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Abstra
t

This paper addresses the problem of planning paths for an elasti
 obje
t from an initial to

a �nal 
on�guration in a stati
 environment. It is assumed that the obje
t is manipulated by

two a
tuators and that it does not tou
h the obsta
les in its environment at any time. The

obje
t may need to deform in order to a
hieve a 
ollision-free path from the initial to the �nal


on�guration. Any required deformations are automati
ally 
omputed by our planner a

ording

to the prin
iples of elasti
ity theory fromme
hani
s. The problem 
onsidered in this paper di�ers

signi�
antly from that of planning for a rigid or an arti
ulated obje
t. In the �rst part of the

paper we point out these di�eren
es and highlight the reasons that make planning for elasti


obje
ts an extremely diÆ
ult task. We then present a randomized algorithm for 
omputing


ollision-free paths for elasti
 obje
ts under the above-mentioned restri
tions of manipulation.

The paper in
ludes a number of experimental results. Our work is motivated by the need to


onsider the physi
al properties of obje
ts while planning and has appli
ations in industrial

problems, in maintainability studies, in virtual reality environments, and in medi
al surgi
al

settings.

1 Introdu
tion and Motivation

The problem of planning a path for a robot 
onsisting of one or more rigid obje
ts has been

studied extensively over the last de
ade [27, 36℄. Today several planners exist that 
an eÆ
iently

produ
e paths for high dimensional robots (obje
ts) moving in 
omplex environments [25, 28, 36℄.

Despite the very large amount of work on the above problem, there exists almost no work on

planning paths for obje
ts that 
an deform. In this paper we dis
uss the reasons limiting the

development of planners that take the physi
al properties of the manipulated obje
ts into a

ount.

We then propose a solution for a restri
ted version of the problem.

We illustrate the problem examined in this paper with an example. Consider the s
enario of

Figure 1, where the ends of a 
exible plate need to be pla
ed in two hinges lo
ated on the side

walls of a polyhedral box. The box is open from above and a top view is shown. The bottom part

�

Author's present address: CNRS-LAAS, 7, avenue du Colonel Ro
he, 31077 Toulouse C�edex, Fran
e.
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Figure 1: Snapshots along the path of an elasti
 plate 
omputed by our planner. The box is shown

from above and the bottom part of the box has been removed for display purposes. The plate is

manipulated from above by two a
tuators that grasp its opposite short sides. The a
tuators are

not shown in the �gure.

of the box has been removed for visualization purposes. Two a
tuators (not shown in the �gure)

hold the two opposite short sides of the plate from above. We need the a
tuators to 
ommuni
ate

energy to the plate, deform it, and manipulate it inside the box. We require that the plate does

not tou
h the environment obsta
les at any time. We also assume that the plate possesses linear

elasti
 properties (is, for example, a sheet of metal). The main property of an elasti
 obje
t is that

after a deformation, it tends to re
over its undeformed shape. A

ording to elasti
ity theory from

me
hani
s, when an elasti
 obje
t is subje
ted to external 
onstraints, it will end up with a shape

that minimizes its elasti
 energy. This is a key point for the work presented in this paper. Our

planner automati
ally 
omputes the path shown in Figure 1. The path 
onsists of 
on�gurations

at whi
h the elasti
 energy of the plate is minimized. Hen
e ea
h of these 
on�gurations des
ribes

a shape of the plate that will be observed in pra
ti
e. Elasti
ity limits are also respe
ted so that

the plate is not deformed permanently during the manipulation task. Our planner 
ould be used

to test the feasibility of performing the task shown in Figure 1 without permanently damaging the

plate. Another example 
omputed by our planner is shown in Figure 2, where a metalli
 belt is

pla
ed in a 
ar assembly.

In this paper we do not plan the motion of the a
tuators. We only 
onsider their e�e
t on the

manipulated obje
t. Hen
e, our work is similar in spirit to the work done in assembly sequen
ing

and assembly maintainability studies where removal paths for assembly parts are 
omputed without

taking into a

ount the tools required to perform the removal [17, 63℄. In assembly planning, as

in our 
ase, reasoning about the required tools 
ompli
ates the problem to a degree that is very
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Figure 2: Snapshots along a path 
omputed by our planner for positioning a metalli
 belt in a pipe

assembly of a 
ar. The a
tuators, not shown in the �gure, grasp the two opposite short ends of the

belt. At its �nal 
on�guration the belt is around the main 
ylinder.

hard to address [64℄. However, in both problem domains the information that is a
quired without

planning for the a
tuators is very useful as it 
an be used for feasibility studies and for testing

the quality of produ
t designs [17, 24℄. As our understanding of the problem advan
es, it may be

possible to 
onsider the motion of the a
tuators. This topi
 is beyond the s
ope of the present

paper.

The general problem of planning for deformable obje
ts is a very important and extremely


hallenging problem. A

ording to our 
urrent understanding, the general problem 
an hardly

be addressed with the present state of the art in motion planning. The reasons are explained in

Se
tions 2 and 4. Our work on a restri
ted version of the problem is a step in the dire
tion of

taking into a

ount the physi
al properties of obje
ts in planning appli
ations. Several important

appli
ations 
ould bene�t from planners that a

ount for the physi
al properties of the manipulated

obje
ts. For example, in industrial settings there is a need to handle sheets of metal [46℄, pipes that


an bend [54℄, and 
ables [45℄. In assembly maintainability studies done with virtual prototyping,

planning is used to 
ompute a removal path for a part from an assembly, given only the CAD model

of the assembly [17℄. The 
exibility of the part needs to be 
onsidered as engineers use deformable

parts to produ
e 
ompa
t assemblies [16℄. In medi
al and surgi
al pro
edures, 
exible 
atheters

are inserted in human vessels [5, 60℄. A

urate planning studies may help in 
hoosing the size and

properties of the 
atheter used. In 
omputer-assisted pharma
euti
al drug design, path planning

te
hniques are used to 
ompute paths for drug mole
ules to their do
king sites [53℄. In that 
ontext,
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the rigorous treatment of the physi
al properties of the drug mole
ule, expressed by its internal

energy, is 
ru
ial for obtaining sequen
es that are of low-energy and 
an thus be en
ountered in

nature. Last but not least, several appli
ations exist in domains like 
omputer generated animation

and virtual environments where the physi
al properties of obje
ts need to be 
onsidered for the


reation of realisti
 motions.

Contribution In the �rst part of this paper we give a pre
ise de�nition of the planning problem

we address in our work. To our knowledge su
h a de�nition has not appeared before. We 
arefully

examine the di�erent 
omponents of the planning problem before arriving to the statement of the

problem. Our dis
ussion reveals many of the diÆ
ulties of planning for deformable obje
ts. The


on�guration of an elasti
 obje
t is in general in�nite-dimensional and 
annot be represented by a

ve
tor as in the 
lassi
al 
ontext of path planning. This raises approximation issues when repre-

senting the shape of the obje
t. Although elasti
ity theory is fairly well understood in me
hani
s

[12, 42, 43℄, its in
orporation in a planning framework is a non-trivial task. We will show that it is


omputationally very expensive to express the elasti
 energy in terms of geometri
 representations

from geometri
 modeling and that it is even more expensive to minimize the value of the energy

fun
tion over the free parameters of shape.

The main part of this paper des
ribes a randomized planning algorithm that 
an 
ompute

planning paths for elasti
 obje
ts that are manipulated in a rather general way. Our algorithm

is in
uen
ed by the probabilisti
 roadmap approa
h to motion planning [35℄. Note that in the

version of the problem that we address in this paper, the obje
t does not have any 
onta
t with the

environment obsta
les. This enables us to de
ouple the deformation and the position of the obje
t

and arrive to a novel algorithm to 
ompute legal paths. We have implemented our algorithm and

present examples with two dimensional and three dimensional obje
ts.

In our work we blend ideas from me
hani
s/physi
s (energy models for elasti
ity or other phys-

i
al properties), geometri
 modeling (representations of 
urves and surfa
es), and path planning

for high-dimensional problems. Our developed planner 
an also be regarded as a test-bed for inves-

tigating several novel issues that arise in the 
ontext of planning with deformable obje
ts. These

in
lude (a) a
quiring a

urate but 
omputationally eÆ
ient energy models for the manipulated ob-

je
t, (b) understanding the impli
ations of using di�erent geometri
 representations for the obje
t,

(
) studying the attainable deformations of the obje
t under manipulation 
onstraints, (d) devising

algorithms for planning low-energy paths between 
on�gurations with di�erent deformations, (e)

investigating approa
hes for eÆ
ient 
ollision 
he
king when the shape of the obje
t 
hanges, (f)

developing methods for improving the overall quality of the 
omputed path, and many others.

