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Abstract 

Integrating energy savings into production efficiency is considered as one essential factor in 

modern industrial practice. A lot of research dealing with energy efficiency problems in 

the manufacturing process focuses solely on building a mathematical model within a static 

scenario. However, in the physical world shop scheduling problems are dynamic where unexpected 

events may lead to changes in the original schedule after the start time. This paper makes an 

investigation into minimizing the total tardiness, the total energy cost and the disruption to the 

original schedule in the job shop with new urgent arrival jobs. Because of the NP hardness of this 

problem, a dual heterogeneous island parallel genetic algorithm with the event driven strategy is 

developed. To reach a quick response in the dynamic scenario, the method we propose is made 

with a two-level parallelization where the lower level is appropriate for concurrent execution within 

GPUs or a multi-core CPU while codes from the two sides can be executed simultaneously at the 

upper level. In the end, numerical tests are implemented and display that the proposed approach 

can solve the problem efficiently. Meanwhile, the average results have been improved with a 

significant execution time decrease. 
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1. Introduction  

Energy costs due to production have been traditionally treated as externalities that must be incurred 

[1]. With an increasing interest for industrial sustainability, integrating energy savings into 

production efficiency is considered as one essential factor in factory practice. There are two kinds 

of approaches studying energy saving in manufacturing systems [2]: avoiding peak power 

consumption and reducing the overall energy cost. The first one [3, 4, 5] shifts load at energy peaks 

when the maximum available energy is met. The second one [6, 7, 8] focuses on decreasing the 

total energy cost in manufacturing system by subdividing it and switching them among different 

types and different levels. Most of these research works focus solely on building a mathematical 

model within a static scenario. However, unexpected events may lead changes in the preset 

schedule after the start time. Few works focus on dynamic energy aware shop scheduling problems 

and most of them [9, 10, 11] were solved by the complete rescheduling with a risk in instability. 

Moreover, scheduling problems in dynamic scenarios are more complicated than scheduling 

problems in static scenarios and the time cost to obtain the optimal solution or even a high-quality 

solution is heavy. Therefore, an approach proposing an appropriate updated schedule within a 

reasonable time is highly desirable in this case. 

Parallel computing has been widely used for years. The multi-core CPU can run multiple 

instructions at the same time on separate cores to increase the overall speed while Graphics 

Processing Units (GPUs) are many-core processor devices providing a highly multi-threaded 

environment using the Single Instruction, Multiple Threads (SIMT) model. Since most of latest 

computers are furnished with a multi-core CPU and GPUs, the execution on both is an effective 

strategy to utilize hardware in an efficient way. Investigation on solving scheduling problems in 

manufacturing processes by parallel computing methods [12] has received increasing attention in 

the last decades. However, the sophisticated issue as energy aware shop scheduling in dynamic 

scenarios was never considered as best as we are aware. On the other side, there is a great number 

of successful cases [13,14, 15] proving that parallel GAs are reliable for solving shop scheduling 

problems. But most of them either only use the CPU, the GPUs or two of them in sequence which 

may end up to an underuse of computing resources due to the hardness of designing schemes that 

efficiently exploit simultaneously different hardware architectures. Thus, the design of parallel 

GAs on hybrid CPU–GPU frameworks for solving dynamic energy aware shop scheduling 

problems is a known research challenge following previous works, and this is what we are trying 

to solve in this paper.  

An investigation into minimizing the total tardiness and the total energy cost in the job shop with 

new urgent arrival jobs is concerned in this paper. To avoid the shortages of the complete 

rescheduling, the schedule repair with the event driven strategy is utilized to represent the updated 

solution. Since the response time is sensitive in the dynamic scenario, a dual heterogeneous island 

parallel GA executed simultaneously on GPUs and a multi-core CPU is utilized. Numerical tests 

confirm the proposed method can be implemented to solve the problem efficiently and effectively. 

Our main work can be summed up as follows: 

1. A dynamic energy aware job shop scheduling model is studied which seeks a trade-off among 

the total tardiness, the energy cost and the disruption to the original schedule; 

2. A parallel GA is adapted for solving the proposed problem, whose lower level is appropriate 

for concurrent execution within GPUs or a multi-core CPU while codes from the two sides can 

be executed simultaneously at the upper level; 

3. Numerical experiments have been carried out and witness that the adapted parallel GA can not 

only solve the proposed problem efficiently but also improve the average results with a 
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significant execution time decrease. 

The remaining of our work consists of 5 sections. In section 2, the literature review is presented. 

Section 3 exposes the research problem and formulates the mathematical model. Section 4 

discusses the design of the parallel GA on hybrid CPU–GPU frameworks and its implementation 

for solving dynamic energy aware shop scheduling problems. Afterwards, computational tests and 

a case study are conducted in section 5. Finally, conclusions are stated in section 6.  

2. Literature review 

Due to environmental concerns and continuously rising cost, there is an increasing interest in 

energy saving in traditional industrial processes. Since moving the production activities in off-peak 

periods or inserting idle times for machine may not be acceptable with intense production process 

or fixed working time shifts [1], minimizing the overall energy cost is considered one main 

solution. Meng et al. discussed the total energy consumption for flexible job shop scheduling 

problems in [16] and solved it by six new mixed integer linear programming models. He et al. [17] 

proposed a model synthesizing the optimization of energy consumption and makespan while the 

optimal solutions were obtained by the Tabu search. Meanwhile, the GA or the improved GA is 

one powerful and frequently used method to deal with the total energy cost integrated scheduling 

problems. Liu et al. [6] developed a non-dominant sorting GA and obtained the Pareto front for a 

bi-objective job shop scheduling problem that investigated into minimizing total electricity cost 

and total tardiness. Similarly, a modified multi-objective GA was studied in [7] and it was utilized 

to solve a multi-machine job shop scheduling model with emission aware issues. In one word, 

numerous efforts have been given to combine the traditional shop scheduling efficiency with the 

overall energy cost. However, the models used in these researches are deterministic in which the 

number of jobs is a fixed value [6]. As an ongoing reactive process where the presence of a variety 

of unexpected disruptions is usually inevitable [18], the static scheduling obviously cannot meet 

the requirements in most real-world environments. 

Literature on dynamic scheduling has considered a significant number of works dealing with new 

arrival jobs and their effects in various manufacturing systems [18]. Most efforts concentrated only 

on the efficiency improvement for traditional scheduling problems while neglecting the energy 

cost. In the dynamic scenario, complete rescheduling and schedule repair are the two most common 

used strategies. An improved particle swarm optimization was adopted in [9] to allocate the new 

jobs and the previous remaining operations simultaneously for an energy saving dynamic 

scheduling problem. Zhang et al. studied the dynamic rescheduling considering energy 

consumption in [10] where optimal solutions were found by a GA with the complete rescheduling 

strategy. Even the complete rescheduling provides the optimal solutions, it can result in instability 

and disruption in manufacturing flows, leading to tremendous production costs [19]. On the 

opposite, schedule repair only attempts to revise part of the originally created schedule for 

responding to the production environment changes. In [2], Pach et al. set up flexible manufacturing 

systems using potential fields where resources could switch to less energy consumption mode by 

sensing the intentions from products. Zeng et al. [20] presented a particle swarm optimization to 

solve the energy consumption based dynamic scheduling problem by introducing idle time 

windows. To sum up, some efforts concerning energy efficient scheduling problems in dynamic 

scenarios have been conducted. It shows that the schedule repair strategy is more practical to deal 

with the dynamic manufacturing system in the real world. But many limitations are still remaining 

that must be taken into account. One for instance is to get the appropriate updated schedule within 

a reasonable time, especially for large size manufacturing applications. 

