired parents.

The loci of chosen operations are preserved and copied to their own offspring. Afterwards,

remaining operations are transmitted to the offspring of the other parent to fill the missing genes

while their original orders are also kept. The crossover procedure for a 5×3 job shop example is

shown in Fig.5 where job 0, job 1, job 2, job 3 are original jobs, job 4 is a new urgent arrival job

and each machine has 3 speed levels. The integers in red indicates genes out of the range

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1] while the integers in blue mark the loci of randomly chosen operations.

16

Before crossover

Parent 1
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2]

Parent 2
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 3, 1, 1, 3, 3, 0, 2, 0, 2]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 0, 2, 1, 0, 1, 1]

After crossover

Offspring 1
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 3, 1, 3, 0, 2, 1, 2, 3, 0]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 1, 0, 2, 0, 1, 2]

Offspring 2
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 1, 3, 3, 2, 3, 0, 2]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 0, 2, 1, 0, 1, 1]

Fig.5 An example of the operation-based order crossover

The swap mutation is used for 𝑋′(𝑘) where different arbitrary genes within the range

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1] are chosen and exchange values. Concerning 𝑌′(𝑘), unfixed number of

genes are substituted by randomly generated values within the range, aside from the original ones.

Following the above example, this procedure is illustrated in Fig.6 where genes in green illustrate

the execution of mutation.

Before mutation
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2]

After mutation
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 0, 2, 2, 1, 3, 3, 3]

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 0, 0, 1, 0, 2, 0, 1, 2]

Fig.6. An example of the mutation

5. Numerical Tests

Test 1 checks the efficiency and the effectiveness of the dual heterogeneous island parallel GA on

hybrid CPU–GPU frameworks for solving the energy aware JSP while test 2 evaluates the

performance of EDJSP by a case study. All the experiments have been made using the Intel Xeon

E5640 CPU which has four CPU-cores, 2.67 GHz clock speed each and NVIDIA Tesla K40 with

CUDA cores and 12 GB GDDR5 of global memory.

5.1 Evaluation

The energy aware JSP without taking into account new urgent arrival jobs is the first to be

concerned. In this case, six large size problems are generated as in [41]. These instances are referred

to as “easy problems” or “hard problems” with names EASY 20× 10, EASY 20× 20, EASY

50× 10, HARD 20× 10, HARD 20× 20 and HARD 50× 10. EASY 20× 10 and HARD 20× 10

are 20-job, 10-machine problems; EASY 20× 20 and HARD 20× 20 are 20-job, 20-machine

problems; EASY 50× 10 and HARD 50× 10 are 50-job, 10-machine problems. Every job consists

of the same amount of operations as the amount of machines, while one operation is always handled

by a single machine. Moreover, every machine has 5 speed levels. As far as the easy problems are

concerned, the machine procedure constraints for each job are generated randomly. As an

alternative, the hard problems divide the machines into two sets. Each job must pass firstly through

the first set, then through the second one. The ordering within the two sets of machines is generated

randomly. The data relative to the experience is defined in Table 2.

17

Table 2. The data relative to the experience of the energy aware JSP

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 U[1, 5]

𝑄𝑗𝑠𝑀𝑗𝑠𝑝 𝛿 × 𝑃𝑗𝑠𝑀𝑗𝑠𝑝
2 , where 𝛿=U[2, 4]

𝑅𝑗 U[0, 𝑃], where 𝑃 = ∑𝑗 (∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ)/𝑜𝑗)

𝐷𝑗 𝑅𝑗 + 𝑃𝑗 × (1 + 𝜎), where 𝜎=U[0, 2] and 𝑃𝑗 =

∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ)

𝛼 1

𝛽 1

To verify the performance of the proposed algorithm, we compare its solution quality and execution

time with the parallel cellular GA on GPUs and the parallel classic GA on a multi-core CPU. For

these tested three GAs, the population sizes are all kept as 512 (16×16×2) while each island’s

subpopulation size of the dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks

is 256 (16×16). The final termination criterion is set as 2000 generations. Moreover, the results

shown in Fig.7, Fig.8, Fig.9, Fig.10, Fig.11, Fig.12, Table 5 and Table 6 are obtained by 30

independent runs while the results displayed in Table 7 are the average values of 5 runs. Since the

parameter configuration has a huge impact to the performance of algorithms, the Taguchi method

[42] is used to calibrate the parameters of the tested GAs. As most common optimality criteria of

shop scheduling problems are about minimization, the signal to noise ratio (S/N) of the Taguchi

method used to assess the performance in our case is calculated as:

S/N ratio = −10 × (𝑠𝑢𝑚(𝐹2)/𝑁) (17)

Table 3. The parameters and their levels.

