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Abstrat

This paper addresses the problem of planning paths for an elasti objet from an initial to

a �nal on�guration in a stati environment. It is assumed that the objet is manipulated by

two atuators and that it does not touh the obstales in its environment at any time. The

objet may need to deform in order to ahieve a ollision-free path from the initial to the �nal

on�guration. Any required deformations are automatially omputed by our planner aording

to the priniples of elastiity theory frommehanis. The problem onsidered in this paper di�ers

signi�antly from that of planning for a rigid or an artiulated objet. In the �rst part of the

paper we point out these di�erenes and highlight the reasons that make planning for elasti

objets an extremely diÆult task. We then present a randomized algorithm for omputing

ollision-free paths for elasti objets under the above-mentioned restritions of manipulation.

The paper inludes a number of experimental results. Our work is motivated by the need to

onsider the physial properties of objets while planning and has appliations in industrial

problems, in maintainability studies, in virtual reality environments, and in medial surgial

settings.

1 Introdution and Motivation

The problem of planning a path for a robot onsisting of one or more rigid objets has been

studied extensively over the last deade [27, 36℄. Today several planners exist that an eÆiently

produe paths for high dimensional robots (objets) moving in omplex environments [25, 28, 36℄.

Despite the very large amount of work on the above problem, there exists almost no work on

planning paths for objets that an deform. In this paper we disuss the reasons limiting the

development of planners that take the physial properties of the manipulated objets into aount.

We then propose a solution for a restrited version of the problem.

We illustrate the problem examined in this paper with an example. Consider the senario of

Figure 1, where the ends of a exible plate need to be plaed in two hinges loated on the side

walls of a polyhedral box. The box is open from above and a top view is shown. The bottom part

�
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Figure 1: Snapshots along the path of an elasti plate omputed by our planner. The box is shown

from above and the bottom part of the box has been removed for display purposes. The plate is

manipulated from above by two atuators that grasp its opposite short sides. The atuators are

not shown in the �gure.

of the box has been removed for visualization purposes. Two atuators (not shown in the �gure)

hold the two opposite short sides of the plate from above. We need the atuators to ommuniate

energy to the plate, deform it, and manipulate it inside the box. We require that the plate does

not touh the environment obstales at any time. We also assume that the plate possesses linear

elasti properties (is, for example, a sheet of metal). The main property of an elasti objet is that

after a deformation, it tends to reover its undeformed shape. Aording to elastiity theory from

mehanis, when an elasti objet is subjeted to external onstraints, it will end up with a shape

that minimizes its elasti energy. This is a key point for the work presented in this paper. Our

planner automatially omputes the path shown in Figure 1. The path onsists of on�gurations

at whih the elasti energy of the plate is minimized. Hene eah of these on�gurations desribes

a shape of the plate that will be observed in pratie. Elastiity limits are also respeted so that

the plate is not deformed permanently during the manipulation task. Our planner ould be used

to test the feasibility of performing the task shown in Figure 1 without permanently damaging the

plate. Another example omputed by our planner is shown in Figure 2, where a metalli belt is

plaed in a ar assembly.

In this paper we do not plan the motion of the atuators. We only onsider their e�et on the

manipulated objet. Hene, our work is similar in spirit to the work done in assembly sequening

and assembly maintainability studies where removal paths for assembly parts are omputed without

taking into aount the tools required to perform the removal [17, 63℄. In assembly planning, as

in our ase, reasoning about the required tools ompliates the problem to a degree that is very
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Figure 2: Snapshots along a path omputed by our planner for positioning a metalli belt in a pipe

assembly of a ar. The atuators, not shown in the �gure, grasp the two opposite short ends of the

belt. At its �nal on�guration the belt is around the main ylinder.

hard to address [64℄. However, in both problem domains the information that is aquired without

planning for the atuators is very useful as it an be used for feasibility studies and for testing

the quality of produt designs [17, 24℄. As our understanding of the problem advanes, it may be

possible to onsider the motion of the atuators. This topi is beyond the sope of the present

paper.

The general problem of planning for deformable objets is a very important and extremely

hallenging problem. Aording to our urrent understanding, the general problem an hardly

be addressed with the present state of the art in motion planning. The reasons are explained in

Setions 2 and 4. Our work on a restrited version of the problem is a step in the diretion of

taking into aount the physial properties of objets in planning appliations. Several important

appliations ould bene�t from planners that aount for the physial properties of the manipulated

objets. For example, in industrial settings there is a need to handle sheets of metal [46℄, pipes that

an bend [54℄, and ables [45℄. In assembly maintainability studies done with virtual prototyping,

planning is used to ompute a removal path for a part from an assembly, given only the CAD model

of the assembly [17℄. The exibility of the part needs to be onsidered as engineers use deformable

parts to produe ompat assemblies [16℄. In medial and surgial proedures, exible atheters

are inserted in human vessels [5, 60℄. Aurate planning studies may help in hoosing the size and

properties of the atheter used. In omputer-assisted pharmaeutial drug design, path planning

tehniques are used to ompute paths for drug moleules to their doking sites [53℄. In that ontext,
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the rigorous treatment of the physial properties of the drug moleule, expressed by its internal

energy, is ruial for obtaining sequenes that are of low-energy and an thus be enountered in

nature. Last but not least, several appliations exist in domains like omputer generated animation

and virtual environments where the physial properties of objets need to be onsidered for the

reation of realisti motions.

Contribution In the �rst part of this paper we give a preise de�nition of the planning problem

we address in our work. To our knowledge suh a de�nition has not appeared before. We arefully

examine the di�erent omponents of the planning problem before arriving to the statement of the

problem. Our disussion reveals many of the diÆulties of planning for deformable objets. The

on�guration of an elasti objet is in general in�nite-dimensional and annot be represented by a

vetor as in the lassial ontext of path planning. This raises approximation issues when repre-

senting the shape of the objet. Although elastiity theory is fairly well understood in mehanis

[12, 42, 43℄, its inorporation in a planning framework is a non-trivial task. We will show that it is

omputationally very expensive to express the elasti energy in terms of geometri representations

from geometri modeling and that it is even more expensive to minimize the value of the energy

funtion over the free parameters of shape.

The main part of this paper desribes a randomized planning algorithm that an ompute

planning paths for elasti objets that are manipulated in a rather general way. Our algorithm

is inuened by the probabilisti roadmap approah to motion planning [35℄. Note that in the

version of the problem that we address in this paper, the objet does not have any ontat with the

environment obstales. This enables us to deouple the deformation and the position of the objet

and arrive to a novel algorithm to ompute legal paths. We have implemented our algorithm and

present examples with two dimensional and three dimensional objets.

In our work we blend ideas from mehanis/physis (energy models for elastiity or other phys-

ial properties), geometri modeling (representations of urves and surfaes), and path planning

for high-dimensional problems. Our developed planner an also be regarded as a test-bed for inves-

tigating several novel issues that arise in the ontext of planning with deformable objets. These

inlude (a) aquiring aurate but omputationally eÆient energy models for the manipulated ob-

jet, (b) understanding the impliations of using di�erent geometri representations for the objet,

() studying the attainable deformations of the objet under manipulation onstraints, (d) devising

algorithms for planning low-energy paths between on�gurations with di�erent deformations, (e)

investigating approahes for eÆient ollision heking when the shape of the objet hanges, (f)

developing methods for improving the overall quality of the omputed path, and many others.