With the huge evolution of multi-core CPUs and GPUs, some works have considered the 

cooperation between them to maximally utilize their compute capability. A parallelization mixing 
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the multi-core CPU and the GPUs was studied by Dabah et al in [12] where a group of blocking 

job shop scheduling problems were solved efficiently. In [21], Hawick et al. described the use of 

threading approaches and multi-core CPUs to control independent GPU devices to speed up 

scientific simulations. Hossam et al. [22] introduced a parallel implementation of hybrid CPU/GPU 

in which CPU and GPU work cooperatively and seamlessly, combining benefits of both 

platforms. All these works have verified that a scheme exploiting a multi-core CPU and GPUs 

corporately can increase the hardware occupation and achieve a speedup. However, this strategy is 

rarely implemented for GAs, in particular for the implementation of parallel GAs to solve dynamic 

energy aware shop scheduling problems, as far our knowledge is concerned. 

Considering the above-mentioned requirements, we seek to study parallel GAs for solving the 

dynamic energy aware job shop scheduling problem on hybrid CPU–GPU frameworks. All the 

previous studies have afforded us with a starting point to design a GA that is well suited for 

parallelization on different architectures. Moreover, this implementation is efficient to provide 

appropriate solutions for large dynamic energy aware job shop scheduling problems within a short 

response time.  

3. Problem statement  

3.1 EDJSP description 

The Job Shop scheduling Problem (JSP) is a NP-hard problem [23] in which there are several jobs 

and each job consists of a certain amount of operations. One operation is processed by a particular 

machine and every job is assigned to a group of machines following a predetermined route [6]. As 

a layout shown in Figure 1, job A and job B need to be processed by 4 machines and their 

processing routines are fixed as Machine 0-2-1-3 and Machine 2-0-3-1, respectively.  

 
Fig. 1. A job shop layout 

The Energy aware Dynamic Job Shop scheduling Problem (EDJSP) is an extension of the JSP with 

machine speed scaling [24] in which machines are available to be set at different speed levels when 

dealing with different jobs. The processing time and the energy cost of one operation processed on 

one machine at a set speed level are known. When a higher speed level is chosen, the processing 

time is shortened but with an energy cost increase. When machines start to handle original jobs 

following the preset schedule, a batch of new jobs may arrive and these jobs are requested to be 

processed as soon as possible. Therefore, the production line conducts them immediately with the 

highest speed level. The operations being processed are terminated and need to be rescheduled with 

other unfinished operations of original jobs based on the insertion of new urgent arrival jobs. The 

updated schedule using the schedule repair refers to some local adjustment of the original one. 

There are two possible schedule repair measures for the impact caused by the schedule changes 

[25]: (1) the deviation from the original jobs starting times, (2) the deviation from the original 

sequence. In this paper, a measure modified from (1) is taken into consideration where each original 
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job has an importance weight and a larger importance weight indicates a higher penalty for delaying 

the finishing time of original jobs from the original schedule. If one operation of a new urgent 

arrival job is added before one operation of an original job on the same machine, a higher speed 

level with less processing time but more energy cost is required to make the original job to be 

completed as close as to its finishing time in the original schedule. Clearly, there are conflicts 

among the minimization of total tardiness, the minimization of total energy cost and the 

minimization of disruption to the original schedule. Thus, a trade-off must be made among them. 

Because of the NP hardness of the JSP, the EDJSP is a NP-hard problem and more complicated 

than the JSP. 

3.2 Mathematical model of EDJSP 

A description of the notations referred within the remaining sections of this paper is summarized 

in Table 1.  

Table 1 The used notations 

Notation Description 

𝑗, 𝑖, l, x, z Job indices  

𝑠, 𝑡, y Operation indices 

𝑚 Machine index 

p, q, w Speed level indices 

𝑛 Amount of original jobs 

𝑛′ Amount of new urgent arrival jobs 

r1 
Amount of completed operations of original jobs before the rescheduling 

point  

r2 
Sum of completed operations of original jobs before the rescheduling 

point and operations of new urgent arrival jobs 

𝑜𝑗  Amount of operations of job j 

𝑔 Amount of machines 

h Amount of speed levels 

𝐽 Set of original jobs, 𝐽 = {0,1,2, … , 𝑛 − 1} 

𝐽′ Set of new arrival jobs, 𝐽′ = {0,1,2, … , 𝑛′ − 1} 

𝑂𝑗 Set of operations of job j, 𝑂𝑗 = {0,1,2, … , 𝑜𝑗 − 1} 

M Set of machines, 𝑀 = {0,1,2, … , 𝑔 − 1} 

L Set of speed levels, L = {0,1,2, … , ℎ − 1} 

𝑅𝑗  Release time of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′ 

𝐷𝑗  Due time of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′ 

𝑇𝑗  Tardiness of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′ 

𝑀𝑗𝑠  Target machine handling operation s of job j, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 

𝑅𝑆 Rescheduling point 

𝑃𝑗𝑠𝑚𝑝 
Processing time when operation s of job j handled by target machine m 

at speed level p, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 , 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿 

𝑄𝑗𝑠𝑚𝑝  
Energy cost when operation s of job j handled by target machine m at 

speed level p, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 , 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿 

𝑍𝑗𝑠𝑚𝑝  
Boolean variable, it is equal to 1 if operation s of job j is handled by 

target machine m at speed level p, otherwise, it equals to 0, 𝑗 ∈ 𝐽 ∪
𝐽′, 𝑠 ∈ 𝑂𝑗, 𝑚 𝜖 𝑀, 𝑝 𝜖 𝐿 

𝑆𝑗𝑠𝑚  
Original start time of operation s of original job j on machine m, 𝑗 ∈
𝐽, 𝑠 ∈ 𝑂𝑗, 𝑚 𝜖 𝑀 
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𝑆𝑗𝑠𝑚
′  

New start time of operation s of job j on machine m, 𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗, 

𝑚 𝜖 𝑀 

TT Total tardiness of all jobs  

𝐸𝑇𝑚𝑎𝑥  Estimated maximum value of TT 

𝐸𝑇𝑚𝑖𝑛  Estimated minimum value of TT 
TE Total energy cost 

𝐸𝐸𝑚𝑎𝑥  Estimated maximum value of TE 
𝐸𝐸𝑚𝑖𝑛  Estimated minimum value of TE 

𝑤𝑡𝑗  Importance weight of original job j, 𝑗 ∈ 𝐽 

DEV 
Weighted finishing time deviation of the updated schedule from the 

original one 

𝐸𝐷𝑚𝑎𝑥  Estimated maximum value of DEV 

𝐸𝐷𝑚𝑖𝑛  Estimated minimum value of DEV 

𝛼, 𝛽, 𝛾 Weight of each normalized objective function. 

𝜃 Migration threshold value, 0 ≤ 𝜃 ≤ 1 

𝜆 Migration rate, 0 ≤ 𝜆 ≤ 1 

𝜑 
Migration policy execution gap, the frequency to perform the migration 

policy as defined in equation (12). 

𝑓𝑖𝑡𝐴 The best individual’s fitness value of subpopulation A on island A 

𝑓𝑖𝑡𝐵 The best individual’s fitness value of subpopulation B on island B 

a, b, c, f Gene indices in a chromosome  

𝑣𝑗  Index of occurrence time of job j 

𝑢𝑗  Occurrence time of job j 

U  Set of occurrence time of a job number, 𝑈 = {0,1,2, … , 𝑢𝑗 − 1} 

𝑘 Current generation number of the GA 

𝑋(𝑘) Operation permutation of original schedule at generation k 

𝑌(𝑘) Speed level permutation of original schedule at generation k 

𝑋′(𝑘) Operation permutation of new schedule at generation k 

𝑌′(𝑘) Speed level permutation of new schedule at generation k 

𝑜𝑗𝑠  Operation s of job j 

d, e Indices for operations on machine m 

𝑜𝑚
′  

Number of operations on machine m before operation s of job j is 

assigned on it 

𝑂𝑚
′  

Set of operations on machine m before operation s of job j is assigned on 

it, 𝑂𝑚
′ = {0,1,2, … , 𝑜𝑚

′ − 1} 

N The number of orthogonal arrays in the Taguchi method 

F The response values in the Taguchi method 

𝑃𝑐𝑒𝑐 The crossover rate of the cellular GA 

𝑃𝑐𝑒𝑚 The mutation rate of the cellular GA 
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𝑃𝑐𝑎𝑐  The crossover rate of the classic GA 

𝑃𝑐𝑎𝑚 The mutation rate of the classic GA 

To minimize the total tardiness, the total energy cost and the delay caused by the schedule changes, 

the formal mathematical model of the EDJPS is derived from the mathematical models presented 

in [25, 26]. The formalization is given as follows.  