GAs Parameters
Parameter Level

Level 1 Level 2 Level 3

Dual heterogeneous

island parallel GA

𝑃𝑐𝑎𝑐 0.6 0.7 0.8

𝑃𝑐𝑎𝑚 0.03 0.06 0.09

𝑃𝑐𝑒𝑐 0.6 0.7 0.8

𝑃𝑐𝑒𝑚 0.03 0.06 0.09

𝜃 0.9 0.95 1.00

𝜑 100 200 300

Parallel classic GA
𝑃𝑐𝑎𝑐 0.6 0.7 0.8

𝑃𝑐𝑎𝑚 0.03 0.06 0.09

Parallel cellular GA
𝑃𝑐𝑒𝑐 0.6 0.7 0.8

𝑃𝑐𝑒𝑚 0.03 0.06 0.09

As the migration of the proposed GA is carried out by the CPU in which individuals executed on

GPUs are transferred to the CPU at this point, its performance may be weakened because of the

frequent data exchange. Therefore, we need also test the migration policy execution gap for the

dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks, in addition to the

crossover rate, the mutation rate and the migration threshold value. The parameters and their levels

are given in Table 3. The Minitab software [43] is used to obtain the S/N ratios and the standard

deviations in the Taguchi method for each GA. The 𝐿27 design is selected for the dual

heterogeneous island parallel GA while the 𝐿9 is selected for the parallel classic GA and the parallel

cellular GA. The orthogonal array of each design is presented in Table 4 and Table 5 respectively.

Regarding the S/N ratios of three GAs displayed in Fig.7, Fig.9 and Fig.11 and the standard

deviations presented in Fig.8, Fig.10 and Fig.12 separately, we select their parameters levels as

shaded in Table 3.

18

Table 4. The orthogonal array 𝐿27

Run order 𝑃𝑐𝑎𝑐 𝑃𝑐𝑎𝑚 𝑃𝑐𝑒𝑐 𝑃𝑐𝑒𝑚 𝜃 𝜑
1 1 1 1 1 1 1

2 1 1 1 1 2 2

3 1 1 1 1 3 3

4 1 2 2 2 1 1

5 1 2 2 2 2 2

6 1 2 2 2 3 3

7 1 3 3 3 1 1

8 1 3 3 3 2 2

9 1 3 3 3 3 3

10 2 1 2 3 1 2

11 2 1 2 3 2 3

12 2 1 2 3 3 1

13 2 2 3 1 1 2

14 2 2 3 1 2 3

15 2 2 3 1 3 1

16 2 3 1 2 1 2

17 2 3 1 2 2 3

18 2 3 1 2 3 1

19 3 1 3 2 1 3

20 3 1 3 2 2 1

21 3 1 3 2 3 2

22 3 2 1 3 1 3

23 3 2 1 3 2 1

24 3 2 1 3 3 2

25 3 3 2 1 1 3

26 3 3 2 1 2 1

27 3 3 2 1 3 2

19

Table 5. The orthogonal array 𝐿9

Run order 𝑃𝑐𝑎𝑐/𝑃𝑐𝑒𝑐 𝑃𝑐𝑎𝑚/𝑃𝑐𝑒𝑚

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

7 3 1

8 3 2

9 3 3

Fig.7. The S/N ratio of the dual heterogeneous island parallel GA

20

Fig.8. The standard deviation of the dual heterogeneous island parallel GA

Fig.9. The S/N ratio of the parallel classic GA

Fig.10. The standard deviation of the parallel classic GA

21

Fig.11. The S/N ratio of the parallel cellular GA

Fig.12. The standard deviation of the parallel cellular GA

Since the decentralized population in the parallel cellular GA allows to keep the population’s

diversity for longer [44], it works as strongly as the parallel classic GA and even defeats the parallel

classic GA for half of the cases as shown in Table 6. Because of the separated evolution and the

enhanced migration, the dual heterogeneous island parallel GA integrates the advantages from the

parallel cellular GA and the parallel classic GA. Therefore, it can always get the best performance

for all tested problems with the average value. To confirm this efficiency, the Wilcoxon signed

ranks test [45] is utilized to compare the performance of the dual heterogeneous island parallel GA

with the other two considered parallel GAs. Table 7 displays the 𝑅−, 𝑅+ and p-values computed

by SPSS [46] where the dual heterogeneous island parallel GA shows an improvement over the

parallel cellular GA for instances EASY 20× 10, EASY 50× 10, HARD 20× 10, HARD 20× 20

and HARD 50× 10, over the parallel classic GA for instances EASY 20× 10, EASY 20× 20,

EASY 50× 10, HARD 20× 10 and HARD 20× 20 when the significance level equals to 0.1.