Parts of our work on planning for elasti objets have been presented in [4, 29, 33℄. In this

paper we unify and extend previous results and show how our planning method an be used without

signi�ant hanges to plan for a variety of problems.

Organization Setion 2 de�nes the problem we will onsider in the rest of the paper. We

arefully point out the di�erenes of our problem ompared to the traditional motion planning

problem. Our disussion raises issues related to the geometri representation of elasti objets, the

alulation of elasti energy given a geometri model, the allowable manipulation onstraints and

the estimation of stable equilibrium on�gurations, whih are all examined in Setion 2. We give
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related work in Setion 3. We deemed this neessary as the disussion of the di�erent omponents

of the problem in Setion 2 justi�es why we looked into the robotis, mehanis, geometri modeling

and graphis ommunities for related work. In Setion 4 we present a randomized algorithm for

our problem. In Setion 5, we present three appliations of our algorithm to di�erent objets with

di�erent manipulation onstraints and di�erent geometri representations. We report experimental

results for these appliations. We disuss in Setion 6 the omputationally expensive parts of our

framework and its limitations. We onlude by desribing several open problems.

2 De�nition of the Planning Problem for Elasti Objets Under Manipulation

Constraints

In this setion, we desribe all the omponents required to de�ne the problem of path planning

for elasti objets under manipulation onstraints onsidered in this paper. Beause of the lak of

de�nitions in Setion 1 of this paper, the problem was illustrated with an example.

In the lassial ontext of path planning, the robot onsists of a set of rigid objets onneted to

eah other by joints. The on�guration spae of suh a system is �nite-dimensional. For holonomi

systems suh as manipulator arms, a motor is assoiated to eah degree of freedom, making any

motion in a onneted part of the free on�guration spae feasible [36℄. In the ase of nonholonomi

systems suh as mobile robots, the number of atuators is less than the dimension of the on�gu-

ration spae. However, in spite of the kinemati onstraints, if the system is fully ontrollable, the

existene of a feasible path is equivalent to the existene of any ollision-free path [47℄.

When dealing with deformable objets, the on�guration spae of suh an objet an be in�nite

dimensional. In this ase, the existene of a free path does not imply the existene of an energet-

ially feasible path. The deformation of an elasti objet in the ontext of our work is ontrolled

by two atuators whih onstraint the position of a subset of the points of the objet. The objet

ends up at a stable equilibrium on�guration whih minimizes its elasti energy aording to the

theory of elastiity from mehanis [42℄. We assume that only the atuators are responsible for

the deformations; the objet is not allowed to ome in ontat with the environment obstales and

gravity by itself an not deform the objet. First, we de�ne the notion of on�guration. Then, we

de�ne the elasti energy of a on�guration using loal deformation �elds. We introdue manipula-

tion onstraints and we give a de�nition for stable equilibrium on�gurations. The omputation of

equilibrium on�gurations is a entral operation when planning paths for elasti objets. We also

introdue elastiity limits in the material that restrain the set of on�gurations that we an reah

without permanently deforming (and thus damaging) the objet. Finally, we state the problem of

ollision-free path planning for elasti objets onsidered in this paper.

2.1 Con�guration

At its rest on�guration q

0

, an elasti objet oupies a volume V

0

� R

3

. A on�guration q of

the objet orresponds to a di�eomorphism

1

'

q

from V

0

to V

q

� R

3

, mapping points in the rest

on�guration q

0

to their positions at on�guration q. V

q

= '

q

(V

0

) is the volume oupied by the

objet at on�guration q. If x 2 V

0

is a point in the rest on�guration, we denote by T

x

'

q

the

1

A di�eomorphism is a smooth one to one mapping with smooth inverse.
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di�erential of '

q

at x. In the same way as '

q

maps points from on�gurations q

0

to q, T

x

'

q

maps

vetors from q

0

to q. In general the on�guration of an elasti objet an be in�nite dimensional

and an not be represented by a vetor. The di�erential enables us to de�ne the loal deformation

of the objet around x as desribed in the next paragraph.

2.2 Loal Deformation Field

The deformation of an objet is de�ned by a �eld of loal deformations over the volume of

the objet. By de�nition, a rigid-body transformation keeps the inner produt between any pair

of vetors unhanged. Thus it seems natural that the loal deformation about any point of the

objet is measured by the variation of the inner produt about this point, as stated by the following

de�nition.

De�nition 1 (Loal Deformation)

Let q be a on�guration. Let x 2 V

0

be a point in the rest on�guration q

0

and X = '

q

(x) be

the same point in on�guration q. For any vetors u and v at x, the images of these vetors in

on�guration q are the vetors U = T

x

'

q

(u) and V = T

x

'

q

(v) at X. The symmetri bilinear form

e(x) de�ned on R

3

�R

3

by

e(x) : (u; v)!

1

2

((U jV )� (ujv));

where (:j:) denotes the inner produt, is the loal deformation at x and it is also alled the Green

Lagrange strain tensor at x. We identify e(x) with its symmetri matrix in the loal frame de�ned

on the rest on�guration q

0

: e(x) =

1

2

(T

x

'

>

q

T

x

'

q

� I

3

), where I

3

is the identity matrix.

Notie that if '

q

is a rigid-body transformation, then for all x 2 V

0

, T

x

'

q

is a rotation,

T

x

'

>

q

T

x

'

q

= I and then e(x) = 0. From the above de�nition, it is straightforward that two

on�gurations di�ering by a rigid-body transformation de�ne the same Green Lagrange strain ten-

sor �eld. The Green Lagrange strain tensor is used to de�ne the elasti energy of a on�guration.

2.3 Elastiity

Although the planner in this paper ould be adapted to di�erent types of mehanial behavior,

we fous on the ase of elastiity whih is the most ommon lass of mehanial models arising in

real-world appliations. Indeed, elastiity is losely related to reversibility of deformations. In a

planning ontext, it is reasonable to expet that the shape of the objet will not be a�eted at the

end of the manipulation task.

Elastiity is a property of the material of an objet. At eah point x 2 V

0

it de�nes a salar

funtion  alled density of elasti energy

2

. The latter depends only on the loal deformation

e(x) at x. By integrating this loal energy funtion over the domain of the objet V

0

, we obtain a

funtional over the on�guration spae. The value of this funtional for any on�guration is alled

elasti energy

E

el

(q) =

Z

V

0

 (x; e(x))dx: (1)

2

The density of elasti energy is an energy per unit of volume.
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Figure 3: Manipulating an objet onsists in onstraining the position of a given subset V

p

0

of points of the

objet. This is done by grasping the objet with atuators. For a given position m of the atuators, these

points are moved to X

m

(V

p

0

). The position of the other points of the objet should be suh that the elasti

energy of the objet is minimized.