Objective Function:  

Min: 𝛼 ×
𝑇𝑇−𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑚𝑎𝑥−𝐸𝑇𝑚𝑖𝑛
+ 𝛽 ×

𝑇𝐸−𝐸𝐸𝑚𝑖𝑛

𝐸𝐸𝑚𝑎𝑥−𝐸𝐸𝑚𝑖𝑛
+ 𝛾 ×

𝐷𝐸𝑉−𝐸𝐷𝑚𝑖𝑛

𝐸𝐷𝑚𝑎𝑥−𝐸𝐷𝑚𝑖𝑛
 (1) 

Subject to:  

𝑆𝑗0𝑀𝑗0

′ ≥ 𝑅𝑗        𝑗 ∈ 𝐽 ∪ 𝐽′ (2) 

𝑆𝑗(𝑠+1)𝑀𝑗(𝑠+1)

′ ≥ 𝑆𝑗𝑠𝑀𝑗𝑠

′ + ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝     𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗, 𝑠 > 0, 𝑝 𝜖 𝐿 (3) 

𝑆𝑖𝑡𝑀𝑖𝑡

′ ≥ 𝑆𝑗𝑠𝑀𝑗𝑠

′ + ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝 

𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑖 ∈ 𝐽 ∪ 𝐽′, 𝑗 ≠ 𝑖, 𝑠 ∈ 𝑂𝑗, 𝑡 ∈ 𝑂𝑖,  𝑀𝑗𝑠 == 𝑀𝑖𝑡,  𝑝 𝜖 𝐿, 𝑆𝑗𝑠𝑚 ≤ 𝑆𝑖𝑡𝑚 

(4) 

𝑇𝑇 = ∑

𝑗∈𝐽

𝑚𝑎𝑥 (𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

′

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 – 𝐷𝑗 , 0)  

(5) 

∑

𝑝∈𝐿

𝑍𝑗𝑠𝑀𝑗𝑠𝑝 = 1      𝑗 ∈ 𝐽 ∪ 𝐽′, 𝑠 ∈ 𝑂𝑗 (6) 

𝑇𝐸 = ∑

𝑗∈𝐽

∑

 𝑠∈𝑂𝑗

∑

𝑝 𝜖 𝐿

𝑄𝑗𝑠𝑀𝑗𝑠𝑝 × 𝑍𝑗𝑠𝑀𝑗𝑠𝑝  (7) 

𝑆𝑗𝑠𝑀𝑗𝑠

′ ≥ 𝑅𝑆        𝑗 ∈ 𝐽, 𝑠 ∈ 𝑂𝑗, 𝑆𝑗𝑠𝑀𝑗𝑠
+ ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝 ≥ 𝑅𝑆 (8) 

𝑆𝑗𝑠𝑀𝑗𝑠

′ = 𝑆𝑗𝑠𝑀𝑗𝑠
        𝑗 ∈ 𝐽, 𝑠 ∈ 𝑂𝑗𝑆𝑗𝑠𝑀𝑗𝑠

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝 < 𝑅𝑆 (9) 

𝑅𝑗 ≥ 𝑅𝑆     𝑗 ∈ 𝐽′ (10) 

𝐷𝐸𝑉 = ∑

𝑗∈𝐽

𝑤𝑡𝑗 × 𝑚𝑎𝑥 ((𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

′

+ ∑

𝑝 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑝 ) − (𝑆𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

+ ∑

𝑞 𝜖 𝐿

𝑃𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑞 × 𝑍𝑗(𝑜𝑗−1)𝑀
𝑗(𝑜𝑗−1)

𝑞 ), 0)   

(11) 
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In this optimization problem, 𝑆𝑗𝑠𝑚
′  and 𝑍𝑗𝑠𝑚𝑝  are the decision variables. A weighted additive utility 

function with three normalized objectives is described as (1) where all objectives can be assessed 

on the same scale. The linear weighted sum approach is taken for this application instead of the 

Pareto optimal solution for two reasons. Firstly, the most widely used parallel cellular model on 

GPUs is still immature for solving multi-objective problems where the main stream 

implementation manages a central Pareto front sequentially [26, 27]. Second, most of the existing 

literature on the multi-objective job shop scheduling problems adopt the linear weighted sum 

approach [28] whose computational complexity is relatively lower. Meanwhile, this design is 

suitable for dealing with large size problems in the dynamic scenario by obtaining an adequate 

renewed scheduling plan in a reasonable time.  

Constraints (2) and (3) enforce that the first operation can only be processed after the release time 

while the others are authorized to start after its precedent one. The precedence for sequencing 

operations on machines is insured by constraint (4). Moreover, equation (5) defines the total 

tardiness of original jobs. As far as the energy cost, constraint (6) states each operation can only be 

handled by one machine with a fixed speed level whereas the total energy cost is given by equation 

(7). Finally, constraint (8), (9) and (10) impose the definition of rescheduling and equation (11) 

indicates the weighted finishing time deviation of the updated schedule from the original one.  

4. Solving approach 

4.1 Event-driven strategy  

With the event-driven policy, rescheduling is triggered in response to an unexpected event that 

alters the current system status [18]. In the case of EDJSP, the unexpected event is considered as 

an arrival of urgent jobs. These jobs are requested to be processed as soon as possible even if the 

original schedule has started. Operations that are being executed need to be terminated and 

unfinished operations of original jobs must be rearranged in order to leave the machines available 

to firstly handle urgent jobs. Thus, new urgent arrival jobs are assigned to machines with the highest 

speed levels at the beginning when the rescheduling is triggered. If the amount of new urgent arrival 

jobs is not unique, they are scheduled as the regular JSP with the objective of minimizing the total 

tardiness. Unfinished operations of original jobs are considered at the next step according to the 

remaining spaces on machines. A dual heterogeneous island parallel GA on hybrid CPU–GPU 

frameworks is adapted to generate an adequate schedule for them in a limited time. The flow of the 

event-driven strategy is summarized as in Figure 2. 
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Fig.2. The flow of the event-driven strategy for the EDJSP 

4.2 Dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks 

The general procedure of the dual heterogeneous island parallel GA on hybrid CPU–GPU 

frameworks is a further development from our previously designed parallel GA and its 

implementations to solve large scale flexible flow shop scheduling in static scenarios [30]. The 

algorithm divides the population into two islands. There is an identical amount of individuals on 

every island in which island A deals with the cellular GA [31] and island B deals with the classic 

GA [32]. At a certain point, a migration operation is executed to swap individuals between them. 

The procedure of the dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks is 

shown in Fig.3. As far as the software and the hardware levels are concerned, four obvious 

advantages of this design are summarized as follows: 

● Since the cellular GA and the classical GA get new search points in the exploring space using 

different mechanisms, this design enlarges the range of the searching process and decreases 

the probability that premature convergence occurs.  

● Because of the independent evolution, individuals from heterogeneous islands obtain distinct 

characters from different solution range. Therefore, the performance of migration is enhanced.  

● With respect to the underlying architectures, the cellular GA is designed to be entirely 

executed in parallel on GPUs while the classic GA can be partially parallelized on a multi-

core CPU. 