Table 6. The solutions’ quality comparison

Problems
 Parallel heterogeneous GA Parallel cellular GA Parallel classic GA

Average Best Average Best Average Best

EASY 20× 10 0.0481 0.0224 0.0551 0.0308 0.0623 0.0490

EASY 20× 20 0.0901 0.0568 0.0911 0.0468 0.1007 0.0831

EASY 50× 10 0.0585 0.0110 0.1290 0.0378 0.0643 0.0292

HARD 20× 10 0.0412 0.0258 0.0441 0.0227 0.0747 0.0499

HARD 20× 20 0.1025 0.0421 0.1750 0.0916 0.1219 0.0849

HARD 50× 10 0.0706 0.0236 0.0932 0.0075 0.0709 0.0291

22

Table 7. The Wilcoxon signed ranks test results

Comparison Problems 𝑅− 𝑅+ p-value

parallel heterogeneous GA

versus

parallel cellular GA

EASY 20× 10 136.00 329.00 0.047

EASY 20× 20 204.00 261.00 >0.1

EASY 50× 10 18.00 447.00 0.000

HARD 20× 10 151.00 314.00 0.094

HARD 20× 20 14.00 451.00 0.000

HARD 50× 10 126.00 339.00 0.028

parallel heterogeneous GA

versus

parallel classic GA

EASY 20× 10 44.00 421.00 0.000

EASY 20× 20 109.00 359.00 0.011

EASY 50× 10 137.00 328.00 0.049

HARD 20× 10 0.00 465.00 0.000

HARD 20× 20 108.00 357.00 0.010

HARD 50× 10 225.00 240.00 >0.1
𝑅−: value of the objective function got by the parallel heterogeneous GA > value of the objective function got
by the parallel cellular GA (parallel classic GA)
𝑅+: value of the objective function got by the parallel heterogeneous GA < value of the objective function got
by the parallel cellular GA (parallel classic GA)

The execution time of three parallel GAs with different population sizes are shown in Table 8.

Because of the simultaneous execution on both sides, the dual heterogeneous island GA on the

hybrid platform overcomes the parallel cellular GA on GPUs and the parallel classic GA on a multi-

core CPU in most cases. This phenomenon is even more remarkable when the difference of the

execution time on two islands is smaller. However, the advantage from the hybrid platform may

be reduced because the overall performance is limited to the island who takes longer execution

time. Therefore, it indicates the significance of computation capability balance between the multi-

core CPU and the GPUs when the dual heterogeneous island GA is implemented. For some extreme

situations, the weak node may perform as a bottleneck and decreases the global effectiveness.

23

Table 8. The execution time comparison

Problem

s

Population

Size

Parallel heterogeneous GA (island of parallel

cellular GA, island of parallel classic GA)