The variable x of funtion  aounts for the fat that the material may not be homogeneous and

that the relation between the loal deformation and the density of elasti energy may vary within

the material.

Homogeneous Isotropi Linear Elasti Material For the purposes of this paper we onsider

objets that are made from a homogeneous isotropi linear elasti material. This is a very ommonly

used model in mehanis sine it perfetly desribes materials like metals or omposite materials.

For these materials, the density of elasti energy is given by the following equation [12℄:

 (e) =

E�

2(1 + �)(1� 2�)

(tr e)

2

+

E

2(1 + �)

tr e

2

; (2)

where tr is the trae operator. E and � are respetively alled Young modulus and Poisson ratio

and depend on the material of the objet. These onstants are known for a great variety of materials.

The main property of an elasti objet is that after deformation, it tends to reover its unde-

formed shape. The undeformed shape has zero elasti energy. More generally, when subjeted to

external onstraints, the elasti objet will end up with a shape that minimizes its internal energy.

In the following paragraphs, we de�ne manipulation onstraints and desribe how to ompute the

e�et of manipulation on the shape of the objet.
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2.4 Manipulation Constraints

In our planning framework, the objet is typially grasped by two atuators and deformed by

their ation. Our de�nition of manipulation onstraints is fairly general. The atuators onstrain

a subset V

p

0

� V

0

of points of the objet (see Figure 3). Let us denote by M the set of possible

plaements of the atuators relative to V

0

. A plaement m 2 M of the atuators onstrains the

position of points in V

p

0

de�ning a mapping X

m

from V

p

0

to R

3

. The manipulation onstraint m

de�nes a subset of on�gurations as follows.

De�nition 2 (Spae of Con�gurations Fitting a Manipulation Constraint)

Given a manipulation onstraint m, we denote by C

m

� C the subset of on�gurations satisfying:

8x 2 V

p

0

; '

q

(x) = X

m

(x):

C

m

is alled the subspae of on�gurations �tting m.

The subspae of on�gurations �tting a manipulation onstraint is still in�nite-dimensional.

We do not onsider the dynami e�ets of the motion. We assume that the motion is slow enough

to onsider quasi-stati paths. This means that along the motion, the objet will stay in stable

equilibrium on�gurations at all times.

2.5 Stable Equilibrium Con�gurations

De�nition 3 (Stable Equilibrium Con�guration)

A on�guration �tting the manipulation onstraint m 2M is a stable equilibrium on�guration i�

it is a loal minimum of the elasti energy over the subspae C

m

of on�gurations �tting m.

Besides onstraining the position of a subset of points of the objet, manipulation an also

onsist in applying fores to the objet. In this ase, the stable equilibrium on�gurations are those

that minimize the sum of the elasti energy and the potential energy of the fores. In order not

to a�et the mehanial properties of the objet, we need to restrit allowable deformations as

desribed now.

2.6 Admissible Con�gurations

If we apply large deformations to an elasti material, the shape of the objet in its rest on�g-

uration is di�erent before and after the deformation. The relation between the loal deformation

�eld and the density of elasti energy is also di�erent before and after the deformation. The en-

ergy of the rest on�guration is not anymore zero beause of internal onstraints appearing in the

material. This phenomenon has been studied extensively in mehanis and is generally alled elasto-

plastiity. When manipulating objets, we want to avoid deformations that a�et the initial state

of the material. For this reason, we stay within the elastiity limit of the material. The elastiity

limit is haraterized at eah point x 2 V

0

by a open subset of values of the Green Lagrange strain

tensor e that ontains e = 0. This open subset depends on the material and an be determined by

mehanial tests [12℄.
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De�nition 4 (Admissible Con�guration)

We all admissible on�guration any on�guration q for whih e(x) is in the elastiity limit for any

x 2 V

0

.

2.7 The Planning Problem

Unlike in the lassial ontext of path planning, any ollision-free ontinuous urve between two

on�gurations is not neessarily a solution to the path planning problem between these on�gura-

tions. The problem has to be rede�ned in the ontext of elastiity.

De�nition 5 (Path Planning for Elasti Objets Under Manipulation Constraints)

Let C

free

be the spae of ollision-free on�gurations of an elasti objet. Let q

1

and q

2

be two free

stable equilibrium on�gurations. A ontinuous urve �(s) 2 C

free

; s 2 [0; 1℄ onneting q

1

to q

2

is

a solution of the path planning problem between q

1

and q

2

if and only if the following onditions

are satis�ed

� manipulability: eah on�guration along the path satis�es the imposed manipulation on-

straints, 8s 2 [0; 1℄;9m 2M;�(s) 2 C

m

,

� quasi-statiity: 8s 2 [0; 1℄;�(s) is a stable equilibrium on�guration (De�nition 3), and

� elasti admissibility: 8s 2 [0; 1℄;�(s) is an admissible on�guration (De�nition 4).

A ollision-free path satisfying the above onstraints is alled an admissible quasi-stati ollision-free

path between q

1

and q

2

.

The omputation of admissible quasi-stati ollision-free paths is the fous of the rest of this

paper. In order to solve the problem in pratie we propose to use a representation of the objet

from geometri modeling and approximate the possibly in�nite dimensional on�guration spae of

the problem by a �nite dimensional one. We express the elasti energy in terms of the hosen

geometri representation. Our manipulation onstraints restrit the values of some parameters of

the geometri representation while the values of the rest are found by minimizing the elasti energy

of the objet. These issues are further disussed in Setion 4 where a randomized algorithm for the

problem is presented.

3 Related Work

It is lear from Setion 2 that our work ombines topis from various disiplines. While planning

has been studied in robotis issues relating to deformable objets have been studied mostly in the

areas of mehanis, geometri modeling, and graphis. We briey survey related work in eah of

the above areas.

Robotis In this paper we deal with high dimensional planning problems (more than 6 degrees of

freedom). Hene we only survey methods that an plan for high dimensional systems. An extensive

disussion of tehniques that apply to low dimensional problems an be found in [36℄. Due to the
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omputational omplexity of the planning problem [36℄, all planners that have been developed for

high dimensional systems during the last deade have traded ompleteness for speed and simpliity

(for a disussion see [28℄).

The Randomized Path Planner (RPP) [7℄ is based on the use arti�ial potential �elds oupled

with randomization. RPP applies a potential de�ned aross the workspae to several points on

the robot, induing a potential in the on�guration spae. The planner employs random walks to

esape loal minima and searh for the goal on�guration. Ariadne's lew algorithm [44℄ onsiders

the initial on�guration as a landmark. The algorithm inrementally builds a tree of feasible paths

using geneti optimization to searh for a ollision-free path from one of the landmarks to a point

as far as possible from any previous landmarks. A new landmark is then plaed at that point. The

proess ontinues until the goal on�guration an be onneted to the tree.

Another approah, whih is very relevant to our work in this paper, is the Probabilisti Roadmap

approah (PRM) to path planning [34, 35, 49℄. The idea behind PRM is to apture and represent

the onnetivity of the free on�guration spae by a random network (a roadmap), whose nodes and

edges respetively orrespond to randomly seleted on�gurations, and ollision-free path segments.