Parts of our work on planning for elasti
 obje
ts have been presented in [4, 29, 33℄. In this

paper we unify and extend previous results and show how our planning method 
an be used without

signi�
ant 
hanges to plan for a variety of problems.

Organization Se
tion 2 de�nes the problem we will 
onsider in the rest of the paper. We


arefully point out the di�eren
es of our problem 
ompared to the traditional motion planning

problem. Our dis
ussion raises issues related to the geometri
 representation of elasti
 obje
ts, the


al
ulation of elasti
 energy given a geometri
 model, the allowable manipulation 
onstraints and

the estimation of stable equilibrium 
on�gurations, whi
h are all examined in Se
tion 2. We give
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related work in Se
tion 3. We deemed this ne
essary as the dis
ussion of the di�erent 
omponents

of the problem in Se
tion 2 justi�es why we looked into the roboti
s, me
hani
s, geometri
 modeling

and graphi
s 
ommunities for related work. In Se
tion 4 we present a randomized algorithm for

our problem. In Se
tion 5, we present three appli
ations of our algorithm to di�erent obje
ts with

di�erent manipulation 
onstraints and di�erent geometri
 representations. We report experimental

results for these appli
ations. We dis
uss in Se
tion 6 the 
omputationally expensive parts of our

framework and its limitations. We 
on
lude by des
ribing several open problems.

2 De�nition of the Planning Problem for Elasti
 Obje
ts Under Manipulation

Constraints

In this se
tion, we des
ribe all the 
omponents required to de�ne the problem of path planning

for elasti
 obje
ts under manipulation 
onstraints 
onsidered in this paper. Be
ause of the la
k of

de�nitions in Se
tion 1 of this paper, the problem was illustrated with an example.

In the 
lassi
al 
ontext of path planning, the robot 
onsists of a set of rigid obje
ts 
onne
ted to

ea
h other by joints. The 
on�guration spa
e of su
h a system is �nite-dimensional. For holonomi


systems su
h as manipulator arms, a motor is asso
iated to ea
h degree of freedom, making any

motion in a 
onne
ted part of the free 
on�guration spa
e feasible [36℄. In the 
ase of nonholonomi


systems su
h as mobile robots, the number of a
tuators is less than the dimension of the 
on�gu-

ration spa
e. However, in spite of the kinemati
 
onstraints, if the system is fully 
ontrollable, the

existen
e of a feasible path is equivalent to the existen
e of any 
ollision-free path [47℄.

When dealing with deformable obje
ts, the 
on�guration spa
e of su
h an obje
t 
an be in�nite

dimensional. In this 
ase, the existen
e of a free path does not imply the existen
e of an energet-

i
ally feasible path. The deformation of an elasti
 obje
t in the 
ontext of our work is 
ontrolled

by two a
tuators whi
h 
onstraint the position of a subset of the points of the obje
t. The obje
t

ends up at a stable equilibrium 
on�guration whi
h minimizes its elasti
 energy a

ording to the

theory of elasti
ity from me
hani
s [42℄. We assume that only the a
tuators are responsible for

the deformations; the obje
t is not allowed to 
ome in 
onta
t with the environment obsta
les and

gravity by itself 
an not deform the obje
t. First, we de�ne the notion of 
on�guration. Then, we

de�ne the elasti
 energy of a 
on�guration using lo
al deformation �elds. We introdu
e manipula-

tion 
onstraints and we give a de�nition for stable equilibrium 
on�gurations. The 
omputation of

equilibrium 
on�gurations is a 
entral operation when planning paths for elasti
 obje
ts. We also

introdu
e elasti
ity limits in the material that restrain the set of 
on�gurations that we 
an rea
h

without permanently deforming (and thus damaging) the obje
t. Finally, we state the problem of


ollision-free path planning for elasti
 obje
ts 
onsidered in this paper.

2.1 Con�guration

At its rest 
on�guration q

0

, an elasti
 obje
t o

upies a volume V

0

� R

3

. A 
on�guration q of

the obje
t 
orresponds to a di�eomorphism

1

'

q

from V

0

to V

q

� R

3

, mapping points in the rest


on�guration q

0

to their positions at 
on�guration q. V

q

= '

q

(V

0

) is the volume o

upied by the

obje
t at 
on�guration q. If x 2 V

0

is a point in the rest 
on�guration, we denote by T

x

'

q

the

1

A di�eomorphism is a smooth one to one mapping with smooth inverse.
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di�erential of '

q

at x. In the same way as '

q

maps points from 
on�gurations q

0

to q, T

x

'

q

maps

ve
tors from q

0

to q. In general the 
on�guration of an elasti
 obje
t 
an be in�nite dimensional

and 
an not be represented by a ve
tor. The di�erential enables us to de�ne the lo
al deformation

of the obje
t around x as des
ribed in the next paragraph.

2.2 Lo
al Deformation Field

The deformation of an obje
t is de�ned by a �eld of lo
al deformations over the volume of

the obje
t. By de�nition, a rigid-body transformation keeps the inner produ
t between any pair

of ve
tors un
hanged. Thus it seems natural that the lo
al deformation about any point of the

obje
t is measured by the variation of the inner produ
t about this point, as stated by the following

de�nition.

De�nition 1 (Lo
al Deformation)

Let q be a 
on�guration. Let x 2 V

0

be a point in the rest 
on�guration q

0

and X = '

q

(x) be

the same point in 
on�guration q. For any ve
tors u and v at x, the images of these ve
tors in


on�guration q are the ve
tors U = T

x

'

q

(u) and V = T

x

'

q

(v) at X. The symmetri
 bilinear form

e(x) de�ned on R

3

�R

3

by

e(x) : (u; v)!

1

2

((U jV )� (ujv));

where (:j:) denotes the inner produ
t, is the lo
al deformation at x and it is also 
alled the Green

Lagrange strain tensor at x. We identify e(x) with its symmetri
 matrix in the lo
al frame de�ned

on the rest 
on�guration q

0

: e(x) =

1

2

(T

x

'

>

q

T

x

'

q

� I

3

), where I

3

is the identity matrix.

Noti
e that if '

q

is a rigid-body transformation, then for all x 2 V

0

, T

x

'

q

is a rotation,

T

x

'

>

q

T

x

'

q

= I and then e(x) = 0. From the above de�nition, it is straightforward that two


on�gurations di�ering by a rigid-body transformation de�ne the same Green Lagrange strain ten-

sor �eld. The Green Lagrange strain tensor is used to de�ne the elasti
 energy of a 
on�guration.

2.3 Elasti
ity

Although the planner in this paper 
ould be adapted to di�erent types of me
hani
al behavior,

we fo
us on the 
ase of elasti
ity whi
h is the most 
ommon 
lass of me
hani
al models arising in

real-world appli
ations. Indeed, elasti
ity is 
losely related to reversibility of deformations. In a

planning 
ontext, it is reasonable to expe
t that the shape of the obje
t will not be a�e
ted at the

end of the manipulation task.

Elasti
ity is a property of the material of an obje
t. At ea
h point x 2 V

0

it de�nes a s
alar

fun
tion  
alled density of elasti
 energy

2

. The latter depends only on the lo
al deformation

e(x) at x. By integrating this lo
al energy fun
tion over the domain of the obje
t V

0

, we obtain a

fun
tional over the 
on�guration spa
e. The value of this fun
tional for any 
on�guration is 
alled

elasti
 energy

E

el

(q) =

Z

V

0

 (x; e(x))dx: (1)

2

The density of elasti
 energy is an energy per unit of volume.
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Figure 3: Manipulating an obje
t 
onsists in 
onstraining the position of a given subset V

p

0

of points of the

obje
t. This is done by grasping the obje
t with a
tuators. For a given position m of the a
tuators, these

points are moved to X

m

(V

p

0

). The position of the other points of the obje
t should be su
h that the elasti


energy of the obje
t is minimized.