Parallel

cellular GA

Parallel

classic GA

EASY

20× 10

16×16×2 475 s (474 s, 233 s) 504 s 657 s

32×32×2 966 s (802 s, 936 s) 1185 s 2248 s

64×64×2 3927 s (2058 s, 3800 s) 3615 s 8321 s

EASY

20× 20

16×16×2 1731 s (1730 s, 826 s) 2106 s 1602 s

32×32×2 3556 s (3555 s, 3346 s) 5530 s 6428 s

64×64×2 14060 s (9587 s, 13472 s) 16864 s 28166 s

EASY

50× 10

16×16×2 3082 s (3081 s, 1342 s) 3408 s 3239 s

32×32×2 5600 s (5467 s, 5405 s) 8350 s 12433 s

64×64×2 22627 s (14162 s, 21748 s) 24776 s 48073 s

HARD

20× 10

16×16×2 472 s (472 s, 239 s) 507 s 660 s

32×32×2 986 s (806 s, 955 s) 1183 s 1950 s

64×64×2 3986 s (2046 s, 3859 s) 3627 s 8732 s

HARD

20× 20

16×16×2 1729 s (1729 s, 837 s) 2097 s 1935 s

32×32×2 3511 s (3510 s, 3353 s) 5426 s 7437 s

64×64×2 14088 s (9411 s, 13509 s) 16323 s 28508 s

HARD

50× 10

16×16×2 3048 s (3048 s, 1357 s) 3428 s 3268 s

32×32×2 5641 s (5506 s, 5444 s) 8454 s 12121 s

64×64×2 22676 s (14259 s, 21795 s) 25046 s 48427 s

5.2 Case study

A modified job shop instance incorporating machine speed scaling and new urgent arrival jobs is

developed based on the well know 10×10 problem (10 jobs, 10 machines) from Muth and

Thompson [47] (MT10) as a case study. There are 10 original jobs and 3 new urgent arrival jobs.

Each machine has 5 speed levels. New urgent jobs arrive around 30% of the makespan of the

original schedule. The operation sequence of original jobs and their processing times on target

machine at speed level 0 are collected from MT10. On the other hand, the values for new urgent

arrival jobs are generated following the rule of “hard problems” in subsection 5.1 evaluation. The

values of energy cost at level 0 is set as 𝑄𝑗𝑠𝑀𝑗𝑠0 = 𝛿 × 𝑃𝑗𝑠𝑀𝑗𝑠0
2 , where 𝛿=U[2, 4]. The release times

(𝑅𝑗) of original jobs are fixed as 0 while the due times are generated as 𝐷𝑗 = 𝑃𝑗 × (1 + 𝜎), where

𝜎=U[0, 2] and 𝑃𝑗 = ∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ). Concerning the importance weight of original jobs,

we make 𝑤𝑡0 = 𝑤𝑡1 = 4, 𝑤𝑡𝑗 = 2 for j = 2, 3, …, 7 and 𝑤𝑡8 = 𝑤𝑡9 = 1. All details are shown in

Table 9. Moreover, the processing time and the energy cost when operation s of job j handled by

target machine m at different levels is defined as 𝑃𝑗𝑠𝑚𝑝=𝑃𝑗𝑠𝑚0 × 𝑉𝑝 and 𝑄𝑗𝑠𝑚𝑝=𝑄𝑗𝑠𝑚0 ÷

𝑉𝑝, respectively, where 𝑉 = (1, 1.3, 1.55, 1.75, 2.1). Finally, we keep the values of 𝛼, 𝛽 equal to 1

while a very large constant is assigned to 𝛾 which indicates the importance of the schedule repair

strategy.

The best-found solution of the original schedule is shown by the Gantt chart in Fig.13. Since new

urgent jobs arrive at time 600, all operations are being operated at this moment need to be canceled

and leave machines available for processing them firstly. In this case, some machines are occupied

at some periods after scheduling new urgent arrival jobs. Therefore, unfinished operations of

24

original jobs are rearranged to make use of machines only when they are idle. By implementing

the schedule repair strategy, the best-found solution illustrated by the Gantt chart of the updated

schedule in Fig.14 presents that the processing time of some operations is obviously decreased. As

a result, most original jobs’ finishing time are only delayed slightly which is confirmed by the

details displayed in Table 10.

In addition to the M10, we have extended another four classic cases from the literature to test the

relationship among the three objectives of the EDJSP. The problems ABZ5 and ABZ7 are two

problems from [48]. The problems LA35 and LA40 are two problems from [49]. The operation

sequence of these jobs and their processing times on target machines are treated as original jobs at

speed level 0 in the EDJSP. The importance weights of original jobs are randomly drawn integers

from the interval [1, 4]. The amount of new urgent arrival jobs is an integer generated randomly

from U [1, 10] while their arriving time is set by a random value from a uniform distribution on

the interval [0, the makespan of the original schedule]. Moreover, the other settings are kept the

same as the MT10 based EDJSP.