One the initial and the �nal on�guration are onneted to this network, a path an be found by

graph searh. Several variations of PRM exist (see for example [3, 30, 18, 10, 52, 37, 11, 62, 14℄).

Other interesting planners inlude [1, 2, 26, 32, 38, 31℄.

Although there exists eÆient planners that take non-holonomi and kinodynami onstraints

into aount (for example [39, 31℄), there are few ases where physial onstraints and planning have

been tightly oupled (one example is [20℄). As far as deformable robots and parts are onerned,

work has been done primarily in the ontext of manipulation. Robots with exible links are now

being built sine they failitate ertain tasks (like hammering a peg into a hole) and their modeling

and ontrol is under development (for pointers to urrent work see [46℄). Reent papers onsider the

dynami analysis of robots with exible payloads suh as two robots manipulating a exible metal

sheet [46℄ or a vibrating objet [54℄, or solve the task of inserting one end of a exible wire into a

hole while holding the other end [45℄. Furthermore, researh in snake-like robots has explored issues

related to \geometri mehanis" that are relevant to our disussion [13, 48℄. For example, the work

in [48℄ desribes the net motion of a snake robot as a funtion of variations in the mehanism's

shape variables.

Mehanis Mehanis models physial properties suh as elastiity [12℄. Extensive tables exist

detailing the elasti properties of several metals and omposite materials. The work in [61℄ disusses

the ase of thin plates and develops an energy model for the deformation of a thin elasti plate

that depends only on the planar deformation and the urvature of the plate. We use this model in

our work. Let us note that the treatment of elastiity in mehanis is done independently of the

geometri representation of the objet. In this paper we need a geometri representation for the

objet in order to solve our planning problem in pratie. Hene the models of elastiity an not

be used as desribed in the mehanis �eld. We express them in terms of our hosen geometri

representation.

Geometri modeling In geometri modeling several representations for urves and surfaes

have been developed to enable aurate manipulation of shape while onsidering a relatively small

number of parameters [8, 21℄. This is very relevant to our work sine we use suh models to

approximate the potentially in�nite dimensional on�guration spae of a deformable objet by a

�nite dimensional one. However, there is an important issue arising when using standard geometri

10



representations. The fous in omputer modeling has been in providing visually realisti models

and little has been done to address issues like area or volume preservation. For example, geometri

representations for urves, suh as splines, do not preserve the length of the urve when the values of

the parameters of the geometri representation hange. In our work we enfore length preservation

through the minimization of the elasti energy. A detailed disussion is given in Setion 4. In this

paper we onsider B�ezier representations, spline representations and spring models for our objets

and disuss their tradeo�s.

Graphis In graphis physially based models have been proposed for deformable parts [56, 57℄.

A survey of deformable modeling in omputer graphis an be found in [22℄. The use of physial

simulation and related optimization tehniques as a means of geometri interation has been applied

to animation [58℄, drawing [59℄, free-form surfae and volume modeling [15℄, mehanial design [65℄,

and interative moleular simulation [55℄. For a disussion on the dynami simulation of non-

penetrating exible bodies see [6℄. Models and algorithms appropriate for the ollision of deformable

bodies are investigated in [19℄.

4 An Algorithm for Planning Paths for Elasti Objets Under Manipulation

Constraints

To arrive to an algorithm for solving the problem de�ned in Setion 2, we need to speify the

geometri representation of the objet and the way stable equilibrium on�gurations are omputed.

Eah of these issues is desribed below.

4.1 Geometri Representation

The spae C

m

an be in�nite-dimensional and �nding a losed form for the di�eomorphism '

q

orresponding to a minimum on�guration q is not always possible. For this reason, we need to

approximate the on�guration spae by a �nite-dimensional subspae. The goal of the geometri

representation is to substitute the on�guration spae of the part with a �nite-dimensional subspae

in order to represent on�gurations by vetors. In general, the latter �nite-dimensional subspae

is an element of a family of subspaes approximating the on�guration spae with more and more

auray, as stated in the following de�nition.

De�nition 6 (Geometri Representation of C)

Let C be the on�guration spae of the exible objet. A geometri representation of C is a family

(G

n

); n 2 N of �nite-dimensional subspaes of C suh that

lim

n!1

max

q2C

d

C

(q;G

n

) = 0;

where d

C

is a distane in C.

Given a manipulation onstraint m 2M, we de�ne G

m

n

as the subspae G

n

\C

m

of on�gurations of

G

n

�tting the manipulation onstraint m. It is a good idea to hoose a geometri representation in

whih it is easy to express the parameters of the manipulation onstraint (see Setion 5). Di�erent

geometri representations an be used to model the on�guration spae of a deformable objet.

11



The most usual ones are polynomial and �nite element representations [6, 21, 22℄. In our work we

have onsidered B�ezier urves, splines and spring models.

4.2 Computation of Stable Equilibrium Con�gurations

One a geometri representation has been hosen, the elasti energy of the objet is obtained by

integrating over the volume of the objet the density of elasti energy  given by Equation (2). With

ertain geometri representations, the alulation of the elasti energy an be done analytially (see

Setion 5.2). In most ases however the integration is performed numerially. The integrand of

Equation (1) is sampled on the volume of the objet and summed using Simpson's formula.

A manipulation onstraint restrits the position of several points on the objet. The position of

these points is expressed using the hosen geometri representation of the objet. A stable equilib-

rium on�guration orresponding to a manipulation onstraint is omputed by searhing for a loal

minimum of the elasti energy E

el

as de�ned in Equation (1) over the subspae G

m

n

, where n is

hosen aording to the desired auray. The onstrained minimization an be done by a variety of

methods [50, 51℄ depending on the degree of the funtion optimized and the availability of gradients.

In our work we use a variation of a onjugate gradient method [50℄ to perform the minimization.

Let us notie that several equilibrium on�gurations may �t the same manipulation onstraint. As

explained in Setion 4.3, we arefully hoose the initial on�guration that is subjeted to mini-

mization to inrease our hanes of obtaining quikly a stable on�guration. We also exploit the

fat that the omputed motion should be a ontinuous motion to deal with the potentially multiple

loal minima of the energy funtion. Ideally, one would like to have a geometri representation for

the objet that would failitate the minimization of the elasti energy (for example, if gradients

an be analytially omputed this an speed up ertain minimization proedures). Unfortunately

none of the existing geometri representations have been developed with suh a onsideration in

mind. Finding a geometri representation that an e�etively support the alulation of the elasti

energy of an objet is a topi that deserves further researh (see Setion 6).

4.3 The Path Planning Algorithm

We present an algorithm that omputes ollision-free paths onsisting of stable equilibrium

on�gurations. The planner assumes that the manipulation onstraint will not hange during

the motion (e.g., the objet will be grasped along its two opposite edges throughout the motion)

and that a parameterization of the manipulation onstraint is available. In our framework, we

speify the motion of the atuators by generating appropriate values for the parameters of the

manipulation onstraint. As disussed in the introdution, we do not expliitly ompute the paths

of the atuators. When the values of the parameters of the manipulation onstraint hange, the

shape of the elasti objet hanges. We ompute a stable equilibrium on�guration for the objet

for eah hange in the values of the parameters. In the end, we return the path of the objet.