● To utilize the computing resources maximally, codes from the host and the device can also be 

executed simultaneously, in addition to the parallelization within GPUs or a multi-core CPU.  
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Fig.3. The procedure of the dual heterogeneous island parallel GA 

The implementation for the cellular GA on island A is done with the Compute Unified Device 

Architecture (CUDA) for GPUs. All CUDA threads in a grid execute the same kernel function 

where a grid is organized as 2D array of blocks and each block is arranged as 2D array of threads 

[33]. The cellular GA maps individuals in a grid environment [34]. Therefore, it can be completely 

parallelized on CUDA and absolutely matches the underlying architectures. Since the texture 

memory of CUDA is optimized for 2D spatial locality [35], the overlapping communication region 

of the cellular GA is designed to be circled as in Fig. 4. At first, two parent individuals are selected 

from this region and their chromosomes are reassembled to produce a new offspring individual. 

After the mutation operation, this newly constituted individual substitutes the initial one only if its 

fitness value is better. Upon the fitness values, all individuals are finally ordered by the Bitonic-

Merge sort [36], if the algorithm complies with the island termination condition but not with the 

final termination condition. The crossover, the replacement and the Bitonic-Merge sort are 

managed via the global memory whereas the mutation and the fitness evaluation are performed 

thought the local memory.  
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Fig.4 The procedure to generate new solutions by the cellular GA 

Because of the high frequency use of the roulette wheel selection, the classic GA on island B 

utilizes it for selecting individuals from the population according to their fitness values. As the next 

step, two randomly paired parent individuals carry out the crossover and the new offspring 

individual implements the mutation. After these steps, the all-time best individual is maintained 

and is used to replace the worst individual in the current generation. At the end, all individuals are 

sorted under the same condition as the cellular GA on GPUs. To respect the original mechanism 

without requesting specific underlying architecture, a master-slave model is utilized to parallelize 

the classic GA. In this case, only the fitness evaluation and the Bitonic-Merge sort are performed 

on a multi-core CPU as slave nodes while the rest procedures are handled at the master side in 

sequential. When this procedure is implemented, the OpenMP [37] (Open Multi-Processing) is 

used for programming parallel threads in multi-core applications.  

When a migration point is reached, individuals executed on GPUs are transferred to the CPU and 

the migration between the two islands is carried out by the CPU. To reduce the amount of factors 

required to be controlled manually, the migration’s execution is decided by a migration threshold 

value 𝜃. Moreover, the migration rate 𝜆 is formulated as  

𝜆 = {1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴
 
} 0  1 − 𝑚𝑖𝑛{

𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴} 
 

< 𝜃 

1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴} 
 

≥ 𝜃 
(12) 

The migration is only executed when 1 − 𝑚𝑖𝑛{
𝑓𝑖𝑡𝐴

𝑓𝑖𝑡𝐵,
𝑓𝑖𝑡𝐵

𝑓𝑖𝑡𝐴} 

< 𝜃 where the 𝜆 percent individuals with 

the best fitness values are exchanged between the two islands to replace the 𝜆 percent individuals 

with the worst fitness values in the others. This mechanism helps to diffuse the best individuals 

efficiently while saving the execution time by avoiding useless information sharing. 

4.3 Hybrid encoding representation 

To solve the EDJSP, a modified operation-based encoding is adopted for representing the 

chromosomes. In terms of the schedule of original jobs, the chromosome contains two 

permutations: operation permutation X(k) (13) and speed level permutation Y(k) (14). X(k) utilizes 

the operation-based encoding where each job is represented by a natural number and each number 

is present as many times as the number of operations of the job it represents [38]. By scanning X(k) 

from left to right, the 𝑣𝑗
th occurrence of a job j refers to the 𝑣𝑗

th operation in the technological 

sequence of this job [39]. According to the example provided in [40], a feasible solution for a 3× 3 

job shop is presented as [2, 1, 0, 0, 1, 2, 2, 1, 0] where 2 on the fifth gene position (indexed from 
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0) indicates the operation 1 (after the operation 0) of job 2 as it is the 1st occurrence (after the 0th 

occurrence) of number 2. Thus, X(k) can be translated to a list of ordered operations as 

[𝑜20, 𝑜10, 𝑜00, 𝑜01, 𝑜11, 𝑜21, 𝑜22, 𝑜12, 𝑜02]. Moreover, each element 𝑦𝑎(𝑘) shows the selected speed 

level of its related element 𝑥𝑎(𝑘) on the target machine.  

X[k] = [ 𝑥0(𝑘), 𝑥1(𝑘), ⋯ , 𝑥𝑎(𝑘), ⋯ , 𝑥
∑𝑗∈𝐽 𝑜𝑗−1

(𝑘) ] (13) 

where 𝑥𝑎(𝑘)𝜖[0, 𝑛 − 1], 𝑢𝑗 == 𝑜𝑗 . 

Y[k] = [ 𝑦0(𝑘), 𝑦1(𝑘), ⋯ , 𝑦𝑎(𝑘), ⋯ , 𝑦
∑𝑗∈𝐽 𝑜𝑗−1

(𝑘) ] (14) 

where 𝑦𝑎(𝑘)𝜖[0, ℎ − 1]. 

To leave machines available to conduct new urgent arrival jobs firstly with the highest speed level 

and rearrange unfinished operations of original jobs, the chromosome of the updated schedule also 

includes an operation permutation 𝑋′(𝑘) (15) and a speed level permutation 𝑌′(𝑘) (16). The 

initialization rule for both are shown in Algorithm 1. Moreover, the decoding rule is displayed in 

Algorithm 2.  

𝑋′(𝑘) = [ 𝑥0
′ (𝑘), 𝑥1

′ (𝑘), ⋯ , 𝑥𝑎
′ (𝑘), ⋯ , 𝑥

∑
𝑗∈𝐽∪𝐽′ 𝑜𝑗−1

′ (𝑘) ] (15) 

where 𝑥𝑎
′ (𝑘)𝜖[0, 𝑛 + 𝑛′ − 1], 𝑢𝑗 == 𝑜𝑗. 

𝑌′(𝑘) = [ 𝑦0
′ (𝑘), 𝑦1

′ (𝑘), ⋯ , 𝑦𝑎
′ (𝑘), ⋯ , 𝑦

∑
𝑗∈𝐽∪𝐽′ 𝑜𝑗−1

′ (𝑘) ] (16) 

where 𝑦𝑎
′ (𝑘)𝜖[0, ℎ − 1]. 
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Algorithm 1. The initialization rule of permutations 𝑋′(𝑘) and 𝑌′(𝑘) 

a ← 0; 

for 𝑏 ← 0 𝑡𝑜 ∑𝑗∈𝐽 𝑜𝑗 − 1 do 

j ← 𝑥𝑏(0);  
s ←  𝑣𝑗; 

p ← 𝑦𝑏(0); 
if 𝑆𝑗𝑠𝑀𝑗𝑠

+ 𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝 ≤ 𝑅𝑆 then 

 𝑥𝑎
′ (0) ← 𝑥𝑏(0); 

 𝑦𝑎
′ (0) ← 𝑦𝑏(0); 

 a ← a+1; 

end if 

end for 

r1← a; 

for 𝑐 ← 0 𝑡𝑜 ∑𝑖∈𝐽′ 𝑜𝑖 − 1 do 

 𝑥𝑎
′ (0) ← 𝑥𝑐(0); 

 𝑦𝑎
′ (0) ← 𝑦𝑐(0) //ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙; 

a ← a+1; 

end for 

r2← a; 

for 𝑎 ← 𝑟2 𝑡𝑜 ∑𝑙∈𝐽∪𝐽′ 𝑜𝑙 − 1 do 

 initialize 𝑥𝑎
′ (0) following the rule of operation-based encoding; 

initialize 𝑦𝑎
′ (0) randomly in the range of machine speed level; 

end for 
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Algorithm 2. The decoding rule 

for 𝑎 ← 𝑟2 𝑡𝑜 ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1 do 

j ← 𝑥𝑎
′ (𝑘);  

s ←  𝑣𝑗; 

p ← 𝑦𝑎
′ (𝑘); 

 if s == 0 then 

  if 𝑅𝑗 ≤ 𝑅𝑆 then 

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ←  𝑅𝑆; 

else 

   𝑆𝑗𝑠𝑀𝑗𝑠

′ ←  𝑅𝑗; 

end if 

else 

for 𝑏 ← 0 𝑡𝑜 ∑𝑖∈𝐽∪𝐽′ 𝑜𝑖 − 1 do 

if i == j and 𝑣𝑖 == 𝑠 − 1 then 

 w ← 𝑦𝑏
′ (𝑘); 

end if  

  end for 

if 𝑆𝑗(𝑠−1)𝑀𝑗(𝑠−1)
+ 𝑃𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤   ×  𝑍𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤 ≤ 𝑅𝑆 then 