25

Table 9. The case data of the M10 based EDJSP

Jobs

𝑀𝑗𝑠

𝑃𝑗𝑠𝑀𝑗𝑠0

𝑄𝑗𝑠𝑀𝑗𝑠0

𝑤𝑡𝑗 𝑅𝑗 𝐷𝑗

𝐽0
0,

29

2732

1

78

22255

2

9

184

3

36

3729

4

49

8905

5

11

261

6

62

7849

7

56

10985

8

44

7219

9

21

1151

4 0 787

𝐽1
0

43

5859

2

90

25571

4

75

16498

9

11

396

3

69

11116

1

28

2999

6

46

4796

5

46

5571

7

72

16324

8

30

3438

4 0 1096

𝐽2
1

91

30407

0

85

24102

3

39

5696

2

74

11450

8

90

19091

5

10

315

7

12

423

6

89

19723

9

45

4446

4

33

3161

2 0 1587

𝐽3
1

81

17491

2

95

27291

0

71

19422

4

99

33401

6

9

237

8

52

8060

7

85

21768

3

98

36629

9

22

1711

5

43

6783

2 0 2050

𝐽4
2

14

606

0

6

126

1

22

1546

5

61

12666

3

26

2229

4

69

10107

8

21

1711

7

49

6160

9

72

12115

6

53

6022

2 0 1450

𝐽5
2

84

27497

1

2

15

5

52

9080

3

95

30657

8

48

6690

9

72

16749

0

47

7013

6

65

13934

4

6

86

7

25

1507

2 0 1945

𝐽6
1

46

5410

0

37

2748

3

61

14764

2

13

596

6

32

3033

5

21

1042

9

32

2920

8

89

30266

7

30

3340

4

55

11800

2 0 1415

𝐽7
2

31

2720

0

86

15213

1

46

5903

5

74

14670

4

32

3078

6

88

16246

8

19

1198

9

48

5121

7

36

4872

3

79

19509

2 0 1005

𝐽8
0

76

20250

1

69

17948

3

76

12094

5

51

7397

2

85

18308

9

11

289

6

40

5980

7

89

20515

4

26

1459

8

74

21613

1 0 1265

𝐽9
1

85

23242

0

13

429

2

61

12595

6

7

141

8

64

14008

9

76

17143

5

47

8648

3

52

9555

4

90

16289

7

45

6382

1 0 2182

𝐽10
2

16

831

1

58

12305

0

22

1099

4

24

1657

3

53

10418

8

9

175

9

57

6634

7

63

13903

5

92

31562

6

43

4829

 600 879

𝐽11
3

6

114

1

48

7273

4

14

574

0

66

14278

2

24

1344

7

2

15

9

85

16379

6

73

14031

8

19

1136

5

99

37449

 600 859

𝐽12
4

99

35989

2

90

27021

0

63

14863

1

14

409

3

31

2265

5

27

2298

9

15

662

8

2

9

6

51

5711

7

33

3161

 600 806

26

Table 10. The original jobs’ finishing time comparison of the M10 based EDJSP

 Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

Original

Schedule
632.05 1091.80 1555.15 1817.90 1485.05 1535.80 1390.05 987.45 1431.40 1838.65

Updated

Schedule
688.10 1092.30 1579.25 1824.40 1472.20 1331.65 1455.85 990.00 1991.45 1851.20

Difference 56.05 0.5 24.1 6.5 0 0 65.8 2.55 560.05 12.55

27

Fig. 13. The Gantt chart of the best-found solution of the original schedule for the M10 based

EDJSP

28

Fig. 14. The Gantt chart of the best-found solution of the updated schedule for the M10 based

EDJSP

29

Table 11. The relationship among three objectives

Problems
NO. of

machines

NO. of

jobs

Weight of each normalized objective function 𝑇𝑇 − 𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑚𝑎𝑥 − 𝐸𝑇𝑚𝑖𝑛

𝛼 𝛽 𝛾

MT10 10 10

100 10 1 0.0469

100 1 10 0.0464

10 100 1 0.1864

1 100 10 0.1813

10 1 100 0.0460

1 10 100 0.0520

Standard deviation 0.0702

ABZ5 10 10

100 10 1 0.0845

100 1 10 0.0794

10 100 1 0.2169

1 100 10 0.2292

10 1 100 0.1043

1 10 100 0.1098

Standard deviation 0.0674

ABZ7

15

20

100 10 1 0.0937

100 1 10 0.0904

10 100 1 0.2049

1 100 10 0.2199

10 1 100 0.1100

1 10 100 0.1136

Standard deviation 0.0579

LA35 10 30

100 10 1 0.2354

100 1 10 0.2363

10 100 1 0.3075

1 100 10 0.2973

10 1 100 0.2405

1 10 100 0.2412

Standard deviation 0.0333

LA40 15 15

100 10 1 0.1814

100 1 10 0.1800

10 100 1 0.2832

1 100 10 0.2852

10 1 100 0.1903

1 10 100 0.1928

Standard deviation 0.0508

30

Because of the relationship among the total tardiness, the total energy cost and the disruption to the

original schedule, the decision maker can achieve their preference through controlling the

importance weight of each normalized objective function. The dual heterogeneous island parallel

GA was run 30 times for the above mentioned five EDJSP cases with different settings of 𝛼, 𝛽, 𝛾

and the average results are displayed in Table 11. It can be observed that the third objective is the

most sensitive one to the importance weight in all cases while the second objective is the least.