Our planning algorithm builds on the PRM planner de�ned in [35℄. Given an initial and a

�nal on�guration that speify a query, PRM builds a roadmap in the on�guration spae of the

objet. The roadmap initially ontains only the initial and the �nal on�gurations. The planner

iterates the following step. First, a number of free stable equilibrium on�guration of the objet

are generated at random over the on�guration spae. These are the nodes of the roadmap. Then,

12



the nodes are interonneted by a loal planner that generates admissible quasi-stati paths. Eah

time a path is found, an edge between the orresponding nodes is added to the roadmap. The

above proess is repeated until a solution to the planning query is found. This is ahieved when

the initial and �nal on�gurations are in the same onneted omponent of the roadmap. A global

path is returned by searhing the roadmap and by onatenating loal paths. The details of the

planner are spei�ed below.

A ruial element in our planner is that it deomposes the deformation and the position of the

objet. This is possible sine we have assumed that the objet is not allowed to touh the environ-

ment obstales. The extension to the ase where deformations an our by ontat with obstales

is learly a hallenging problem but it is outside the sope of this paper. The deomposition of

the position and the deformation of the objet serves a double purpose. Firstly, it failitates the

omputation of paths where the exible objet may retain the same deformation (or a few deforma-

tions). Suh an e�et is desirable in pratie. Seondly, it addresses a omputational onsideration:

energy minimization is very time-onsuming in our framework. By reusing minimized deformations

as many times as possible we keep the running time of our approah within reasonable bounds.

The Algorithm The planner builds a graph G = (V;E). Initially, V = fq

init

; q

goal

g and E = ;.

The following steps are repeated until q

init

and q

goal

are in the same onneted omponent of the

roadmap.

1. Node generation. A random manipulation onstraint m (i.e., a random on�guration of

the atuators) is generated. This is done by seleting values for the parameters speifying

the onstraint uniformly at random from their allowed range. A deformation of the objet is

omputed by minimizing its elasti energy. If the resulting deformation is not admissible (Se-

tion 2.6), another manipulation onstraint is hosen and another minimization is performed

until an admissible deformation has been omputed. Then random rigid-body motions are

generated and applied to the deformation, de�ning on�gurations with the same deformation.

Eah of the generated on�gurations is tested for ollision with the environment obstales and

is added in V only if it is ollision-free. This step generates N ollision-free on�gurations

with the same deformation.

2. Node onnetion. Eah of the newly generated nodes from the previous step is tried for

onnetion with its K losest neighbors in the roadmap. Distane in C should aount

both for rigid body transformation and for deformation; our partiular hoie is given below.

Connetions are performed by a deterministi loal planner whih generates quasi-stati paths

between pairs of on�gurations. We desribe the loal planner we use at the end of this setion.

If during the generation of the loal path, a ollision with the obstales ours, or the elastiity

limits of the objet's material are violated, the loal planner simply fails. Suessful exeutions

of the loal planner generate edges in E between the orresponding nodes. Note that the loal

path itself need not be retained as it an be reomputed on demand if it is part of the global

path between q

init

and q

goal

.

3. Enhanement. At this step we identify on�gurations in V with few onnetions and generate

more on�gurations lose to them in an e�ort to inrease the onnetivity of R. It is assumed

that on�gurations with few onnetions lie in diÆult parts of C

free

. A on�guration q 2 V
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is seleted with probability w(q) =

1

d

q

+1

P

N

i=1

1

d

i

+1

; where d

i

is the degree of a node, that is the

number of onnetions node i has with other nodes [34℄. Then, we initiate a random walk in

C

free

from q. Keeping the deformation of the objet the same, we pik a random diretion in

C

free

and advane in this diretion until an obstale is found. Then a new diretion (reetion)

is hosen and the proess is repeated until (a) maximum number of steps are taken, or (b)

a maximum number of reetions are generated (see [9℄ for more details on reetions). The

�nal on�guration q

r

of the random walk is added to V . The random walk itself is added to

E and stored in the orresponding edge. q

r

is tried for onnetion with its losest neighbors

as in the onnetion step. A total number of M nodes are generated during the enhanement

step.

At the end of the above loop, q

init

and q

goal

are in the same onneted omponent of R. A graph

searh an yield a sequene of edges leading from q

init

to q

goal

. Conatenation of the orresponding

loal paths results in a global path between the two on�gurations. When we searh R we look

for a path that minimizes the number of distint deformations of the nodes of V belonging to the

path. This is done for pratial purposes sine we wish to redue unneessary deformations. The

proposed planner su�ers from all shortomings of PRM-based planners. First of all, the approah

is only probabilistially omplete and a solution may not be returned even if one exists. Then the

running may utuate: in some runs a ritial deformation may be disovered quikly allowing the

planner to �nd a path in a short amount of time. In other ases a long time may be spent before

the ritial deformation is found. Several ruial omponents of our algorithm are desribed below.

Energy Minimization One a geometri representation has been hosen, a deformation is en-

oded by a vetor. The elasti energy thus beomes a real funtion over a �nite-dimensional vetor

spae. With many geometri representations (e.g., B�ezier urves and ubi splines), the elasti

energy of a deformation an be expressed exatly with respet to the ontrol points. Suh an

expression an be useful as it an speed up energy alulations. However it may be quite time-

onsuming to ompute an analytial expression for the elasti energy (for example, while for ubi

splines the energy and its gradient are obtained easily, for B�ezier urves the expression beomes

very ompliated to ompute as the number of the ontrol point of the urve inreases). Most

often we approximate the elasti energy funtion and its gradient by sampling the density of elasti

energy over the volume of the objet and by omputing numerially the integral of Equation (1)

using Simpson's approximation [51℄. We typially use the onjugate gradient method [51℄ to perform

the minimization.

The Loal Planner The loal planner needs to be eÆient when onneting on�gurations lose

to eah other as it will be alled a great number of times. It also needs to be deterministi to avoid

storing the omputed paths in the roadmap.

To make our loal planner eÆient, we exploit again the deoupling of deformation and position

in the workspae. We attah a loal frame to the objet in suh a way that if two on�gurations

have the same deformation, they have the same expression in the loal frame of the objet. Any

on�guration an thus be seen as a pair q = (d; r) were d is the deformation expressed in the loal

frame and r 2 SE(3) is the position in spae of the loal frame. We denote by D the spae of
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Figure 4: Manipulation onstraints are sampled and energy minimization is performed for eah sample

point m

i

. The initial deformation of eah minimization is hosen as follows. d

init

1

is the linear interpolation

between d

init

and d

goal

. d

init

2

is a linear extrapolation of [d

init

; d

1

℄. d

init

i

(i > 2) is a quadrati extrapolation

of [d

i�3

; d

i�2

; d

i�1

℄.

deformations expressed in the loal frame of the objet.

Let q

init

= (d

init

; r

init

) and q

goal

= (d

goal

; r

goal

) be two on�gurations and let m

init

and m

goal

be

their respetive manipulation onstraints expressed in the loal frame of eah on�guration. The

path between q

init

and q

goal

is omposed of a path between d

init

and d

goal

in D and a path between

r

init

and r

goal

in SE(3).