The variable x of fun
tion  a

ounts for the fa
t that the material may not be homogeneous and

that the relation between the lo
al deformation and the density of elasti
 energy may vary within

the material.

Homogeneous Isotropi
 Linear Elasti
 Material For the purposes of this paper we 
onsider

obje
ts that are made from a homogeneous isotropi
 linear elasti
 material. This is a very 
ommonly

used model in me
hani
s sin
e it perfe
tly des
ribes materials like metals or 
omposite materials.

For these materials, the density of elasti
 energy is given by the following equation [12℄:

 (e) =

E�

2(1 + �)(1� 2�)

(tr e)

2

+

E

2(1 + �)

tr e

2

; (2)

where tr is the tra
e operator. E and � are respe
tively 
alled Young modulus and Poisson ratio

and depend on the material of the obje
t. These 
onstants are known for a great variety of materials.

The main property of an elasti
 obje
t is that after deformation, it tends to re
over its unde-

formed shape. The undeformed shape has zero elasti
 energy. More generally, when subje
ted to

external 
onstraints, the elasti
 obje
t will end up with a shape that minimizes its internal energy.

In the following paragraphs, we de�ne manipulation 
onstraints and des
ribe how to 
ompute the

e�e
t of manipulation on the shape of the obje
t.
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2.4 Manipulation Constraints

In our planning framework, the obje
t is typi
ally grasped by two a
tuators and deformed by

their a
tion. Our de�nition of manipulation 
onstraints is fairly general. The a
tuators 
onstrain

a subset V

p

0

� V

0

of points of the obje
t (see Figure 3). Let us denote by M the set of possible

pla
ements of the a
tuators relative to V

0

. A pla
ement m 2 M of the a
tuators 
onstrains the

position of points in V

p

0

de�ning a mapping X

m

from V

p

0

to R

3

. The manipulation 
onstraint m

de�nes a subset of 
on�gurations as follows.

De�nition 2 (Spa
e of Con�gurations Fitting a Manipulation Constraint)

Given a manipulation 
onstraint m, we denote by C

m

� C the subset of 
on�gurations satisfying:

8x 2 V

p

0

; '

q

(x) = X

m

(x):

C

m

is 
alled the subspa
e of 
on�gurations �tting m.

The subspa
e of 
on�gurations �tting a manipulation 
onstraint is still in�nite-dimensional.

We do not 
onsider the dynami
 e�e
ts of the motion. We assume that the motion is slow enough

to 
onsider quasi-stati
 paths. This means that along the motion, the obje
t will stay in stable

equilibrium 
on�gurations at all times.

2.5 Stable Equilibrium Con�gurations

De�nition 3 (Stable Equilibrium Con�guration)

A 
on�guration �tting the manipulation 
onstraint m 2M is a stable equilibrium 
on�guration i�

it is a lo
al minimum of the elasti
 energy over the subspa
e C

m

of 
on�gurations �tting m.

Besides 
onstraining the position of a subset of points of the obje
t, manipulation 
an also


onsist in applying for
es to the obje
t. In this 
ase, the stable equilibrium 
on�gurations are those

that minimize the sum of the elasti
 energy and the potential energy of the for
es. In order not

to a�e
t the me
hani
al properties of the obje
t, we need to restri
t allowable deformations as

des
ribed now.

2.6 Admissible Con�gurations

If we apply large deformations to an elasti
 material, the shape of the obje
t in its rest 
on�g-

uration is di�erent before and after the deformation. The relation between the lo
al deformation

�eld and the density of elasti
 energy is also di�erent before and after the deformation. The en-

ergy of the rest 
on�guration is not anymore zero be
ause of internal 
onstraints appearing in the

material. This phenomenon has been studied extensively in me
hani
s and is generally 
alled elasto-

plasti
ity. When manipulating obje
ts, we want to avoid deformations that a�e
t the initial state

of the material. For this reason, we stay within the elasti
ity limit of the material. The elasti
ity

limit is 
hara
terized at ea
h point x 2 V

0

by a open subset of values of the Green Lagrange strain

tensor e that 
ontains e = 0. This open subset depends on the material and 
an be determined by

me
hani
al tests [12℄.
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De�nition 4 (Admissible Con�guration)

We 
all admissible 
on�guration any 
on�guration q for whi
h e(x) is in the elasti
ity limit for any

x 2 V

0

.

2.7 The Planning Problem

Unlike in the 
lassi
al 
ontext of path planning, any 
ollision-free 
ontinuous 
urve between two


on�gurations is not ne
essarily a solution to the path planning problem between these 
on�gura-

tions. The problem has to be rede�ned in the 
ontext of elasti
ity.

De�nition 5 (Path Planning for Elasti
 Obje
ts Under Manipulation Constraints)

Let C

free

be the spa
e of 
ollision-free 
on�gurations of an elasti
 obje
t. Let q

1

and q

2

be two free

stable equilibrium 
on�gurations. A 
ontinuous 
urve �(s) 2 C

free

; s 2 [0; 1℄ 
onne
ting q

1

to q

2

is

a solution of the path planning problem between q

1

and q

2

if and only if the following 
onditions

are satis�ed

� manipulability: ea
h 
on�guration along the path satis�es the imposed manipulation 
on-

straints, 8s 2 [0; 1℄;9m 2M;�(s) 2 C

m

,

� quasi-stati
ity: 8s 2 [0; 1℄;�(s) is a stable equilibrium 
on�guration (De�nition 3), and

� elasti
 admissibility: 8s 2 [0; 1℄;�(s) is an admissible 
on�guration (De�nition 4).

A 
ollision-free path satisfying the above 
onstraints is 
alled an admissible quasi-stati
 
ollision-free

path between q

1

and q

2

.

The 
omputation of admissible quasi-stati
 
ollision-free paths is the fo
us of the rest of this

paper. In order to solve the problem in pra
ti
e we propose to use a representation of the obje
t

from geometri
 modeling and approximate the possibly in�nite dimensional 
on�guration spa
e of

the problem by a �nite dimensional one. We express the elasti
 energy in terms of the 
hosen

geometri
 representation. Our manipulation 
onstraints restri
t the values of some parameters of

the geometri
 representation while the values of the rest are found by minimizing the elasti
 energy

of the obje
t. These issues are further dis
ussed in Se
tion 4 where a randomized algorithm for the

problem is presented.

3 Related Work

It is 
lear from Se
tion 2 that our work 
ombines topi
s from various dis
iplines. While planning

has been studied in roboti
s issues relating to deformable obje
ts have been studied mostly in the

areas of me
hani
s, geometri
 modeling, and graphi
s. We brie
y survey related work in ea
h of

the above areas.

Roboti
s In this paper we deal with high dimensional planning problems (more than 6 degrees of

freedom). Hen
e we only survey methods that 
an plan for high dimensional systems. An extensive

dis
ussion of te
hniques that apply to low dimensional problems 
an be found in [36℄. Due to the
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omputational 
omplexity of the planning problem [36℄, all planners that have been developed for

high dimensional systems during the last de
ade have traded 
ompleteness for speed and simpli
ity

(for a dis
ussion see [28℄).

The Randomized Path Planner (RPP) [7℄ is based on the use arti�
ial potential �elds 
oupled

with randomization. RPP applies a potential de�ned a
ross the workspa
e to several points on

the robot, indu
ing a potential in the 
on�guration spa
e. The planner employs random walks to

es
ape lo
al minima and sear
h for the goal 
on�guration. Ariadne's 
lew algorithm [44℄ 
onsiders

the initial 
on�guration as a landmark. The algorithm in
rementally builds a tree of feasible paths

using geneti
 optimization to sear
h for a 
ollision-free path from one of the landmarks to a point

as far as possible from any previous landmarks. A new landmark is then pla
ed at that point. The

pro
ess 
ontinues until the goal 
on�guration 
an be 
onne
ted to the tree.

Another approa
h, whi
h is very relevant to our work in this paper, is the Probabilisti
 Roadmap

approa
h (PRM) to path planning [34, 35, 49℄. The idea behind PRM is to 
apture and represent

the 
onne
tivity of the free 
on�guration spa
e by a random network (a roadmap), whose nodes and

edges respe
tively 
orrespond to randomly sele
ted 
on�gurations, and 
ollision-free path segments.