Thus, in industrial practice, decision makers are suggested to pay more attention to minimize the

values of the disruption to the original schedule and the total tardiness while limiting the total

energy cost in a reasonable range. Moreover, three different scenarios are analyzed underneath

corresponding to different combinations of 𝛼, 𝛽 and 𝛾.

Scenario 1: When the decision-maker only wants to consider the minimum total tardiness, the

importance weights can be set to 𝛼=100, 𝛽=1 and 𝛾=10. The disruption to the original schedule is

the most sensitive one among three objectives. For the problems ABZ7 and LA35, its standard

deviation is more than the double of the standard deviation of the total energy cost. Therefore,

when there is no specific preference between the disruption to the original schedule and the total

energy cost, the latter one can be neglected.

Scenario 2: When the decision-maker only wants to consider the minimum total energy cost, the

importance weights can be set to 𝛼=1, 𝛽=100 and 𝛾=10. Although the gap of standard deviation

between the total tardiness and the disruption to the original schedule is not so significant, the

difference may still be obvious for some cases as the problem LA35. Thus, after the minimization

of the total energy cost, the decision makers are advised to control the disruption to the original

schedule prior to the total tardiness.

Scenario 3: When the decision-maker only wants to consider the minimum disruption to the

original schedule, the importance weights can be set to 𝛼=10, 𝛽=1 and 𝛾=100. The total tardiness

is also very sensitive to the importance weight. For the problems MT10 and ABZ7, its standard

deviation is quite close to the standard deviation of the disruption to the original schedule. Hence,

a relative larger weight should be assigned to the total tardiness rather than the total energy cost in

this case.

6. Conclusions and Future Works

In this paper, an investigation into minimizing the total tardiness, the total energy cost and the

disruption to the original schedule in the job shop with new urgent arrival jobs was studied. To

provide an adequate renewed scheduling plan in a reasonable time, a dual heterogeneous island

parallel GA executed simultaneously on different parallel platforms was adopted. This design

consisted of a cellular GA on GPUs and a classic GA on a multi-core CPU which was totally

compliant with the underlying architectures of two-level parallelization. To improve the

performance of the utilized GAs, the Taguchi method was used to calibrate their parameters firstly

in the evaluation. Afterwards, the proposed method presented that it could obtain better solutions

for solving six large size energy aware JSP through the integration of advantages from two different

islands. In the meantime, it decreased the execution time obviously because of the simultaneously

parallel execution on the host and the device while indicating the significance of computation

capability balance between two sides. Concerning the EDJSP in the case study, the best-found

solution of the updated schedule was shown by the Gantt chart. Compared with the original

schedule, the processing time of some operations was significantly decreased. Finally, an

experiment was carried to analyze the relationship among three objectives with different

31

importance weights. After a discussion around three scenarios, some useful suggestions were made

for industrial practice.

In the future, the Pareto optimal solution will be considered to solve the dynamic energy aware

shop scheduling problems. It can be easily found in the literature that the Pareto optimal solution

is a common approach to deal with the multi-objective optimization problems, apart from the linear

combination method. The ranking and crowding mechanisms from the NSGA II [50] are the mostly

used strategy in the area. However, the non-dominated set of solutions managed during the

optimization procedure is generally structured as the centralized Pareto front [26, 27]. This strategy

is hard to achieve parallelism in the population level. On the other hand, any partial parallelization

on GPUs may lead to frequent communication overheads and offset the effectiveness. Therefore,

developing a fine-grained Pareto based approach mapping onto GPUs underlying architecture and

achieving the full parallelization deserves further study.

Acknowledgement

This work is supported in part by the Japan Society for the Promotion of Science. Moreover, Didier

El Baz is grateful to NVIDIA Corporation for the donation of the Tesla K40 GPUs used in this

work and the authors would like to express their gratitude to the editors and the reviewers for their

helpful comments.