The ontinuous deformation between d

init

and d

goal

is found in two steps:

� The ontrol parameters of the deformation are the parameters of the manipulation onstraint.

We �rst de�ne a path between m

init

and m

goal

by linear interpolation. This linear interpola-

tion represents a ontinuous path for the atuators.

� We now disretize �nely the linear path between m

init

and m

goal

. Eah disretization point

de�nes values for the parameters of the manipulation onstraint. We ompute a on�guration

of the objet that orresponds to these values by minimizing the elasti energy of the objet.

The initial on�guration of the objet for the minimization proedure is extrapolated from the

deformations already omputed along the path (see Figure 4 for a detailed explanation). If

the value of the elasti energy an not be redued below the threshold value for maintaining

elasti deformations, we assume that the loal planner fails. We ahe any valid paths in

deformation spae as they an be used for di�erent on�gurations.

To ompute a path in SE(3), the rigid body transformation r

goal

Æ r

�1

init

transforming r

init

into

r

goal

is enoded by a translation vetor t and a rotation vetor r. The path between r

init

and r

goal

is simply de�ned by linear interpolation in this parameter spae R

6

.

To ompute a path in C, we �rst follow the path in SE(3), keeping the deformation unhanged
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and then follow the path in D. In both segments on�gurations are sampled �nely along the path

and eah of them is heked for ollision with the environment obstales. If a ollision if found, the

loal planner fails. We have observed that the rigid-body motion is muh faster to ompute sine it

does not involve any minimizations. With our approah, if a ollision is found along the rigid-body

motion, we avoid building the path in D. Our experiments showed that the loal planner desribed

above is more eÆient than a planner that simultaneously hanges the deformation and the rigid

body on�guration of the objet. This is the reason why we used the above loal planner despite

the fat that it is a onservative planner.

Distane Measure Our algorithm requires a distane measure between on�gurations. This

distane is used to selet the neighbors of a node and subsequently the loal planner is used to

onnet neighbors. A good distane measure should aount for the probability of failure of the

loal planner. Sine the loal path between two on�gurations onsists �rstly of the rigid body

transformation and seondly of the hange of deformation, as desribed in the previous paragraph,

our distane measure is the sum of two distanes

d(p; q) = d

d

(p; q) + d

r

(p; q);

where d

d

is a distane between deformations and d

r

is a distane between rigid-body motions. d

d

is de�ned as follows. Points are sampled all over the surfae of the objet in its undeformed state.

For two deformations expressed in the loal frame of the objet, we ompute the Eulidean distane

between eah orresponding pair of points. d

d

is de�ned to be the maximal distane omputed.

As far as d

r

is onerned, we represent rigid body transformations by a rotation and translation

vetor and de�ne d

r

to be the Eulidean distane in R

6

. We have observed that in pratie the

above distane measure works well. Attempts to weight d

d

and d

r

have not yielded better results.

However we notied that using just d

d

yields reasonable results.

Collision Cheking Collision heking an be implemented using any standard ollision heking

library. We use the RAPID library [41℄. This library takes as input olletions of triangles desribing

the environment and the moving objet. In our implementation, the objet is approximated by

a grid of points evenly sampled over the surfae of the objet. These points de�ne triangles that

are used by RAPID. The obstales are also deomposed into triangle soups. One an internal

model of the objet and a model of the obstales have been reated by RAPID, a on�guration an

be queried for ollision by speifying a rigid transformation for both models. The reation of an

internal model of the objet is expensive ompared to the atual ollision heks. By keeping the

deformation separate from the position in the workspae the internal model for any deformation an

be built one and reused, speeding up ollision heking. Better algorithms for ollision heking

for deformable objets are needed and this is a subjet of urrent researh [40℄.

5 Some Experimental Results

In this setion, we apply our framework to three simple deformable objets. We use di�erent

types of manipulation onstraints and di�erent geometri representations in eah ase. Our goal

is to demonstrate the feasibility of our approah and to also show that our framework is rather
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Figure 5: Manipulation of a plate by two opposite edges. In the loal frame, one edge is �xed to the (0; x

2

)

axis, while the opposite edge is in the plane (O; x

1

; x

2

), parallel to x

2

at a distane d. The deformation is

one dimensional and an be represented by the pro�le urve S(u).

general and an be applied to di�erent examples without muh tuning. We will use our experiments

to raise interesting open questions for the problem of planning for deformable objets.

5.1 Bending an Elasti Plate

In this example, whih is also desribed in [33℄, a retangular thin plate is manipulated by

grasping it at two opposite edges (see Figure 6).

Manipulation Constraint The size of the plate is L by W (see Figure 5). The grasping is

done along the two opposite long edges and these edges are always kept parallel. The atuators in

this ase onstrain the distane d � L between the two opposite edges. Hene, the deformation is

one-dimensional and the shape of the plate an be dedued from the pro�le urve S(u) as indiated

in Figure 5. The dimension of the planning problem is 7 (6 degrees for the plaement of the plate

and one for the deformation).

Mehanial Model We need to be able to ompute the elasti energy of the plate with respet

to a deformation. Suppose the plate is made of an homogeneous isotropi linear elasti material.

In the general ase of a volumetri objet, the elasti energy, de�ned by Equation (1), is obtained

by integration over the volume of the objet of the density of elasti energy  . In the ase of a

thin plate manipulated as de�ned earlier, however, the loal deformation is onstant along x

2

and

aross the plate. The integral given in Equation (1) an be simpli�ed to an integral along the

pro�le urve and the density of elasti energy depends only on the strething and urvature of the

pro�le urve. For the detailed alulations leading to this approximation see [61℄. Here we present

only the results of these alulations. Let h the thikness of the plate. In the rest on�guration,

the pro�le urve is given by

x

1

= Lu; x

3

= 0; u 2 [0; 1℄:

17



(a) (b) ()

(d) (e) (f)

Figure 6: Motion of an elasti plate that an only bend.

For a given deformation d, u of the previous relations is mapped to S(u), where S(u); u 2 [0; 1℄ is

the pro�le urve of deformation d. We de�ne the following oeÆients along the pro�le urve:

e(u) =

1

2L

2

(kS

0

(u)k

2

� L

2

);

�(u) =

det(S

0

(u); S

00

(u))

kS

0

(u)k

3=2

:

These oeÆients are respetively alled the strething oeÆient and the urvature oeÆient. In

the above formula S

0

(u) and S

00

(u) are the �rst and seond derivatives of the pro�le urve S(u).

Let us notie that e(u) is the di�erene between the square norm of the tangent vetor to the pro�le

urve after and before a deformation and the di�erene represents the loal strething in the plate.

In our ase the strain tensor (see Setion 2.2) is given by e = (e; �).

