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I. Introduction

In the framework of motion planning for nonholonomic systems, the car-like vehicle has been the most investigated system. Numerous motion planners including obstacle avoidance capabilities are today available (e.g. 3], 4], 17], 15], 8], 21], 11], 24], 29]). All these approaches consider the car-like as a 3-dimensional system moving in the plane and subjected to constraints on the curvature (in addition to the nonholonomic constraint of rolling without slipping). The pioneering work by Dubins 7], and then by Reeds and Shepp 23], showed that the minimal length 1 paths for a car-like vehicle consist of a nite sequence of two elementary components: arcs of circle (with minimal turning radius) and straight line segments. From then, almost all of the proposed motion planners compute collision-free paths constituted by such sequences. As a result the paths are piecewise C 2 , i.e. they are C 2 along elementary components, but the curvature is discontinuous between two elementary components. To follow such paths, a real system has to stop at these discontinuity points in order to ensure the continuity of the linear and angular velocities.

To overcome this inconvenience several authors have proposed to smooth the sequences straight line-arc of circle by clothoids (e.g., 12], 9]). The paths are then C 2 between two cusp points. However, this approach raises another problem: clothoids do not have a closed form making the control of their shapes di cult and dangerous in the presence of obstacles. This smoothing technique usually a ects the completeness of the motion planner. The only exception is the work appearing in 24].

In this paper, we propose to revisit the problem by considering a car as a 4-dimensional system from a control point of view: the steering angle is a con guration variable. Such a system has been investigated from a control point of view (e.g., 30]) but without considering the ob-A shorter version of this paper appears in the 6th International Conference on Intelligent Autonomous Systems Florent Lamiraux and J.-P. Laumond are with LAAS-CNRS, Toulouse, France. E-mail: f orent|jplg@laas.fr 1 More precisely, the length here is the length of the path followed by the middle of the rear wheel axis. stacle avoidance problem.

After introducing the model of the car (Section II), we present the steering method which is derived from a method previously developed by the authors for a mobile robot pulling trailers (Section III). This approach guarantees the curvature of the path to be C 2 between cusp points. Then we show how to plug the steering method within two di erent nonholonomic motion planning schemes (Section IV). In the rst scheme, the algorithm computes a collisionfree holonomic path in R 2 S 1 (the nonholonomic constraints are ignored, only the obstacles of the environment are taken into account); then the path is approximated by a sequence of admissible paths computed with the steering method applied to the 4-dimensional control system. In the second case, the local method is plugged into PRM (Probabilistic Roadmap Planner): A graph is constructed by picking random free con gurations and by connecting them by collision-free paths returned by our local method. To ensure the completeness of these schemes, the steering method has to account for the small-time controllability of the system: to connect con gurations close to each other, the steering method has to produce paths that remain close to these con gurations 25].

The main contribution of this paper is not to provide a completely new method, but to combine existing techniques from an adequate model of the car and to propose a practical well-grounded algorithm for planning collisionfree paths such that the curvature is continuous between cusp points.

II. Controllability of a car and admissible paths

Control model. The modeling of vehicles according to their locomotion systems is well understood (see 6]). Let us consider the system represented in Figure 1. The distance between the reference point (x; y) and the middle point of the driving wheels is assumed to be 1. The orientation of the car is denoted by . The con guration space C = R 2 (S 1 ) 2 of this system is 4-dimensional. The two controls of a car are the velocity v of the driving wheels and the time derivative ! of the steering angle . The steering angle is constrained by mechanical bounds: j j max .

A con guration X = (x; y; ; ) is said to be admissible if j j < max . A car corresponds to the following control system:

0 B B @ _ x _ y _ _ 1 C C A = 0 B B @ cos cos cos sin sin 0 1 C C A v + 0 B B @ 0 0 0 1 1 C C A ! (1)
Applying the technique of the Lie bracket rank condition, such a system is proved to be small-time controllable at any point (see for instance 20]). This means that, starting from any con guration, for any time T , the domain reachable with bounded velocity (jvj < 1, j!j < 1) and in time less than T always contains a neighborhood of the starting con guration.

In a lot of path planning work, the steering angle is not a con guration variable. In this case, the model can be simpli ed as follows. By setting ṽ = v cos and ! = v sin we get the following 3-dimensional control system:

0 @ _ x _ y _ 1 A = 0 @ cos sin 0 1 A ṽ + 0 @ 0 0 1 1 A ! (2)
This system looks like the kinematic model of the so called unicycle. The main di erence lies in the admissible control domains. Here the constraints on ṽ and ! are no longer independent. By setting v max = p 2 and max = 4 we get: 0 j!j jṽj 1. The curvature of the path should be smaller than 1, whenever it is de ned. The various existing motion planners for cars usually consider this 3dimensional model.