On
e the initial and the �nal 
on�guration are 
onne
ted to this network, a path 
an be found by

graph sear
h. Several variations of PRM exist (see for example [3, 30, 18, 10, 52, 37, 11, 62, 14℄).

Other interesting planners in
lude [1, 2, 26, 32, 38, 31℄.

Although there exists eÆ
ient planners that take non-holonomi
 and kinodynami
 
onstraints

into a

ount (for example [39, 31℄), there are few 
ases where physi
al 
onstraints and planning have

been tightly 
oupled (one example is [20℄). As far as deformable robots and parts are 
on
erned,

work has been done primarily in the 
ontext of manipulation. Robots with 
exible links are now

being built sin
e they fa
ilitate 
ertain tasks (like hammering a peg into a hole) and their modeling

and 
ontrol is under development (for pointers to 
urrent work see [46℄). Re
ent papers 
onsider the

dynami
 analysis of robots with 
exible payloads su
h as two robots manipulating a 
exible metal

sheet [46℄ or a vibrating obje
t [54℄, or solve the task of inserting one end of a 
exible wire into a

hole while holding the other end [45℄. Furthermore, resear
h in snake-like robots has explored issues

related to \geometri
 me
hani
s" that are relevant to our dis
ussion [13, 48℄. For example, the work

in [48℄ des
ribes the net motion of a snake robot as a fun
tion of variations in the me
hanism's

shape variables.

Me
hani
s Me
hani
s models physi
al properties su
h as elasti
ity [12℄. Extensive tables exist

detailing the elasti
 properties of several metals and 
omposite materials. The work in [61℄ dis
usses

the 
ase of thin plates and develops an energy model for the deformation of a thin elasti
 plate

that depends only on the planar deformation and the 
urvature of the plate. We use this model in

our work. Let us note that the treatment of elasti
ity in me
hani
s is done independently of the

geometri
 representation of the obje
t. In this paper we need a geometri
 representation for the

obje
t in order to solve our planning problem in pra
ti
e. Hen
e the models of elasti
ity 
an not

be used as des
ribed in the me
hani
s �eld. We express them in terms of our 
hosen geometri


representation.

Geometri
 modeling In geometri
 modeling several representations for 
urves and surfa
es

have been developed to enable a

urate manipulation of shape while 
onsidering a relatively small

number of parameters [8, 21℄. This is very relevant to our work sin
e we use su
h models to

approximate the potentially in�nite dimensional 
on�guration spa
e of a deformable obje
t by a

�nite dimensional one. However, there is an important issue arising when using standard geometri
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representations. The fo
us in 
omputer modeling has been in providing visually realisti
 models

and little has been done to address issues like area or volume preservation. For example, geometri


representations for 
urves, su
h as splines, do not preserve the length of the 
urve when the values of

the parameters of the geometri
 representation 
hange. In our work we enfor
e length preservation

through the minimization of the elasti
 energy. A detailed dis
ussion is given in Se
tion 4. In this

paper we 
onsider B�ezier representations, spline representations and spring models for our obje
ts

and dis
uss their tradeo�s.

Graphi
s In graphi
s physi
ally based models have been proposed for deformable parts [56, 57℄.

A survey of deformable modeling in 
omputer graphi
s 
an be found in [22℄. The use of physi
al

simulation and related optimization te
hniques as a means of geometri
 intera
tion has been applied

to animation [58℄, drawing [59℄, free-form surfa
e and volume modeling [15℄, me
hani
al design [65℄,

and intera
tive mole
ular simulation [55℄. For a dis
ussion on the dynami
 simulation of non-

penetrating 
exible bodies see [6℄. Models and algorithms appropriate for the 
ollision of deformable

bodies are investigated in [19℄.

4 An Algorithm for Planning Paths for Elasti
 Obje
ts Under Manipulation

Constraints

To arrive to an algorithm for solving the problem de�ned in Se
tion 2, we need to spe
ify the

geometri
 representation of the obje
t and the way stable equilibrium 
on�gurations are 
omputed.

Ea
h of these issues is des
ribed below.

4.1 Geometri
 Representation

The spa
e C

m


an be in�nite-dimensional and �nding a 
losed form for the di�eomorphism '

q


orresponding to a minimum 
on�guration q is not always possible. For this reason, we need to

approximate the 
on�guration spa
e by a �nite-dimensional subspa
e. The goal of the geometri


representation is to substitute the 
on�guration spa
e of the part with a �nite-dimensional subspa
e

in order to represent 
on�gurations by ve
tors. In general, the latter �nite-dimensional subspa
e

is an element of a family of subspa
es approximating the 
on�guration spa
e with more and more

a

ura
y, as stated in the following de�nition.

De�nition 6 (Geometri
 Representation of C)

Let C be the 
on�guration spa
e of the 
exible obje
t. A geometri
 representation of C is a family

(G

n

); n 2 N of �nite-dimensional subspa
es of C su
h that

lim

n!1

max

q2C

d

C

(q;G

n

) = 0;

where d

C

is a distan
e in C.

Given a manipulation 
onstraint m 2M, we de�ne G

m

n

as the subspa
e G

n

\C

m

of 
on�gurations of

G

n

�tting the manipulation 
onstraint m. It is a good idea to 
hoose a geometri
 representation in

whi
h it is easy to express the parameters of the manipulation 
onstraint (see Se
tion 5). Di�erent

geometri
 representations 
an be used to model the 
on�guration spa
e of a deformable obje
t.
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The most usual ones are polynomial and �nite element representations [6, 21, 22℄. In our work we

have 
onsidered B�ezier 
urves, splines and spring models.

4.2 Computation of Stable Equilibrium Con�gurations

On
e a geometri
 representation has been 
hosen, the elasti
 energy of the obje
t is obtained by

integrating over the volume of the obje
t the density of elasti
 energy  given by Equation (2). With


ertain geometri
 representations, the 
al
ulation of the elasti
 energy 
an be done analyti
ally (see

Se
tion 5.2). In most 
ases however the integration is performed numeri
ally. The integrand of

Equation (1) is sampled on the volume of the obje
t and summed using Simpson's formula.

A manipulation 
onstraint restri
ts the position of several points on the obje
t. The position of

these points is expressed using the 
hosen geometri
 representation of the obje
t. A stable equilib-

rium 
on�guration 
orresponding to a manipulation 
onstraint is 
omputed by sear
hing for a lo
al

minimum of the elasti
 energy E

el

as de�ned in Equation (1) over the subspa
e G

m

n

, where n is


hosen a

ording to the desired a

ura
y. The 
onstrained minimization 
an be done by a variety of

methods [50, 51℄ depending on the degree of the fun
tion optimized and the availability of gradients.

In our work we use a variation of a 
onjugate gradient method [50℄ to perform the minimization.

Let us noti
e that several equilibrium 
on�gurations may �t the same manipulation 
onstraint. As

explained in Se
tion 4.3, we 
arefully 
hoose the initial 
on�guration that is subje
ted to mini-

mization to in
rease our 
han
es of obtaining qui
kly a stable 
on�guration. We also exploit the

fa
t that the 
omputed motion should be a 
ontinuous motion to deal with the potentially multiple

lo
al minima of the energy fun
tion. Ideally, one would like to have a geometri
 representation for

the obje
t that would fa
ilitate the minimization of the elasti
 energy (for example, if gradients


an be analyti
ally 
omputed this 
an speed up 
ertain minimization pro
edures). Unfortunately

none of the existing geometri
 representations have been developed with su
h a 
onsideration in

mind. Finding a geometri
 representation that 
an e�e
tively support the 
al
ulation of the elasti


energy of an obje
t is a topi
 that deserves further resear
h (see Se
tion 6).

4.3 The Path Planning Algorithm

We present an algorithm that 
omputes 
ollision-free paths 
onsisting of stable equilibrium


on�gurations. The planner assumes that the manipulation 
onstraint will not 
hange during

the motion (e.g., the obje
t will be grasped along its two opposite edges throughout the motion)

and that a parameterization of the manipulation 
onstraint is available. In our framework, we

spe
ify the motion of the a
tuators by generating appropriate values for the parameters of the

manipulation 
onstraint. As dis
ussed in the introdu
tion, we do not expli
itly 
ompute the paths

of the a
tuators. When the values of the parameters of the manipulation 
onstraint 
hange, the

shape of the elasti
 obje
t 
hanges. We 
ompute a stable equilibrium 
on�guration for the obje
t

for ea
h 
hange in the values of the parameters. In the end, we return the path of the obje
t.