With the above notation and assumptions, Equation (1) beomes:

E

el

=

EWL

2(1� �

2

)

Z

1

0

he

2

(u) +

h

3

12

�

2

(u)du; (3)

where E and � are the Young Modulus and the Poisson ratio de�ned in Setion 2.3. In order to

be within the elastiity limit and avoid permanent deformations, we bound the deformation of the

pro�le urve as follows:

jej < e

max

and j�j < �

max

:

To hek the admissibility of a deformation with respet to the elastiity limit, we sample points

along the pro�le urve and hek if the loal deformation at these points is admissible.
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Geometri Representation We use B�ezier urves to represent the pro�le urve. A B�ezier urve

is a polynomial urve expressed in the basis of Bernstein polynomials [21℄

S(u) =

n

X

p=0

B

p

n

(u)P

p

;

where P

0

; :::; P

n

are the ontrol points and B

p

n

(u) =

 

n

p

!

u

p

(1 � u)

n�p

are the Bernstein poly-

nomials. The manipulation onstraint is easy to express in the above geometri model sine the

endpoints of a B�ezier urve are the �rst and last ontrol points. Thus, in the loal frame of the

plate, they are expressed as follows:

P

0

= (0; 0); P

n

= (d; 0):

The elasti energy as de�ned by Equation (3) is omputed numerially. The integrand is sampled

along the pro�le urve and summed using Simpson's formula. An admissible deformation is found

by minimizing the elasti energy over the free parameters (e.g., all ontrol points expet P

0

and

P

n

).

Experimental Results Our planner is written in C++ and our experiments were performed on

an SGI R10000. The problem shown in Figure 6 requires the thin plate to bend and go through a

U-shaped hole. Note that the environment in Figure 6 is surrounded by walls that are not drawn

in the �gure, hene the plate has to go through the hole to attain its goal on�guration. We used a

10 ontrol point B�ezier urve and we assumed we are dealing with a metalli plate. The parameters

for the iterative step of our planner are N = 200, M = 100, and K = 40. During enhanement

the random walk onsists of a maximum of 10 reetions, eah of whih an be 100 steps long. We

run our planner 10 di�erent times hanging the value of the random seed generator. The planner

reliably solved the problem all 10 times with an average running time of 22.7 min. It generated on

the average 12,500 nodes in the roadmap R. At the time when the planner sueeded, R had an

average of 14 omponents. Several of these were small (ontained less than 1% of the nodes in V ).

5.2 More Complex Plate Bending

We still onsider the ase of a retangular thin plate manipulated by two opposite edges but

now we allow for more omplex manipulation.

Manipulation Constraints The manipulation onstraints speify both the position and tangent

diretion of two opposite edges of the plate as shown in Figure 7. To simplify notation, we assume

that one end of the urve is �xed in the loal frame of the plate, while the position of the other

end is free. The planning problem we solve in this ase is 9-dimensional. Of these, 3 degrees are

needed for speifying the manipulation onstraint and 6 are needed for the plaement of the plate

in its environment.

Mehanial Model We use the same elasti energy as in the former example (Equation 3).
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Figure 7: Manipulation of a plate by two opposite edges, speifying the position and tangent orientation.

In the loal frame of the plate, one edge is �xed to the (O; x

2

) axis, while the opposite edge, is translated

along x

1

and x

3

by respetively �

1

and �

3

and rotated about x

2

by �. The deformation is again represented

by the pro�le urve.

Geometri Representation To represent the pro�le urve, we use pseudo ubi splines [21℄.

Let us disretize the interval [0,1℄ into n segments of equal length, de�ning u

i

n

= i=n, i = 0; 1; :::; n.

Then a pseudo ubi spline is a C

2

urve over [0,1℄. In fat it is a polynomial of degree 3 over eah

interval [u

i

n

; u

i+1

n

℄. Given n+ 1 ontrol points P

0

; :::; P

n

and n + 1 ontrol vetors V

0

; :::; V

n

, there

is exatly one pseudo ubi spline verifying S(u

i

n

) = P

i

and S

0

(u

i

n

) = V

i

for any i between 0 and n.

With this representation, the manipulation onstraints an be written as follows

P

0

= (0; 0); P

n

= (�

1

; �

3

); V

1

= (a; 0); V

n

= (b os �; b sin �);

where a and b are free parameters. In this ase, the elasti energy (Equation (3)) and its gradient

are omputed exatly along eah ubi segment and the values orresponding to eah segment

are summed. An admissible deformation is found by minimizing the elasti energy over the free

parameters (ontrol points, ontrol vetors, a and b).

Experimental Results The problem shown in Figure 8 was drawn from a ship assembly. A

plate is manipulated from above in a rather onstrained spae. Notie that the small part attahed

to the lower horizontal surfae of the box does not allow the plate to move undeformed from its

initial to its goal on�guration. Again, the plate needs to ex to arrive to its �nal on�guration.

The plate is modeled with a 4 ontrol point pseudo ubi spline. Our ode was written in C++

and we obtained our results on an SGI R10000. The parameters of the planner were kept the same

as in the previous example: N = 200, M = 100 K = 40. During enhanement the random walk

onsists of a maximum of 10 reetions, eah of whih an be 100 steps long. We run our planner

10 di�erent times hanging the value of the random seed generator. The average time to solve the

problem was 4 hours 12 min. The signi�antly larger time is attributed to the following reasons.

First of all, the spae of deformations that needs to be explored is of higher dimension (3 against 1

in the previous problem). We need signi�antly more time to ompute deformation paths beause

of the large number of minimizations involved. Seondly, the free spae inside the box of Figure 8

is very onstrained and the plate is almost as long as the box. Hene ollisions with the obstales

are very likely. The average number of nodes in the roadmap R that solved the problem was 33,600

and the average number of onneted omponents of R when the solution was found was 12. Again

many of them ontained less than %1 of the total nodes.
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Figure 8: Path for a metalli plate in a ship assembly.

5.3 Manipulating an Elasti Pipe

In this setion, we onsider the ase of an elasti pipe and we use a spring model to represent

the pipe. Spring models have been studied extensively in the literature, espeially in the ontext

of dynami simulations [19℄.

Manipulation Constraints The manipulation onstraints speify both the position and tangent

diretion of the ends of the pipe. We do not allow twisting of the pipe. To simplify notation, we

assume again that one end of the pipe is �xed in its loal frame, while the other end is free. We

speify manipulation onstraints as indiated in Figure 9. Note that in this ase 5 parameters are

needed to speify the manipulation onstraints.

Mehanial Model and Geometri Representation The idea behind spring models is that

the mehanial behavior of the objet is simulated by a lattie of mass-points onneted to eah

other by linear and angular springs [19℄. Exept for boundary points, eah point is onneted to 6

neighbors by 6 linear springs and 3 angular springs (see Figure 10). A onstant is assoiated with

eah spring and the elasti energy for the linear and angular springs respetively is of the following

form:

E

lin

=

1

2

k

lin

(l � l

0

)

2

; E

ang

=

1

2

k

ang

os

2

�;
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Figure 9: Manipulation of an elasti pipe. One end of the pipe is attahed to the origin of the loal frame

while the position (�

1

; �

2

; �

3

) and the orientation (�; ') of the other end are spei�ed.

linear springs

angular springs

Figure 10: Spring model: The objet is deomposed into elementary boxes. To eah box is assoiated 3

linear and 3 angular springs. The elasti energy of these springs simulates the elasti energy of the assoiated

box.

where k

lin

and k

ang

are onstants that represent the sti�ness of the springs. l

0

is the initial length

of the linear spring and � is the angle between two edges onneted by an angular spring. The

onstants of these springs an be omputed from the elastiity onstants in a straightforward way.