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ←  𝑅𝑆; 

else  

 𝑆𝑗𝑠𝑀𝑗𝑠

′ ←  𝑆𝑗(𝑠−1)𝑀𝑗(𝑠−1)

′ + 𝑃𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤   ×  𝑍𝑗(𝑠−1)𝑀𝑗(𝑠−1)𝑤; 

end if 

end if 

d← 0; 

for 𝑐 ← 𝑟1 𝑡𝑜 𝑎-1 do 

 l ← 𝑥𝑐
′ (𝑘);  

t ←  𝑣𝑙; 

if 𝑀𝑗𝑠 == 𝑀𝑙𝑡 then 

 𝑂𝑀𝑗𝑠

′ [𝑑]  ← 𝑜𝑙𝑡; 

d ← d+1; 

end if 

 end for 

 Sort elements in 𝑂𝑀𝑗𝑠

′ [𝑑] in ascending order by the starting time; 

for 𝑒 ← 0 𝑡𝑜 𝑜𝑚
′ − 1 do 

 x ← job number in 𝑂𝑀𝑗𝑠

′ [𝑒]; 

 y ← operation number of job x in 𝑂𝑀𝑗𝑠

′ [𝑒]; 

for 𝑓 ← 0 𝑡𝑜 ∑𝑧∈𝐽∪𝐽′ 𝑜𝑧 − 1 do 

if z == x and 𝑣𝑧 == 𝑦 then 

 q ← 𝑦𝑓
′ (𝑘); 

end if 

  end for 

if [𝑆𝑗𝑠𝑀𝑗𝑠

′ , 𝑆𝑗𝑠𝑀𝑗𝑠

′ + 𝑃𝑗𝑠𝑀𝑗𝑠𝑝   ×  𝑍𝑗𝑠𝑀𝑗𝑠𝑝 ) ∩ [𝑆𝑥𝑦𝑀𝑥𝑦

′ , 𝑆𝑥𝑦𝑀𝑥𝑦

′ + 𝑃𝑥𝑦𝑀𝑥𝑦𝑞   ×  𝑍𝑥𝑦𝑀𝑥𝑦𝑞 ) ≠ ∅ 

then 

𝑆𝑗𝑠𝑀𝑗𝑠

′ ← 𝑆𝑥𝑦𝑀𝑥𝑦

′ + 𝑃𝑥𝑦𝑀𝑥𝑦𝑞   ×  𝑍𝑥𝑦𝑀𝑥𝑦𝑞; 

 end if 
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end for 

end for 

4.4 Crossover and mutation operators  

To work with the modified operation-based encoding, the operation-based order crossover [6] is 

utilized as the crossover operator and works for genes in the chromosome within the range 

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1]. Firstly, it randomly chooses the same operations from two paired parents. 

The loci of chosen operations are preserved and copied to their own offspring. Afterwards, 

remaining operations are transmitted to the offspring of the other parent to fill the missing genes 

while their original orders are also kept. The crossover procedure for a 5×3 job shop example is 

shown in Fig.5 where job 0, job 1, job 2, job 3 are original jobs, job 4 is a new urgent arrival job 

and each machine has 3 speed levels. The integers in red indicates genes out of the range 

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1] while the integers in blue mark the loci of randomly chosen operations. 
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Before crossover 

Parent 1 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2] 

Parent 2 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 3, 1, 1, 3, 3, 0, 2, 0, 2] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 0, 2, 1, 0, 1, 1] 

        

After crossover 

Offspring 1 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 3, 1, 3, 0, 2, 1, 2, 3, 0] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 2, 2, 0, 1, 0, 2, 0, 1, 2] 

Offspring 2 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 1, 3, 3, 2, 3, 0, 2] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 0, 2, 1, 0, 1, 1] 

Fig.5 An example of the operation-based order crossover 

The swap mutation is used for 𝑋′(𝑘) where different arbitrary genes within the range 

[𝑟2 , ∑𝑗∈𝐽∪𝐽′ 𝑜𝑗 − 1] are chosen and exchange values. Concerning 𝑌′(𝑘), unfixed number of 

genes are substituted by randomly generated values within the range, aside from the original ones. 

Following the above example, this procedure is illustrated in Fig.6 where genes in green illustrate 

the execution of mutation. 

Before mutation 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 3, 2, 2, 1, 3, 3, 0] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2] 

         

After mutation 
𝑋′(𝑘) = [2, 0, 1, 4, 4, 4, 0, 1, 0, 2, 2, 1, 3, 3, 3] 

𝑌′(𝑘) = [2, 1, 0, 2, 2, 2, 1, 0, 0, 1, 0, 2, 0, 1, 2] 

Fig.6. An example of the mutation 

5. Numerical Tests 

Test 1 checks the efficiency and the effectiveness of the dual heterogeneous island parallel GA on 

hybrid CPU–GPU frameworks for solving the energy aware JSP while test 2 evaluates the 

performance of EDJSP by a case study. All the experiments have been made using the Intel Xeon 

E5640 CPU which has four CPU-cores, 2.67 GHz clock speed each and NVIDIA Tesla K40 with 

CUDA cores and 12 GB GDDR5 of global memory.  

5.1 Evaluation 

The energy aware JSP without taking into account new urgent arrival jobs is the first to be 

concerned. In this case, six large size problems are generated as in [41]. These instances are referred 

to as “easy problems” or “hard problems” with names EASY 20× 10, EASY 20× 20, EASY 

50× 10, HARD 20× 10, HARD 20× 20 and HARD 50× 10. EASY 20× 10 and HARD 20× 10 

are 20-job, 10-machine problems; EASY 20× 20 and HARD 20× 20 are 20-job, 20-machine 

problems; EASY 50× 10 and HARD 50× 10 are 50-job, 10-machine problems. Every job consists 

of the same amount of operations as the amount of machines, while one operation is always handled 

by a single machine. Moreover, every machine has 5 speed levels. As far as the easy problems are 

concerned, the machine procedure constraints for each job are generated randomly. As an 

alternative, the hard problems divide the machines into two sets. Each job must pass firstly through 

the first set, then through the second one. The ordering within the two sets of machines is generated 

randomly. The data relative to the experience is defined in Table 2. 
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Table 2. The data relative to the experience of the energy aware JSP 

𝑃𝑗𝑠𝑀𝑗𝑠𝑝 U[1, 5] 

𝑄𝑗𝑠𝑀𝑗𝑠𝑝  𝛿 × 𝑃𝑗𝑠𝑀𝑗𝑠𝑝
2 , where 𝛿=U[2, 4] 

𝑅𝑗  U[0, 𝑃],  where 𝑃 = ∑𝑗 (∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ)/𝑜𝑗) 

𝐷𝑗  𝑅𝑗 + 𝑃𝑗 × (1 + 𝜎),  where 𝜎=U[0, 2] and 𝑃𝑗 =

∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ) 

𝛼 1 

𝛽 1 

To verify the performance of the proposed algorithm, we compare its solution quality and execution 

time with the parallel cellular GA on GPUs and the parallel classic GA on a multi-core CPU. For 

these tested three GAs, the population sizes are all kept as 512 (16×16×2) while each island’s 

subpopulation size of the dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks 

is 256 (16×16). The final termination criterion is set as 2000 generations. Moreover, the results 

shown in Fig.7, Fig.8, Fig.9, Fig.10, Fig.11, Fig.12, Table 5 and Table 6 are obtained by 30 

independent runs while the results displayed in Table 7 are the average values of 5 runs. Since the 

parameter configuration has a huge impact to the performance of algorithms, the Taguchi method 

[42] is used to calibrate the parameters of the tested GAs. As most common optimality criteria of 

shop scheduling problems are about minimization, the signal to noise ratio (S/N) of the Taguchi 

method used to assess the performance in our case is calculated as: 

S/N ratio = −10 × (𝑠𝑢𝑚(𝐹2)/𝑁)  (17) 

Table 3. The parameters and their levels. 