Our planning algorithm builds on the PRM planner de�ned in [35℄. Given an initial and a

�nal 
on�guration that spe
ify a query, PRM builds a roadmap in the 
on�guration spa
e of the

obje
t. The roadmap initially 
ontains only the initial and the �nal 
on�gurations. The planner

iterates the following step. First, a number of free stable equilibrium 
on�guration of the obje
t

are generated at random over the 
on�guration spa
e. These are the nodes of the roadmap. Then,
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the nodes are inter
onne
ted by a lo
al planner that generates admissible quasi-stati
 paths. Ea
h

time a path is found, an edge between the 
orresponding nodes is added to the roadmap. The

above pro
ess is repeated until a solution to the planning query is found. This is a
hieved when

the initial and �nal 
on�gurations are in the same 
onne
ted 
omponent of the roadmap. A global

path is returned by sear
hing the roadmap and by 
on
atenating lo
al paths. The details of the

planner are spe
i�ed below.

A 
ru
ial element in our planner is that it de
omposes the deformation and the position of the

obje
t. This is possible sin
e we have assumed that the obje
t is not allowed to tou
h the environ-

ment obsta
les. The extension to the 
ase where deformations 
an o

ur by 
onta
t with obsta
les

is 
learly a 
hallenging problem but it is outside the s
ope of this paper. The de
omposition of

the position and the deformation of the obje
t serves a double purpose. Firstly, it fa
ilitates the


omputation of paths where the 
exible obje
t may retain the same deformation (or a few deforma-

tions). Su
h an e�e
t is desirable in pra
ti
e. Se
ondly, it addresses a 
omputational 
onsideration:

energy minimization is very time-
onsuming in our framework. By reusing minimized deformations

as many times as possible we keep the running time of our approa
h within reasonable bounds.

The Algorithm The planner builds a graph G = (V;E). Initially, V = fq

init

; q

goal

g and E = ;.

The following steps are repeated until q

init

and q

goal

are in the same 
onne
ted 
omponent of the

roadmap.

1. Node generation. A random manipulation 
onstraint m (i.e., a random 
on�guration of

the a
tuators) is generated. This is done by sele
ting values for the parameters spe
ifying

the 
onstraint uniformly at random from their allowed range. A deformation of the obje
t is


omputed by minimizing its elasti
 energy. If the resulting deformation is not admissible (Se
-

tion 2.6), another manipulation 
onstraint is 
hosen and another minimization is performed

until an admissible deformation has been 
omputed. Then random rigid-body motions are

generated and applied to the deformation, de�ning 
on�gurations with the same deformation.

Ea
h of the generated 
on�gurations is tested for 
ollision with the environment obsta
les and

is added in V only if it is 
ollision-free. This step generates N 
ollision-free 
on�gurations

with the same deformation.

2. Node 
onne
tion. Ea
h of the newly generated nodes from the previous step is tried for


onne
tion with its K 
losest neighbors in the roadmap. Distan
e in C should a

ount

both for rigid body transformation and for deformation; our parti
ular 
hoi
e is given below.

Conne
tions are performed by a deterministi
 lo
al planner whi
h generates quasi-stati
 paths

between pairs of 
on�gurations. We des
ribe the lo
al planner we use at the end of this se
tion.

If during the generation of the lo
al path, a 
ollision with the obsta
les o

urs, or the elasti
ity

limits of the obje
t's material are violated, the lo
al planner simply fails. Su

essful exe
utions

of the lo
al planner generate edges in E between the 
orresponding nodes. Note that the lo
al

path itself need not be retained as it 
an be re
omputed on demand if it is part of the global

path between q

init

and q

goal

.

3. Enhan
ement. At this step we identify 
on�gurations in V with few 
onne
tions and generate

more 
on�gurations 
lose to them in an e�ort to in
rease the 
onne
tivity of R. It is assumed

that 
on�gurations with few 
onne
tions lie in diÆ
ult parts of C

free

. A 
on�guration q 2 V
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is sele
ted with probability w(q) =

1

d

q

+1

P

N

i=1

1

d

i

+1

; where d

i

is the degree of a node, that is the

number of 
onne
tions node i has with other nodes [34℄. Then, we initiate a random walk in

C

free

from q. Keeping the deformation of the obje
t the same, we pi
k a random dire
tion in

C

free

and advan
e in this dire
tion until an obsta
le is found. Then a new dire
tion (re
e
tion)

is 
hosen and the pro
ess is repeated until (a) maximum number of steps are taken, or (b)

a maximum number of re
e
tions are generated (see [9℄ for more details on re
e
tions). The

�nal 
on�guration q

r

of the random walk is added to V . The random walk itself is added to

E and stored in the 
orresponding edge. q

r

is tried for 
onne
tion with its 
losest neighbors

as in the 
onne
tion step. A total number of M nodes are generated during the enhan
ement

step.

At the end of the above loop, q

init

and q

goal

are in the same 
onne
ted 
omponent of R. A graph

sear
h 
an yield a sequen
e of edges leading from q

init

to q

goal

. Con
atenation of the 
orresponding

lo
al paths results in a global path between the two 
on�gurations. When we sear
h R we look

for a path that minimizes the number of distin
t deformations of the nodes of V belonging to the

path. This is done for pra
ti
al purposes sin
e we wish to redu
e unne
essary deformations. The

proposed planner su�ers from all short
omings of PRM-based planners. First of all, the approa
h

is only probabilisti
ally 
omplete and a solution may not be returned even if one exists. Then the

running may 
u
tuate: in some runs a 
riti
al deformation may be dis
overed qui
kly allowing the

planner to �nd a path in a short amount of time. In other 
ases a long time may be spent before

the 
riti
al deformation is found. Several 
ru
ial 
omponents of our algorithm are des
ribed below.

Energy Minimization On
e a geometri
 representation has been 
hosen, a deformation is en-


oded by a ve
tor. The elasti
 energy thus be
omes a real fun
tion over a �nite-dimensional ve
tor

spa
e. With many geometri
 representations (e.g., B�ezier 
urves and 
ubi
 splines), the elasti


energy of a deformation 
an be expressed exa
tly with respe
t to the 
ontrol points. Su
h an

expression 
an be useful as it 
an speed up energy 
al
ulations. However it may be quite time-


onsuming to 
ompute an analyti
al expression for the elasti
 energy (for example, while for 
ubi


splines the energy and its gradient are obtained easily, for B�ezier 
urves the expression be
omes

very 
ompli
ated to 
ompute as the number of the 
ontrol point of the 
urve in
reases). Most

often we approximate the elasti
 energy fun
tion and its gradient by sampling the density of elasti


energy over the volume of the obje
t and by 
omputing numeri
ally the integral of Equation (1)

using Simpson's approximation [51℄. We typi
ally use the 
onjugate gradient method [51℄ to perform

the minimization.

The Lo
al Planner The lo
al planner needs to be eÆ
ient when 
onne
ting 
on�gurations 
lose

to ea
h other as it will be 
alled a great number of times. It also needs to be deterministi
 to avoid

storing the 
omputed paths in the roadmap.

To make our lo
al planner eÆ
ient, we exploit again the de
oupling of deformation and position

in the workspa
e. We atta
h a lo
al frame to the obje
t in su
h a way that if two 
on�gurations

have the same deformation, they have the same expression in the lo
al frame of the obje
t. Any


on�guration 
an thus be seen as a pair q = (d; r) were d is the deformation expressed in the lo
al

frame and r 2 SE(3) is the position in spa
e of the lo
al frame. We denote by D the spa
e of
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Figure 4: Manipulation 
onstraints are sampled and energy minimization is performed for ea
h sample

point m

i

. The initial deformation of ea
h minimization is 
hosen as follows. d

init

1

is the linear interpolation

between d

init

and d

goal

. d

init

2

is a linear extrapolation of [d

init

; d

1

℄. d

init

i

(i > 2) is a quadrati
 extrapolation

of [d

i�3

; d

i�2

; d

i�1

℄.

deformations expressed in the lo
al frame of the obje
t.