Reference

[1].Paolucci, M., Anghinolfi, D., & Tonelli, F. (2017). Facing energy-aware scheduling: a multi-

objective extension of a scheduling support system for improving energy efficiency in a moulding

industry. Soft Computing, 21(13), 3687-3698.

[2].Pach, C., Berger, T., Sallez, Y., Bonte, T., Adam, E., & Trentesaux, D. (2014). Reactive and

energy-aware scheduling of flexible manufacturing systems using potential fields. Computers in

Industry, 65(3), 434-448.

[3].Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new shop scheduling approach in

support of sustainable manufacturing. In Glocalized solutions for sustainability in

manufacturing (pp. 305-310). Springer, Berlin, Heidelberg.

[4]. Bruzzone A A G, Anghinolfi D, Paolucci M, et al. Energy-aware scheduling for improving

manufacturing process sustainability: A mathematical model for flexible flow shops[J]. CIRP

Annals-Manufacturing Technology, 2012, 61(1): 459-462.

[5].Xu F, Weng W, Fujimura S. Energy-Efficient Scheduling for Flexible Flow Shops by Using

MIP[C]//IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers

(IISE), 2014: 1040.

[6].Y. Liu, H. Dong, N. Lohse, S. Petrovic, N. Gindy, An investigation into minimising total energy

consumption and total weighted tardiness in job shops, Journal of Cleaner Production 65 (2014)

87-96.

[7].Q. Yi, C. Li, Y. Tang, Q. Wang, A new operational framework to job shop scheduling for

reducing carbon emissions, in: Automation Science and Engineering (CASE), 2012 IEEE

International Conference, IEEE, 2012, pp. 58-63.

[8].M. Dai, D. Tang, A. Giret, M. A. Salido, W. D. Li, Energy-efficient scheduling for a flexible

flow shop using an improved genetic-simulated annealing algorithm, Robotics and Computer-

Integrated Manufacturing 29 (5) (2013) 418-429.

[9].Tang D, Dai M, Salido M A, et al. Energy-efficient dynamic scheduling for a flexible flow shop

using an improved particle swarm optimization[J]. Computers in Industry, 2016, 81: 82-95.

32

[10].Zhang L, Li X, Gao L, et al. Dynamic rescheduling in FMS that is simultaneously considering

energy consumption and schedule efficiency[J]. The International Journal of Advanced

Manufacturing Technology, 2016, 87(5-8): 1387-1399.

[11].Luo, J., Fujimura, S., El Baz, D., & Plazolles, B. (2018). GPU based parallel genetic algorithm

for solving an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel

and Distributed Computing.

[12].Dabah, A., Bendjoudi, A., AitZai, A., El Baz, D., & Taboudjemat, N. N. (2018). Hybrid multi-

core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem. Journal

of Parallel and Distributed Computing, 117, 73-86.

[13].Spanos, A. C., Ponis, S. T., Tatsiopoulos, I. P., Christou, I. T., & Rokou, E. (2014). A new

hybrid parallel genetic algorithm for the job‐shop scheduling problem. International Transactions

in Operational Research, 21(3), 479-499.

[14].Zajıcek, T., & Sucha, P. (2011). Accelerating a Flow Shop Scheduling Algorithm on the

GPU. eraerts, 143.

[15].Somani, A., & Singh, D. P. (2014, August). Parallel Genetic Algorithm for solving Job-Shop

Scheduling Problem Using Topological sort. In Advances in Engineering and Technology

Research (ICAETR), 2014 International Conference on (pp. 1-8). IEEE.

[16]. Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible

job shop scheduling problem. Journal of Cleaner Production, 210, 710-723.

[17]. He, Y., Liu, F., Cao, H. J., & Li, C. B. (2005). A bi-objective model for job-shop scheduling

problem to minimize both energy consumption and makespan. Journal of Central South University

of Technology, 12(2), 167-171.

[18].Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing

systems. Journal of scheduling, 12(4), 417.

[19].Le, C. V., & Pang, C. K. (2013). Fast reactive scheduling to minimize tardiness penalty and

energy cost under power consumption uncertainties. Computers & Industrial Engineering, 66(2),

406-417.