First, the homogeneity and isotropy of the pipe require that k

lin

is the same for all linear springs

and that k

ang

is the same for all angular springs. We uniformly streth the pipe in the x

1

diretion

from its undeformed shape and we equate the energy of the spring model with the elasti energy

of the orresponding ontinuous deformation obtained from Equations (1) and (2). If we solve for

k

lin

, we obtain:

k

lin

=

(n

1

� 1)

n

2

n

3

L

2

L

3

L

1

E(1� �)

(1 + �)(1� 2�)

;

where L

1

, L

2

and L

3

are the length, width and thikness of the pipe. n

1

, n

2

, and n

3

are the

numbers of points of the lattie in the x, y, z diretions. To determine k

ang

, we shear the elasti

pipe and equate in a similar way the elasti energy of the spring model with the elasti energy of
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the ontinuous mehanial model. We obtain when solving for k

ang

:

k

ang

=

L

1

L

2

L

3

2(n

1

� 1)(n

2

� 1)

E

1 + �

:

For the detailed alulations we refer the reader to [4℄. A on�guration is a now represented by a

vetor of positions for eah of the mass-points. Manipulation onstraints restrit the position of

the mass-points at the ends of the pipe. The elasti energy of a on�guration is the sum of the

energies of all the springs. An admissible deformation is found by minimizing the elasti energy

over the free parameters (e.g., all oordinates of the free mass-points).

Experimental Results In the example of Figure 11, one end of the pipe is rigidly attahed to

a frame while the other is manipulated. In this experiment, the spring lattie is made of 32x3x3

points. Again our ode was written in C++ and we obtained our results on an SGI R10000. Note

that sine one end of the pipe is �xed, eah di�erent deformation of the objet represents a di�erent

on�guration. So in this ase, it does not make sense to generate a deformation and then reate

many plaements of that deformation. We reated 200 di�erent deformations/on�gurations and

we attempted to onnet eah of these with 40 neighbors (K = 40). In this example, we did not

even need the enhanement step. We obtained a path with a roadmap of 200 nodes in all of the 10

runs of our planner. It took on the average 14.2 min and the produed roadmaps onsisted on the

average of 3 onneted omponents. The relative high running time is due to the omputationally

expensive minimization. For the pipe of this example, we seleted and minimized 100 random

on�gurations. The mean time was 1.12 se with a standard deviation of 0.98 se.

5.4 Some Comments on the Geometri Models Used

In this setion we were interested to demonstrate the versatility of our planning algorithm and

we used a di�erent geometri model for eah of the three examples we examined. Eah geometri

model has its advantages and disadvantages. B�ezier urves, for example, are very simple but the

analyti omputation of the elasti energy is expensive when the number of ontrol points inreases.

Hene we need to resort to an approximate alulation of energy. Cubi splines are very useful and

we an express the elasti energy of an objet in terms of their parameters very easily. We observed

however that our minimization proedure tends to onverge slowly with this representation. Still

we found ubi splines a good model and we reommend it for simple shapes. We also observed

that not too many ontrol points were needed when splines were used to represent an objet (see

Figure 12). Last but not least, mass spring models o�er a very versatile model for three dimensional

objets but again, the elasti energy has to be approximated and the energy minimization tends to

be slow. Clearly, there is not a single geometri model that an be seleted as best for the purposes

of our work. In fat, available geometri models were not designed to support energeti alulations.

It is an interesting open researh topi to �nd models that failitate energy alulations and use

them in the ontext of planning. This point is further developed in the next setion.
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Figure 11: Snapshots along a path of a deformable able whose one end is �xed to a base. The free

end is manipulated by an atuator (not shown in the �gure).

6 Conluding Remarks

In this paper we investigated the problem of planning paths for elasti objets under manipu-

lation onstraints. The problem di�ers signi�antly from the traditional path planning problem in

robotis where only rigid or artiulated bodies have been onsidered. Our work has appliations

in the manipulation of exible plates, pipes, and ables in industrial settings, in virtual prototyp-

ing studies, in animation and virtual environments simulation, but also in medial studies and in

omputer-assisted pharmaeutial drug design.

In the �rst part of the paper we de�ned the di�erent omponents of the problem onsidered in

this work. In the seond part of the paper we developed a planning framework to �nd admissible

quasi-stati paths for an elasti objet that is manipulated by two atuators and that is not allowed

to touh the obstales in its environment. Our work is a �rst step in the diretion of onsidering

objet exibility during planning and raises many interesting diretions for future researh.

One important observation in our work is that available geometri models for representing shape

are not well suited for expressing elasti energy. In most ases it is impossible to obtain a ompat

analytial expression for the elasti energy in terms of the parameters of the model. Even when

this is ahieved, the model does not preserve physial properties of the objet suh as surfae area
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Figure 12: Representation of the same deformation using an 8 ontrol point B�ezier urve (bottom),

a 4 ontrol point ubi spline (top) and a 97 ontrol point ubi spline (middle). Notie that a 4

ontrol point ubi spline provides an aurate representation.

or volume: when the values of the parameters of the model hange, physial quantities suh as area

and volume an utuate substantially. This is not surprising given the fat that most geometri

models have been developed in the ontext of Computer-Aided Geometri Modeling, where the only

requirement is visual realism. It would be very bene�ial for our work if, for example, a geometri

model ould guarantee that the total area of the objet would not hange when the model deforms.

It would also be very helpful if the model ould failitate the omputation of elasti energy and

its gradient. The topi is an interesting area for future researh. Currently, we guarantee the

preservation of physial quantities suh as area and volume through the minimization of the elasti

energy whih is, however, very time onsuming.

Another related issue onerns the geometri approximation done for representing the deforma-

tions of an objet. A deeper investigation is needed to understand how the geometri approximation

of the objet interferes with the alulation and minimization of elasti energy and hene with our

ability to express aurately the di�erent deformations of the objet. Suh an investigation is a

separate researh topi in itself and it is not diretly related to planning. For the ontext of our

work, it would also be desirable to develop (a) energy models that are aurate but also eÆient

to ompute and (b) minimization proedures that onverge fast to loal minima.

Let us onlude by reminding that we plaed several restritions on the problem we onsidered

in this paper. An important one was that the objet is not allowed to touh the obstales in its

environment. It is lear that deformations an also be reated by ontat with the obstales. In

that ase, we an not deompose the deformation and the plaement of the objet as we did in

this paper. Of ourse we an use the planner as is and generate a single on�guration at eah step.

With our present understanding of the problem, the ost of energy minimization will be prohibitive

for suh a planner. Our urrent planner o�ers an exellent test-bed for studying the problem. It is

lear that advanes in many fronts will be required for the development of planners that an plan

eÆiently for deformable objets.
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