Let q

init

= (d

init

; r

init

) and q

goal

= (d

goal

; r

goal

) be two 
on�gurations and let m

init

and m

goal

be

their respe
tive manipulation 
onstraints expressed in the lo
al frame of ea
h 
on�guration. The

path between q

init

and q

goal

is 
omposed of a path between d

init

and d

goal

in D and a path between

r

init

and r

goal

in SE(3).

The 
ontinuous deformation between d

init

and d

goal

is found in two steps:

� The 
ontrol parameters of the deformation are the parameters of the manipulation 
onstraint.

We �rst de�ne a path between m

init

and m

goal

by linear interpolation. This linear interpola-

tion represents a 
ontinuous path for the a
tuators.

� We now dis
retize �nely the linear path between m

init

and m

goal

. Ea
h dis
retization point

de�nes values for the parameters of the manipulation 
onstraint. We 
ompute a 
on�guration

of the obje
t that 
orresponds to these values by minimizing the elasti
 energy of the obje
t.

The initial 
on�guration of the obje
t for the minimization pro
edure is extrapolated from the

deformations already 
omputed along the path (see Figure 4 for a detailed explanation). If

the value of the elasti
 energy 
an not be redu
ed below the threshold value for maintaining

elasti
 deformations, we assume that the lo
al planner fails. We 
a
he any valid paths in

deformation spa
e as they 
an be used for di�erent 
on�gurations.

To 
ompute a path in SE(3), the rigid body transformation r

goal

Æ r

�1

init

transforming r

init

into

r

goal

is en
oded by a translation ve
tor t and a rotation ve
tor r. The path between r

init

and r

goal

is simply de�ned by linear interpolation in this parameter spa
e R

6

.

To 
ompute a path in C, we �rst follow the path in SE(3), keeping the deformation un
hanged
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and then follow the path in D. In both segments 
on�gurations are sampled �nely along the path

and ea
h of them is 
he
ked for 
ollision with the environment obsta
les. If a 
ollision if found, the

lo
al planner fails. We have observed that the rigid-body motion is mu
h faster to 
ompute sin
e it

does not involve any minimizations. With our approa
h, if a 
ollision is found along the rigid-body

motion, we avoid building the path in D. Our experiments showed that the lo
al planner des
ribed

above is more eÆ
ient than a planner that simultaneously 
hanges the deformation and the rigid

body 
on�guration of the obje
t. This is the reason why we used the above lo
al planner despite

the fa
t that it is a 
onservative planner.

Distan
e Measure Our algorithm requires a distan
e measure between 
on�gurations. This

distan
e is used to sele
t the neighbors of a node and subsequently the lo
al planner is used to


onne
t neighbors. A good distan
e measure should a

ount for the probability of failure of the

lo
al planner. Sin
e the lo
al path between two 
on�gurations 
onsists �rstly of the rigid body

transformation and se
ondly of the 
hange of deformation, as des
ribed in the previous paragraph,

our distan
e measure is the sum of two distan
es

d(p; q) = d

d

(p; q) + d

r

(p; q);

where d

d

is a distan
e between deformations and d

r

is a distan
e between rigid-body motions. d

d

is de�ned as follows. Points are sampled all over the surfa
e of the obje
t in its undeformed state.

For two deformations expressed in the lo
al frame of the obje
t, we 
ompute the Eu
lidean distan
e

between ea
h 
orresponding pair of points. d

d

is de�ned to be the maximal distan
e 
omputed.

As far as d

r

is 
on
erned, we represent rigid body transformations by a rotation and translation

ve
tor and de�ne d

r

to be the Eu
lidean distan
e in R

6

. We have observed that in pra
ti
e the

above distan
e measure works well. Attempts to weight d

d

and d

r

have not yielded better results.

However we noti
ed that using just d

d

yields reasonable results.

Collision Che
king Collision 
he
king 
an be implemented using any standard 
ollision 
he
king

library. We use the RAPID library [41℄. This library takes as input 
olle
tions of triangles des
ribing

the environment and the moving obje
t. In our implementation, the obje
t is approximated by

a grid of points evenly sampled over the surfa
e of the obje
t. These points de�ne triangles that

are used by RAPID. The obsta
les are also de
omposed into triangle soups. On
e an internal

model of the obje
t and a model of the obsta
les have been 
reated by RAPID, a 
on�guration 
an

be queried for 
ollision by spe
ifying a rigid transformation for both models. The 
reation of an

internal model of the obje
t is expensive 
ompared to the a
tual 
ollision 
he
ks. By keeping the

deformation separate from the position in the workspa
e the internal model for any deformation 
an

be built on
e and reused, speeding up 
ollision 
he
king. Better algorithms for 
ollision 
he
king

for deformable obje
ts are needed and this is a subje
t of 
urrent resear
h [40℄.

5 Some Experimental Results

In this se
tion, we apply our framework to three simple deformable obje
ts. We use di�erent

types of manipulation 
onstraints and di�erent geometri
 representations in ea
h 
ase. Our goal

is to demonstrate the feasibility of our approa
h and to also show that our framework is rather
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W/2

Profile Curve S(u)

d
L

x1

x3

x2

Figure 5: Manipulation of a plate by two opposite edges. In the lo
al frame, one edge is �xed to the (0; x

2

)

axis, while the opposite edge is in the plane (O; x

1

; x

2

), parallel to x

2

at a distan
e d. The deformation is

one dimensional and 
an be represented by the pro�le 
urve S(u).

general and 
an be applied to di�erent examples without mu
h tuning. We will use our experiments

to raise interesting open questions for the problem of planning for deformable obje
ts.

5.1 Bending an Elasti
 Plate

In this example, whi
h is also des
ribed in [33℄, a re
tangular thin plate is manipulated by

grasping it at two opposite edges (see Figure 6).

Manipulation Constraint The size of the plate is L by W (see Figure 5). The grasping is

done along the two opposite long edges and these edges are always kept parallel. The a
tuators in

this 
ase 
onstrain the distan
e d � L between the two opposite edges. Hen
e, the deformation is

one-dimensional and the shape of the plate 
an be dedu
ed from the pro�le 
urve S(u) as indi
ated

in Figure 5. The dimension of the planning problem is 7 (6 degrees for the pla
ement of the plate

and one for the deformation).

Me
hani
al Model We need to be able to 
ompute the elasti
 energy of the plate with respe
t

to a deformation. Suppose the plate is made of an homogeneous isotropi
 linear elasti
 material.

In the general 
ase of a volumetri
 obje
t, the elasti
 energy, de�ned by Equation (1), is obtained

by integration over the volume of the obje
t of the density of elasti
 energy  . In the 
ase of a

thin plate manipulated as de�ned earlier, however, the lo
al deformation is 
onstant along x

2

and

a
ross the plate. The integral given in Equation (1) 
an be simpli�ed to an integral along the

pro�le 
urve and the density of elasti
 energy depends only on the stret
hing and 
urvature of the

pro�le 
urve. For the detailed 
al
ulations leading to this approximation see [61℄. Here we present

only the results of these 
al
ulations. Let h the thi
kness of the plate. In the rest 
on�guration,

the pro�le 
urve is given by

x

1

= Lu; x

3

= 0; u 2 [0; 1℄:
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(a) (b) (
)

(d) (e) (f)

Figure 6: Motion of an elasti
 plate that 
an only bend.

For a given deformation d, u of the previous relations is mapped to S(u), where S(u); u 2 [0; 1℄ is

the pro�le 
urve of deformation d. We de�ne the following 
oeÆ
ients along the pro�le 
urve:

e(u) =

1

2L

2

(kS

0

(u)k

2

� L

2

);

�(u) =

det(S

0

(u); S

00

(u))

kS

0

(u)k

3=2

:

These 
oeÆ
ients are respe
tively 
alled the stret
hing 
oeÆ
ient and the 
urvature 
oeÆ
ient. In

the above formula S

0

(u) and S

00

(u) are the �rst and se
ond derivatives of the pro�le 
urve S(u).

Let us noti
e that e(u) is the di�eren
e between the square norm of the tangent ve
tor to the pro�le


urve after and before a deformation and the di�eren
e represents the lo
al stret
hing in the plate.

In our 
ase the strain tensor (see Se
tion 2.2) is given by e = (e; �).