[20].Zeng, L., Zou, F., Xu, X., & Gao, Z. (2009, June). Dynamic scheduling of multi-task for hybrid

flow-shop based on energy consumption. In Information and Automation, 2009. ICIA'09.

International Conference on (pp. 478-482). IEEE.

[21]. Hawick, K. A., Leist, A., & Playne, D. P. (2010). Mixing multi-core CPUs and GPUs for

scientific simulation software.

[22]. Hossam, M. A., Ebied, H. M., & Abdel-Aziz, M. H. (2013, November). Hybrid cluster of

multicore CPUs and GPUs for accelerating hyperspectral image hierarchical segmentation. In 2013

8th International Conference on Computer Engineering & Systems (ICCES) (pp. 262-267). IEEE.

[23].Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems.

In Annals of discrete mathematics (Vol. 1, pp. 343-362). Elsevier.

[24].Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flow shop scheduling with peak

power consumption constraints. Annals of Operations Research, 206(1), 115-145.

[25].Wu, S. D., Storer, R. H., & Pei-Chann, C. (1993). One-machine rescheduling heuristics with

efficiency and stability as criteria. Computers & Operations Research, 20(1), 1-14.

[26].Luna F., Alba E. (2015) Parallel Multiobjective Evolutionary Algorithms. In: Kacprzyk J.,

Pedrycz W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks.

Springer, Berlin, Heidelberg

[27]. Talbi, E. G. (2019). A unified view of parallel multi-objective evolutionary

algorithms. Journal of Parallel and Distributed Computing, 133, 349-358.

[28]. Shen, X., Zhang, M., & Fu, J. (2014). Multi-objective dynamic job shop scheduling: a survey

and prospects. Int J Innov Comput Inf Control, 10(6), 2113-2126.

33

[29]. Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem:

a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted

tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375.

[30]. Luo, J., & El Baz, D. (2019). A Dual Heterogeneous Island Genetic Algorithm for Solving

Large Size Flexible Flow Shop Scheduling Problems on Hybrid multi-core CPU and GPU

Platforms. Mathematical Problems in Engineering.

[31]. Alba, E., & Dorronsoro, B. (2008). Cellular genetic algorithms. Operations research/computer

science interfaces.

[32]. J. H. Holland, Genetic algorithms, Scientific American 267 (1) (1992) 66-73.

[33].Plazolles, B., El Baz, D., Spel, M., Rivola, V., & Gegout, P. (2017). SIMD Monte-Carlo

Numerical Simulations Accelerated on GPU and Xeon Phi. International Journal of Parallel

Programming, 1-23.

[34]. Danoy, G., Gaspar Pinto, F., Dorronsoro, B., & Bouvry, P. (2010). Hybrid Cellular Genetic

Algorithm for Global Trajectory Optimization Problem. In International Conference on

Metaheuristics and Nature Inspired Computing (pp. 1-2).

[35].Sanders, J., & Kandrot, E. (2010). CUDA by example: an introduction to general-purpose

GPU programming. Addison-Wesley Professional.

[36].Pharr, M., & Fernando, R. (2005). Gpu gems 2: programming techniques for high-

performance graphics and general-purpose computation. Addison-Wesley Professional. 

[37].http://www.openmp.org/

[38]. May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for

energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-

7089.

[39]. Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop

scheduling problems. Computers & industrial engineering, 45(4), 597-613.

[40]. Liu, M., & Wu, C. (2008). Intelligent optimization scheduling algorithms for manufacturing

process and their applications. National Defense Industry Press, 334.

[41]. Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing problems

with application to job shop scheduling. Management science, 38(10), 1495-1509.

[42]. Taguchi, G. (1990). Introduction to Quality Engineering, Tokyo. Asian Productivity

Organization.

[43].http://www.minitab.com

[44].Dorronsoro, B., & Bouvry, P. (2013). Cellular genetic algorithms without additional

parameters. The Journal of Supercomputing, 63(3), 816-835.

[45].Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary and swarm

intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.

[46].https://www.ibm.com/analytics/spss-statistics-software

[47].Muth, J. (1963). Probabilistic learning combinations of local job-shop scheduling

rules. Industrial Scheduling.

[48]. Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop

scheduling. Management science, 34(3), 391-401.

[49]. Lawrence, S. (1984). Resouce constrained project scheduling: An experimental investigation

of heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration,

Carnegie-Mellon University.

[50]. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2),

182-197.

http://www.openmp.org/
https://www.ibm.com/analytics/spss-statistics-software