GAs Parameters 
Parameter Level 

Level 1 Level 2 Level 3 

Dual heterogeneous 

island parallel GA 

𝑃𝑐𝑎𝑐  0.6 0.7 0.8 

𝑃𝑐𝑎𝑚 0.03 0.06 0.09 

𝑃𝑐𝑒𝑐 0.6 0.7 0.8 

𝑃𝑐𝑒𝑚 0.03 0.06 0.09 

𝜃 0.9 0.95 1.00 

𝜑 100 200 300 

Parallel classic GA 
𝑃𝑐𝑎𝑐  0.6 0.7 0.8 

𝑃𝑐𝑎𝑚 0.03 0.06 0.09 

Parallel cellular GA 
𝑃𝑐𝑒𝑐 0.6 0.7 0.8 

𝑃𝑐𝑒𝑚 0.03 0.06 0.09 

As the migration of the proposed GA is carried out by the CPU in which individuals executed on 

GPUs are transferred to the CPU at this point, its performance may be weakened because of the 

frequent data exchange. Therefore, we need also test the migration policy execution gap for the 

dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks, in addition to the 

crossover rate, the mutation rate and the migration threshold value. The parameters and their levels 

are given in Table 3. The Minitab software [43] is used to obtain the S/N ratios and the standard 

deviations in the Taguchi method for each GA. The 𝐿27 design is selected for the dual 

heterogeneous island parallel GA while the 𝐿9 is selected for the parallel classic GA and the parallel 

cellular GA. The orthogonal array of each design is presented in Table 4 and Table 5 respectively. 

Regarding the S/N ratios of three GAs displayed in Fig.7, Fig.9 and Fig.11 and the standard 

deviations presented in Fig.8, Fig.10 and Fig.12 separately, we select their parameters levels as 

shaded in Table 3.  
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Table 4. The orthogonal array 𝐿27 

Run order  𝑃𝑐𝑎𝑐  𝑃𝑐𝑎𝑚 𝑃𝑐𝑒𝑐 𝑃𝑐𝑒𝑚 𝜃 𝜑 
1 1 1 1 1 1 1 

2 1 1 1 1 2 2 

3 1 1 1 1 3 3 

4 1 2 2 2 1 1 

5 1 2 2 2 2 2 

6 1 2 2 2 3 3 

7 1 3 3 3 1 1 

8 1 3 3 3 2 2 

9 1 3 3 3 3 3 

10 2 1 2 3 1 2 

11 2 1 2 3 2 3 

12 2 1 2 3 3 1 

13 2 2 3 1 1 2 

14 2 2 3 1 2 3 

15 2 2 3 1 3 1 

16 2 3 1 2 1 2 

17 2 3 1 2 2 3 

18 2 3 1 2 3 1 

19 3 1 3 2 1 3 

20 3 1 3 2 2 1 

21 3 1 3 2 3 2 

22 3 2 1 3 1 3 

23 3 2 1 3 2 1 

24 3 2 1 3 3 2 

25 3 3 2 1 1 3 

26 3 3 2 1 2 1 

27 3 3 2 1 3 2 
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Table 5. The orthogonal array 𝐿9 

Run order  𝑃𝑐𝑎𝑐/𝑃𝑐𝑒𝑐 𝑃𝑐𝑎𝑚/𝑃𝑐𝑒𝑚 

1 1 1 

2 1 2 

3 1 3 

4 2 1 

5 2 2 

6 2 3 

7 3 1 

8 3 2 

9 3 3 

 
Fig.7. The S/N ratio of the dual heterogeneous island parallel GA 
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Fig.8. The standard deviation of the dual heterogeneous island parallel GA 

 
Fig.9. The S/N ratio of the parallel classic GA 

 

 
Fig.10. The standard deviation of the parallel classic GA 
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Fig.11. The S/N ratio of the parallel cellular GA 

 
Fig.12. The standard deviation of the parallel cellular GA 

 

 

Since the decentralized population in the parallel cellular GA allows to keep the population’s 

diversity for longer [44], it works as strongly as the parallel classic GA and even defeats the parallel 

classic GA for half of the cases as shown in Table 6. Because of the separated evolution and the 

enhanced migration, the dual heterogeneous island parallel GA integrates the advantages from the 

parallel cellular GA and the parallel classic GA. Therefore, it can always get the best performance 

for all tested problems with the average value. To confirm this efficiency, the Wilcoxon signed 

ranks test [45] is utilized to compare the performance of the dual heterogeneous island parallel GA 

with the other two considered parallel GAs. Table 7 displays the 𝑅−, 𝑅+ and p-values computed 

by SPSS [46] where the dual heterogeneous island parallel GA shows an improvement over the 

parallel cellular GA for instances EASY 20× 10, EASY 50× 10, HARD 20× 10, HARD 20× 20 

and HARD 50× 10, over the parallel classic GA for instances EASY 20× 10, EASY 20× 20, 

EASY 50× 10, HARD 20× 10 and HARD 20× 20 when the significance level equals to 0.1. 

Table 6. The solutions’ quality comparison 

Problems 
 Parallel heterogeneous GA  Parallel cellular GA Parallel classic GA 

Average Best Average Best Average Best 

EASY 20× 10 0.0481 0.0224 0.0551 0.0308 0.0623 0.0490 

EASY 20× 20 0.0901 0.0568 0.0911 0.0468 0.1007 0.0831 

EASY 50× 10 0.0585 0.0110 0.1290 0.0378 0.0643 0.0292 

HARD 20× 10 0.0412  0.0258 0.0441 0.0227 0.0747 0.0499 

HARD 20× 20 0.1025  0.0421 0.1750 0.0916 0.1219 0.0849 

HARD 50× 10 0.0706 0.0236 0.0932 0.0075 0.0709 0.0291 
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Table 7. The Wilcoxon signed ranks test results 

Comparison Problems 𝑅− 𝑅+ p-value 

parallel heterogeneous GA 

versus 

parallel cellular GA 

EASY 20× 10 136.00 329.00 0.047 

EASY 20× 20 204.00 261.00 >0.1 

EASY 50× 10 18.00 447.00 0.000 

HARD 20× 10 151.00 314.00 0.094 

HARD 20× 20 14.00 451.00 0.000 

HARD 50× 10 126.00 339.00 0.028 

parallel heterogeneous GA 

versus 

parallel classic GA 

EASY 20× 10 44.00 421.00 0.000 

EASY 20× 20 109.00 359.00 0.011 

EASY 50× 10 137.00 328.00 0.049 

HARD 20× 10 0.00 465.00 0.000 

HARD 20× 20 108.00 357.00 0.010 

HARD 50× 10 225.00 240.00 >0.1 
𝑅−: value of the objective function got by the parallel heterogeneous GA > value of the objective function got 
by the parallel cellular GA (parallel classic GA) 
𝑅+: value of the objective function got by the parallel heterogeneous GA < value of the objective function got 
by the parallel cellular GA (parallel classic GA) 

The execution time of three parallel GAs with different population sizes are shown in Table 8. 