With the above notation and assumptions, Equation (1) be
omes:

E

el

=

EWL

2(1� �

2

)

Z

1

0

he

2

(u) +

h

3

12

�

2

(u)du; (3)

where E and � are the Young Modulus and the Poisson ratio de�ned in Se
tion 2.3. In order to

be within the elasti
ity limit and avoid permanent deformations, we bound the deformation of the

pro�le 
urve as follows:

jej < e

max

and j�j < �

max

:

To 
he
k the admissibility of a deformation with respe
t to the elasti
ity limit, we sample points

along the pro�le 
urve and 
he
k if the lo
al deformation at these points is admissible.
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Geometri
 Representation We use B�ezier 
urves to represent the pro�le 
urve. A B�ezier 
urve

is a polynomial 
urve expressed in the basis of Bernstein polynomials [21℄

S(u) =

n

X

p=0

B

p

n

(u)P

p

;

where P

0

; :::; P

n

are the 
ontrol points and B

p

n

(u) =

 

n

p

!

u

p

(1 � u)

n�p

are the Bernstein poly-

nomials. The manipulation 
onstraint is easy to express in the above geometri
 model sin
e the

endpoints of a B�ezier 
urve are the �rst and last 
ontrol points. Thus, in the lo
al frame of the

plate, they are expressed as follows:

P

0

= (0; 0); P

n

= (d; 0):

The elasti
 energy as de�ned by Equation (3) is 
omputed numeri
ally. The integrand is sampled

along the pro�le 
urve and summed using Simpson's formula. An admissible deformation is found

by minimizing the elasti
 energy over the free parameters (e.g., all 
ontrol points expe
t P

0

and

P

n

).

Experimental Results Our planner is written in C++ and our experiments were performed on

an SGI R10000. The problem shown in Figure 6 requires the thin plate to bend and go through a

U-shaped hole. Note that the environment in Figure 6 is surrounded by walls that are not drawn

in the �gure, hen
e the plate has to go through the hole to attain its goal 
on�guration. We used a

10 
ontrol point B�ezier 
urve and we assumed we are dealing with a metalli
 plate. The parameters

for the iterative step of our planner are N = 200, M = 100, and K = 40. During enhan
ement

the random walk 
onsists of a maximum of 10 re
e
tions, ea
h of whi
h 
an be 100 steps long. We

run our planner 10 di�erent times 
hanging the value of the random seed generator. The planner

reliably solved the problem all 10 times with an average running time of 22.7 min. It generated on

the average 12,500 nodes in the roadmap R. At the time when the planner su

eeded, R had an

average of 14 
omponents. Several of these were small (
ontained less than 1% of the nodes in V ).

5.2 More Complex Plate Bending

We still 
onsider the 
ase of a re
tangular thin plate manipulated by two opposite edges but

now we allow for more 
omplex manipulation.

Manipulation Constraints The manipulation 
onstraints spe
ify both the position and tangent

dire
tion of two opposite edges of the plate as shown in Figure 7. To simplify notation, we assume

that one end of the 
urve is �xed in the lo
al frame of the plate, while the position of the other

end is free. The planning problem we solve in this 
ase is 9-dimensional. Of these, 3 degrees are

needed for spe
ifying the manipulation 
onstraint and 6 are needed for the pla
ement of the plate

in its environment.

Me
hani
al Model We use the same elasti
 energy as in the former example (Equation 3).
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x1

x3

M0

1ξ ξ3( ),

θ  

Figure 7: Manipulation of a plate by two opposite edges, spe
ifying the position and tangent orientation.

In the lo
al frame of the plate, one edge is �xed to the (O; x

2

) axis, while the opposite edge, is translated

along x

1

and x

3

by respe
tively �

1

and �

3

and rotated about x

2

by �. The deformation is again represented

by the pro�le 
urve.

Geometri
 Representation To represent the pro�le 
urve, we use pseudo 
ubi
 splines [21℄.

Let us dis
retize the interval [0,1℄ into n segments of equal length, de�ning u

i

n

= i=n, i = 0; 1; :::; n.

Then a pseudo 
ubi
 spline is a C

2


urve over [0,1℄. In fa
t it is a polynomial of degree 3 over ea
h

interval [u

i

n

; u

i+1

n

℄. Given n+ 1 
ontrol points P

0

; :::; P

n

and n + 1 
ontrol ve
tors V

0

; :::; V

n

, there

is exa
tly one pseudo 
ubi
 spline verifying S(u

i

n

) = P

i

and S

0

(u

i

n

) = V

i

for any i between 0 and n.

With this representation, the manipulation 
onstraints 
an be written as follows

P

0

= (0; 0); P

n

= (�

1

; �

3

); V

1

= (a; 0); V

n

= (b 
os �; b sin �);

where a and b are free parameters. In this 
ase, the elasti
 energy (Equation (3)) and its gradient

are 
omputed exa
tly along ea
h 
ubi
 segment and the values 
orresponding to ea
h segment

are summed. An admissible deformation is found by minimizing the elasti
 energy over the free

parameters (
ontrol points, 
ontrol ve
tors, a and b).

Experimental Results The problem shown in Figure 8 was drawn from a ship assembly. A

plate is manipulated from above in a rather 
onstrained spa
e. Noti
e that the small part atta
hed

to the lower horizontal surfa
e of the box does not allow the plate to move undeformed from its

initial to its goal 
on�guration. Again, the plate needs to 
ex to arrive to its �nal 
on�guration.

The plate is modeled with a 4 
ontrol point pseudo 
ubi
 spline. Our 
ode was written in C++

and we obtained our results on an SGI R10000. The parameters of the planner were kept the same

as in the previous example: N = 200, M = 100 K = 40. During enhan
ement the random walk


onsists of a maximum of 10 re
e
tions, ea
h of whi
h 
an be 100 steps long. We run our planner

10 di�erent times 
hanging the value of the random seed generator. The average time to solve the

problem was 4 hours 12 min. The signi�
antly larger time is attributed to the following reasons.

First of all, the spa
e of deformations that needs to be explored is of higher dimension (3 against 1

in the previous problem). We need signi�
antly more time to 
ompute deformation paths be
ause

of the large number of minimizations involved. Se
ondly, the free spa
e inside the box of Figure 8

is very 
onstrained and the plate is almost as long as the box. Hen
e 
ollisions with the obsta
les

are very likely. The average number of nodes in the roadmap R that solved the problem was 33,600

and the average number of 
onne
ted 
omponents of R when the solution was found was 12. Again

many of them 
ontained less than %1 of the total nodes.
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(a) (b) (
)

(d) (e) (f)

Figure 8: Path for a metalli
 plate in a ship assembly.

5.3 Manipulating an Elasti
 Pipe

In this se
tion, we 
onsider the 
ase of an elasti
 pipe and we use a spring model to represent

the pipe. Spring models have been studied extensively in the literature, espe
ially in the 
ontext

of dynami
 simulations [19℄.

Manipulation Constraints The manipulation 
onstraints spe
ify both the position and tangent

dire
tion of the ends of the pipe. We do not allow twisting of the pipe. To simplify notation, we

assume again that one end of the pipe is �xed in its lo
al frame, while the other end is free. We

spe
ify manipulation 
onstraints as indi
ated in Figure 9. Note that in this 
ase 5 parameters are

needed to spe
ify the manipulation 
onstraints.

Me
hani
al Model and Geometri
 Representation The idea behind spring models is that

the me
hani
al behavior of the obje
t is simulated by a latti
e of mass-points 
onne
ted to ea
h

other by linear and angular springs [19℄. Ex
ept for boundary points, ea
h point is 
onne
ted to 6

neighbors by 6 linear springs and 3 angular springs (see Figure 10). A 
onstant is asso
iated with

ea
h spring and the elasti
 energy for the linear and angular springs respe
tively is of the following

form:

E

lin

=

1

2

k

lin

(l � l

0

)

2

; E

ang

=

1

2

k

ang


os

2

�;
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x2

x3

(ξ1,ξ2,ξ3)

x2

x1

x1

x3

θ

ϕ

Figure 9: Manipulation of an elasti
 pipe. One end of the pipe is atta
hed to the origin of the lo
al frame

while the position (�

1

; �

2

; �

3

) and the orientation (�; ') of the other end are spe
i�ed.

linear springs

angular springs

Figure 10: Spring model: The obje
t is de
omposed into elementary boxes. To ea
h box is asso
iated 3

linear and 3 angular springs. The elasti
 energy of these springs simulates the elasti
 energy of the asso
iated

box.

where k

lin

and k

ang

are 
onstants that represent the sti�ness of the springs. l

0

is the initial length

of the linear spring and � is the angle between two edges 
onne
ted by an angular spring. The


onstants of these springs 
an be 
omputed from the elasti
ity 
onstants in a straightforward way.

First, the homogeneity and isotropy of the pipe require that k

lin

is the same for all linear springs

and that k

ang

is the same for all angular springs. We uniformly stret
h the pipe in the x

1

dire
tion

from its undeformed shape and we equate the energy of the spring model with the elasti
 energy

of the 
orresponding 
ontinuous deformation obtained from Equations (1) and (2). If we solve for

k

lin

, we obtain:

k

lin

=

(n

1

� 1)

n

2

n

3

L

2

L

3

L

1

E(1� �)

(1 + �)(1� 2�)

;

where L

1

, L

2

and L

3

are the length, width and thi
kness of the pipe. n

1

, n

2

, and n

3

are the

numbers of points of the latti
e in the x, y, z dire
tions. To determine k

ang

, we shear the elasti


pipe and equate in a similar way the elasti
 energy of the spring model with the elasti
 energy of
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the 
ontinuous me
hani
al model. We obtain when solving for k

ang

:

k

ang

=

L

1

L

2

L

3

2(n

1

� 1)(n

2

� 1)

E

1 + �

:

For the detailed 
al
ulations we refer the reader to [4℄. A 
on�guration is a now represented by a

ve
tor of positions for ea
h of the mass-points. Manipulation 
onstraints restri
t the position of

the mass-points at the ends of the pipe. The elasti
 energy of a 
on�guration is the sum of the

energies of all the springs. An admissible deformation is found by minimizing the elasti
 energy

over the free parameters (e.g., all 
oordinates of the free mass-points).

Experimental Results In the example of Figure 11, one end of the pipe is rigidly atta
hed to

a frame while the other is manipulated. In this experiment, the spring latti
e is made of 32x3x3

points. Again our 
ode was written in C++ and we obtained our results on an SGI R10000. Note

that sin
e one end of the pipe is �xed, ea
h di�erent deformation of the obje
t represents a di�erent


on�guration. So in this 
ase, it does not make sense to generate a deformation and then 
reate

many pla
ements of that deformation. We 
reated 200 di�erent deformations/
on�gurations and

we attempted to 
onne
t ea
h of these with 40 neighbors (K = 40). In this example, we did not

even need the enhan
ement step. We obtained a path with a roadmap of 200 nodes in all of the 10

runs of our planner. It took on the average 14.2 min and the produ
ed roadmaps 
onsisted on the

average of 3 
onne
ted 
omponents. The relative high running time is due to the 
omputationally

expensive minimization. For the pipe of this example, we sele
ted and minimized 100 random


on�gurations. The mean time was 1.12 se
 with a standard deviation of 0.98 se
.

5.4 Some Comments on the Geometri
 Models Used

In this se
tion we were interested to demonstrate the versatility of our planning algorithm and

we used a di�erent geometri
 model for ea
h of the three examples we examined. Ea
h geometri


model has its advantages and disadvantages. B�ezier 
urves, for example, are very simple but the

analyti
 
omputation of the elasti
 energy is expensive when the number of 
ontrol points in
reases.

Hen
e we need to resort to an approximate 
al
ulation of energy. Cubi
 splines are very useful and

we 
an express the elasti
 energy of an obje
t in terms of their parameters very easily. We observed

however that our minimization pro
edure tends to 
onverge slowly with this representation. Still

we found 
ubi
 splines a good model and we re
ommend it for simple shapes. We also observed

that not too many 
ontrol points were needed when splines were used to represent an obje
t (see

Figure 12). Last but not least, mass spring models o�er a very versatile model for three dimensional

obje
ts but again, the elasti
 energy has to be approximated and the energy minimization tends to

be slow. Clearly, there is not a single geometri
 model that 
an be sele
ted as best for the purposes

of our work. In fa
t, available geometri
 models were not designed to support energeti
 
al
ulations.

It is an interesting open resear
h topi
 to �nd models that fa
ilitate energy 
al
ulations and use

them in the 
ontext of planning. This point is further developed in the next se
tion.
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Figure 11: Snapshots along a path of a deformable 
able whose one end is �xed to a base. The free

end is manipulated by an a
tuator (not shown in the �gure).

6 Con
luding Remarks

In this paper we investigated the problem of planning paths for elasti
 obje
ts under manipu-

lation 
onstraints. The problem di�ers signi�
antly from the traditional path planning problem in

roboti
s where only rigid or arti
ulated bodies have been 
onsidered. Our work has appli
ations

in the manipulation of 
exible plates, pipes, and 
ables in industrial settings, in virtual prototyp-

ing studies, in animation and virtual environments simulation, but also in medi
al studies and in


omputer-assisted pharma
euti
al drug design.

In the �rst part of the paper we de�ned the di�erent 
omponents of the problem 
onsidered in

this work. In the se
ond part of the paper we developed a planning framework to �nd admissible

quasi-stati
 paths for an elasti
 obje
t that is manipulated by two a
tuators and that is not allowed

to tou
h the obsta
les in its environment. Our work is a �rst step in the dire
tion of 
onsidering

obje
t 
exibility during planning and raises many interesting dire
tions for future resear
h.

One important observation in our work is that available geometri
 models for representing shape

are not well suited for expressing elasti
 energy. In most 
ases it is impossible to obtain a 
ompa
t

analyti
al expression for the elasti
 energy in terms of the parameters of the model. Even when

this is a
hieved, the model does not preserve physi
al properties of the obje
t su
h as surfa
e area
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Figure 12: Representation of the same deformation using an 8 
ontrol point B�ezier 
urve (bottom),

a 4 
ontrol point 
ubi
 spline (top) and a 97 
ontrol point 
ubi
 spline (middle). Noti
e that a 4


ontrol point 
ubi
 spline provides an a

urate representation.

or volume: when the values of the parameters of the model 
hange, physi
al quantities su
h as area

and volume 
an 
u
tuate substantially. This is not surprising given the fa
t that most geometri


models have been developed in the 
ontext of Computer-Aided Geometri
 Modeling, where the only

requirement is visual realism. It would be very bene�
ial for our work if, for example, a geometri


model 
ould guarantee that the total area of the obje
t would not 
hange when the model deforms.

It would also be very helpful if the model 
ould fa
ilitate the 
omputation of elasti
 energy and

its gradient. The topi
 is an interesting area for future resear
h. Currently, we guarantee the

preservation of physi
al quantities su
h as area and volume through the minimization of the elasti


energy whi
h is, however, very time 
onsuming.

Another related issue 
on
erns the geometri
 approximation done for representing the deforma-

tions of an obje
t. A deeper investigation is needed to understand how the geometri
 approximation

of the obje
t interferes with the 
al
ulation and minimization of elasti
 energy and hen
e with our

ability to express a

urately the di�erent deformations of the obje
t. Su
h an investigation is a

separate resear
h topi
 in itself and it is not dire
tly related to planning. For the 
ontext of our

work, it would also be desirable to develop (a) energy models that are a

urate but also eÆ
ient

to 
ompute and (b) minimization pro
edures that 
onverge fast to lo
al minima.

Let us 
on
lude by reminding that we pla
ed several restri
tions on the problem we 
onsidered

in this paper. An important one was that the obje
t is not allowed to tou
h the obsta
les in its

environment. It is 
lear that deformations 
an also be 
reated by 
onta
t with the obsta
les. In

that 
ase, we 
an not de
ompose the deformation and the pla
ement of the obje
t as we did in

this paper. Of 
ourse we 
an use the planner as is and generate a single 
on�guration at ea
h step.

With our present understanding of the problem, the 
ost of energy minimization will be prohibitive

for su
h a planner. Our 
urrent planner o�ers an ex
ellent test-bed for studying the problem. It is


lear that advan
es in many fronts will be required for the development of planners that 
an plan

eÆ
iently for deformable obje
ts.
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