Because of the simultaneous execution on both sides, the dual heterogeneous island GA on the 

hybrid platform overcomes the parallel cellular GA on GPUs and the parallel classic GA on a multi-

core CPU in most cases. This phenomenon is even more remarkable when the difference of the 

execution time on two islands is smaller. However, the advantage from the hybrid platform may 

be reduced because the overall performance is limited to the island who takes longer execution 

time. Therefore, it indicates the significance of computation capability balance between the multi-

core CPU and the GPUs when the dual heterogeneous island GA is implemented. For some extreme 

situations, the weak node may perform as a bottleneck and decreases the global effectiveness. 
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Table 8. The execution time comparison 

Problem

s 

Population 

Size 

Parallel heterogeneous GA (island of parallel 

cellular GA, island of parallel classic GA) 

Parallel  

cellular GA 

Parallel 

classic GA 

EASY 

20× 10 

16×16×2 475 s (474 s, 233 s) 504 s 657 s 

32×32×2 966 s (802 s, 936 s) 1185 s 2248 s 

64×64×2 3927 s (2058 s, 3800 s) 3615 s 8321 s 

EASY 

20× 20 

16×16×2 1731 s (1730 s, 826 s) 2106 s 1602 s 

32×32×2 3556 s (3555 s, 3346 s) 5530 s 6428 s 

64×64×2 14060 s (9587 s, 13472 s) 16864 s 28166 s 

EASY 

50× 10 

16×16×2 3082 s (3081 s, 1342 s) 3408 s 3239 s 

32×32×2 5600 s (5467 s, 5405 s) 8350 s 12433 s 

64×64×2 22627 s (14162 s, 21748 s) 24776 s 48073 s 

HARD 

20× 10 

16×16×2 472 s (472 s, 239 s) 507 s 660 s 

32×32×2 986 s (806 s, 955 s) 1183 s 1950 s 

64×64×2 3986 s (2046 s, 3859 s) 3627 s 8732 s 

HARD 

20× 20 

16×16×2 1729 s (1729 s, 837 s) 2097 s 1935 s 

32×32×2 3511 s (3510 s, 3353 s) 5426 s 7437 s 

64×64×2 14088 s (9411 s, 13509 s) 16323 s 28508 s 

HARD 

50× 10 

16×16×2 3048 s (3048 s, 1357 s) 3428 s 3268 s 

32×32×2 5641 s (5506 s, 5444 s) 8454 s 12121 s 

64×64×2 22676 s (14259 s, 21795 s) 25046 s 48427 s 

5.2 Case study 

A modified job shop instance incorporating machine speed scaling and new urgent arrival jobs is 

developed based on the well know 10×10 problem (10 jobs, 10 machines) from Muth and 

Thompson [47] (MT10) as a case study. There are 10 original jobs and 3 new urgent arrival jobs. 

Each machine has 5 speed levels. New urgent jobs arrive around 30% of the makespan of the 

original schedule. The operation sequence of original jobs and their processing times on target 

machine at speed level 0 are collected from MT10. On the other hand, the values for new urgent 

arrival jobs are generated following the rule of “hard problems” in subsection 5.1 evaluation. The 

values of energy cost at level 0 is set as 𝑄𝑗𝑠𝑀𝑗𝑠0 =  𝛿 × 𝑃𝑗𝑠𝑀𝑗𝑠0
2 , where 𝛿=U[2, 4]. The release times 

(𝑅𝑗) of original jobs are fixed as 0 while the due times are generated as 𝐷𝑗 = 𝑃𝑗 × (1 + 𝜎), where 

𝜎=U[0, 2] and 𝑃𝑗 = ∑𝑠 (∑𝑝 𝑃𝑗𝑠𝑀𝑗𝑠𝑝/ℎ). Concerning the importance weight of original jobs, 

we make 𝑤𝑡0 = 𝑤𝑡1 = 4, 𝑤𝑡𝑗 = 2 for j = 2, 3, …, 7 and 𝑤𝑡8 = 𝑤𝑡9 = 1. All details are shown in 

Table 9. Moreover, the processing time and the energy cost when operation s of job j handled by 

target machine m at different levels is defined as 𝑃𝑗𝑠𝑚𝑝=𝑃𝑗𝑠𝑚0 × 𝑉𝑝 and 𝑄𝑗𝑠𝑚𝑝=𝑄𝑗𝑠𝑚0 ÷

𝑉𝑝, respectively, where 𝑉 = (1, 1.3, 1.55, 1.75, 2.1). Finally, we keep the values of 𝛼, 𝛽 equal to 1 

while a very large constant is assigned to 𝛾 which indicates the importance of the schedule repair 

strategy. 

The best-found solution of the original schedule is shown by the Gantt chart in Fig.13. Since new 

urgent jobs arrive at time 600, all operations are being operated at this moment need to be canceled 

and leave machines available for processing them firstly. In this case, some machines are occupied 

at some periods after scheduling new urgent arrival jobs. Therefore, unfinished operations of 
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original jobs are rearranged to make use of machines only when they are idle. By implementing 

the schedule repair strategy, the best-found solution illustrated by the Gantt chart of the updated 

schedule in Fig.14 presents that the processing time of some operations is obviously decreased. As 

a result, most original jobs’ finishing time are only delayed slightly which is confirmed by the 

details displayed in Table 10.  

In addition to the M10, we have extended another four classic cases from the literature to test the 

relationship among the three objectives of the EDJSP. The problems ABZ5 and ABZ7 are two 

problems from [48]. The problems LA35 and LA40 are two problems from [49]. The operation 

sequence of these jobs and their processing times on target machines are treated as original jobs at 

speed level 0 in the EDJSP. The importance weights of original jobs are randomly drawn integers 

from the interval [1, 4]. The amount of new urgent arrival jobs is an integer generated randomly 

from U [1, 10] while their arriving time is set by a random value from a uniform distribution on 

the interval [0, the makespan of the original schedule]. Moreover, the other settings are kept the 

same as the MT10 based EDJSP.
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Table 9. The case data of the M10 based EDJSP 

Jobs 

𝑀𝑗𝑠  

𝑃𝑗𝑠𝑀𝑗𝑠0 

𝑄𝑗𝑠𝑀𝑗𝑠0 

𝑤𝑡𝑗  𝑅𝑗  𝐷𝑗  

𝐽0 
0, 

29 

2732 

1 

78 

22255 

2 

9 

184 

3 

36 

3729 

4 

49 

8905 

5 

11 

261 

6 

62 

7849 

7 

56 

10985 

8 

44 

7219 

9 

21 

1151 

4 0 787 

𝐽1 
0 

43 

5859 

2 

90 

25571 

4 

75 

16498 

9 

11 

396 

3 

69 

11116 

1 

28 

2999 

6 

46 

4796 

5 

46 

5571 

7 

72 

16324 

8 

30 

3438 

4 0 1096 

𝐽2 
1 

91 

30407 

0 

85 

24102 

3 

39 

5696 

2 

74 

11450 

8 

90 

19091 

5 

10 

315 

7 

12 

423 

6 

89 

19723 

9 

45 

4446 

4 

33 

3161 

2 0 1587 

𝐽3 
1 

81 

17491 

2 

95 

27291 

0 

71 

19422 

4 

99 

33401 

6 

9 

237 

8 

52 

8060 

7 

85 

21768 

3 

98 

36629 

9 

22 

1711 

5 

43 

6783 

2 0 2050 

𝐽4 
2 

14 

606 

0 

6 

126 

1 

22 

1546 

5 

61 

12666 

3 

26 

2229 

4 

69 

10107 

8 

21 

1711 

7 

49 

6160 

9 

72 

12115 

6 

53 

6022 

2 0 1450 

𝐽5 
2 

84 

27497 

1 

2 

15 

5 

52 

9080 

3 

95 

30657 

8 

48 

6690 

9 

72 

16749 

0 

47 

7013 

6 

65 

13934 

4 

6 

86 

7 

25 

1507 

2 0 1945 

𝐽6 
1 

46 

5410 

0 

37 

2748 

3 

61 

14764 

2 

13 

596 

6 

32 

3033 

5 

21 

1042 

9 

32 

2920 

8 

89 

30266 

7 

30 

3340 

4 

55 

11800 

2 0 1415 

𝐽7 
2 

31 

2720 

0 

86 

15213 

1 

46 

5903 

5 

74 

14670 

4 

32 

3078 

6 

88 

16246 

8 

19 

1198 

9 

48 

5121 

7 

36 

4872 

3 

79 

19509 

2 0 1005 

𝐽8 
0 

76 

20250 

1 

69 

17948 

3 

76 

12094 

5 

51 

7397 

2 

85 

18308 

9 

11 

289 

6 

40 

5980 

7 

89 

20515 

4 

26 

1459 

8 

74 

21613 

1 0 1265 

𝐽9 
1 

85 

23242 

0 

13 

429 

2 

61 

12595 

6 

7 

141 

8 

64 

14008 

9 

76 

17143 

5 

47 

8648 

3 

52 

9555 

4 

90 

16289 

7 

45 

6382 

1 0 2182 

𝐽10 
2 

16 

831 

1 

58 

12305 

0 

22 

1099 

4 

24 

1657 

3 

53 

10418 

8 

9 

175 

9 

57 

6634 

7 

63 

13903 

5 

92 

31562 

6 

43 

4829 

 600 879 

𝐽11 
3 

6 

114 

1 

48 

7273 

4 

14 

574 

0 

66 

14278 

2 

24 

1344 

7 

2 

15 

9 

85 

16379 

6 

73 

14031 

8 

19 

1136 

5 

99 

37449 

 600 859 

𝐽12 
4 

99 

35989 

2 

90 

27021 

0 

63 

14863 

1 

14 

409 

3 

31 

2265 

5 

27 

2298 

9 

15 

662 

8 

2 

9 

6 

51 

5711 

7 

33 

3161 

 600 806 
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Table 10. The original jobs’ finishing time comparison of the M10 based EDJSP 

 Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 

Original 

Schedule 
632.05 1091.80 1555.15 1817.90 1485.05 1535.80 1390.05 987.45 1431.40 1838.65 

Updated 

Schedule 
688.10 1092.30 1579.25 1824.40 1472.20 1331.65 1455.85 990.00 1991.45 1851.20 

Difference 56.05 0.5 24.1 6.5 0 0 65.8 2.55 560.05 12.55 
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Fig. 13. The Gantt chart of the best-found solution of the original schedule for the M10 based 

EDJSP 
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Fig. 14. The Gantt chart of the best-found solution of the updated schedule for the M10 based 

EDJSP 
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Table 11. The relationship among three objectives 

Problems 
NO. of  

machines 

NO. of  

jobs 

Weight of each normalized objective function 𝑇𝑇 − 𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑚𝑎𝑥 − 𝐸𝑇𝑚𝑖𝑛
 

𝛼 𝛽  𝛾 

MT10 10 10 

100  10 1 0.0469  

100 1 10 0.0464 

10 100 1 0.1864 

1 100 10 0.1813 

10 1 100 0.0460 

1 10 100 0.0520 

Standard deviation 0.0702 

ABZ5 10 10 

100 10 1 0.0845 

100 1 10 0.0794 

10 100 1 0.2169 

1 100 10 0.2292 

10 1 100 0.1043 

1 10 100 0.1098 

Standard deviation 0.0674 

 

 

 

ABZ7 

 

 

 

15 

 

 

 

20 

100 10 1 0.0937 

100 1 10 0.0904 

10 100 1 0.2049 

1 100 10 0.2199 

10 1 100 0.1100 

1 10 100 0.1136 

Standard deviation 0.0579 

LA35 10 30 

100 10 1 0.2354 

100 1 10 0.2363 

10 100 1 0.3075 

1 100 10 0.2973 

10 1 100 0.2405 

1 10 100 0.2412 

Standard deviation 0.0333 

LA40 15 15 

100 10 1 0.1814 

100 1 10 0.1800 

10 100 1 0.2832 

1 100 10 0.2852 

10 1 100 0.1903 

1 10 100 0.1928 

Standard deviation 0.0508 
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Because of the relationship among the total tardiness, the total energy cost and the disruption to the 

original schedule, the decision maker can achieve their preference through controlling the 

importance weight of each normalized objective function. The dual heterogeneous island parallel 

GA was run 30 times for the above mentioned five EDJSP cases with different settings of 𝛼, 𝛽, 𝛾 

and the average results are displayed in Table 11. It can be observed that the third objective is the 

most sensitive one to the importance weight in all cases while the second objective is the least. 

Thus, in industrial practice, decision makers are suggested to pay more attention to minimize the 

values of the disruption to the original schedule and the total tardiness while limiting the total 

energy cost in a reasonable range. Moreover, three different scenarios are analyzed underneath 

corresponding to different combinations of 𝛼, 𝛽 and 𝛾.  

Scenario 1: When the decision-maker only wants to consider the minimum total tardiness, the 

importance weights can be set to 𝛼=100, 𝛽=1 and 𝛾=10. The disruption to the original schedule is 

the most sensitive one among three objectives. For the problems ABZ7 and LA35, its standard 

deviation is more than the double of the standard deviation of the total energy cost. Therefore, 

when there is no specific preference between the disruption to the original schedule and the total 

energy cost, the latter one can be neglected.  

Scenario 2: When the decision-maker only wants to consider the minimum total energy cost, the 

importance weights can be set to 𝛼=1, 𝛽=100 and 𝛾=10. Although the gap of standard deviation 

between the total tardiness and the disruption to the original schedule is not so significant, the 

difference may still be obvious for some cases as the problem LA35. Thus, after the minimization 

of the total energy cost, the decision makers are advised to control the disruption to the original 

schedule prior to the total tardiness.  

Scenario 3: When the decision-maker only wants to consider the minimum disruption to the 

original schedule, the importance weights can be set to 𝛼=10, 𝛽=1 and 𝛾=100. The total tardiness 

is also very sensitive to the importance weight. For the problems MT10 and ABZ7, its standard 

deviation is quite close to the standard deviation of the disruption to the original schedule. Hence, 

a relative larger weight should be assigned to the total tardiness rather than the total energy cost in 

this case. 

6. Conclusions and Future Works 

In this paper, an investigation into minimizing the total tardiness, the total energy cost and the 

disruption to the original schedule in the job shop with new urgent arrival jobs was studied. To 

provide an adequate renewed scheduling plan in a reasonable time, a dual heterogeneous island 

parallel GA executed simultaneously on different parallel platforms was adopted. This design 

consisted of a cellular GA on GPUs and a classic GA on a multi-core CPU which was totally 

compliant with the underlying architectures of two-level parallelization. To improve the 

performance of the utilized GAs, the Taguchi method was used to calibrate their parameters firstly 

in the evaluation. Afterwards, the proposed method presented that it could obtain better solutions 

for solving six large size energy aware JSP through the integration of advantages from two different 

islands. In the meantime, it decreased the execution time obviously because of the simultaneously 

parallel execution on the host and the device while indicating the significance of computation 

capability balance between two sides. Concerning the EDJSP in the case study, the best-found 

solution of the updated schedule was shown by the Gantt chart. Compared with the original 

schedule, the processing time of some operations was significantly decreased. Finally, an 

experiment was carried to analyze the relationship among three objectives with different 
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importance weights. After a discussion around three scenarios, some useful suggestions were made 

for industrial practice. 

In the future, the Pareto optimal solution will be considered to solve the dynamic energy aware 

shop scheduling problems. It can be easily found in the literature that the Pareto optimal solution 

is a common approach to deal with the multi-objective optimization problems, apart from the linear 

combination method. The ranking and crowding mechanisms from the NSGA II [50] are the mostly 

used strategy in the area. However, the non-dominated set of solutions managed during the 

optimization procedure is generally structured as the centralized Pareto front [26, 27]. This strategy 

is hard to achieve parallelism in the population level. On the other hand, any partial parallelization 

on GPUs may lead to frequent communication overheads and offset the effectiveness. Therefore, 

developing a fine-grained Pareto based approach mapping onto GPUs underlying architecture and 

achieving the full parallelization deserves further study.  
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