In the next section, we build a steering method based on the combination of canonical paths. The idea is to combine two paths passing by two di erent con gurations to get a feasible path that goes from the rst to the second conguration. We de ne now what we call a canonical path associated to a con guration. Canonical paths, canonical curves Let us consider a suciently smooth path followed by the reference point. Simple computations show that the tangent to the path gives the orientation of the car, while the steering angle is related to the curvature2 of the path by = tan . These relations de ne a one-to-one mapping between the space of admissible con gurations and R 2 S 1 1; 1]. In other word, any con guration can be parameterized by a vector (x; y; ; ) where is the curvature de ned above. Now, given a con guration X = (x; y; ; ), there exists a unique feasible path passing by X and keeping constant. This canonical path, denoted by (X; s), is obtained by integrating system (1) with v = 1 and ! = 0 over the time interval 0; s]. The corresponding curve (X; s) followed by the reference point (x; y) is an arc of circle if 6 = 0 and a straight line if = 0. Let us notice that this curve is parameterized by arc-length s. (X; s) is called the canon-ical curve associated to X. By construction we get the following property:

Property 1: The canonical path of an admissible conguration veri es the curvature constraint.

III. A steering method

To any con guration X, the de nition above associates a path passing by this con guration. We are now going to show how to use these canonical curves to build a feasible path between two con gurations.

We de ne a smooth increasing function from 0; 1] into 0; 1] verifying: (0) = 0, (1) = 1, _ (0) = (0) = _ (1) = (1) = 0. Let X 1 and X 2 be the initial and goal con gurations respectively.

It can be easily veri ed that the curve P (t) = (1 (t)) (X 1 ; t) + (t) (X 2 ; t 1) has the same position, tangent, and curvature as (X 1 ; t) for t = 0 and as (X 2 ; t 1) for t = 1. Therefore, it corresponds to a feasible path X(t) in C going from X 1 to X 2 when t goes from 0 to 1. The congurations along X(t) are computed from the curve P (t), the orientation of its tangent, and its curvature using the relation = arctan . The key point here is that is continuous along X(t).

This construction de nes a steering method that allows the car to reach any con guration from any other one. However, this steering method is not suitable for integration in our collision free scheme described below since it does not account for small-time controllability as de ned now (see 25] for details).

De nition: A steering method Steer is said to account for small-time controllability if it satis es the following property: 8" > 0; 9 > 0; 8(X 1 ; X 2 ) 2 C 2 d(X 1 ; X 2 ) < ) Steer(X 1 ; X 2 ) B(X 1 ; ") where d is a distance in the con guration space C of the system and B(X 1 ; ) is the ball of radius centered on X 1 (using distance d), and Steer(X 1 ; X 2 ) is the path followed by the steering method between X 1 and X 2 .

To account for small-time controllability, it can be easily stated that a steering method has to generate cusp points.

In 14], we show how to build a steering method accounting for small-time controllability using the above convex combination of canonical curves. We brie y recall here the main ideas of this construction. Let X 1 = (x 1 ; y 1 ; 1 ; 1 ) and X 2 = (x 2 ; y 2 ; 2 ; 2 ) be initial and nal con gurations. We de ne M 2 as the orthogonal projection of (x 2 ; y 2 ) on (X 1 ; t). We de ne v 2 the parameter of this projection on (X 1 ; t): M 2 = (X 1 ; v 2 ). Then we slightly modify the above construction of P (t) as follows:

P (t) = (1 (t)) (X 1 ; v 2 t) + (t) (X 2 ; v 2 (t 1)):
The corresponding path in C, that we denote by Steer (X 1 ; X 2 )(t), still represents a feasible path going from X 1 to X 2 . Importantly, if X 2 is on the canonical path associated to X 1 , Steer (X 1 ; X 2 )(t) is exactly the canonical * Steer 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11111 11111 path (X 1 ; t). The continuity of Steer w.r.t. X 1 and X 2 enables us to prove that an open set around the canonical path (X 1 ; t) (the shaded area in Figure 2) is reachable by Steer without escaping the ball of radius " centered on X 1 .
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Using now the continuity of (X; t) w.r.t. X, we establish that if a con guration X 3 is close to X 1 , (X 3 ; t) intersects the open set we have just de ned close to X 1 and we can chose a con guration X 2 in this intersection. This process de nes another steering method Steer as follows:

1. if X 3 is in the open set reachable by Steer , then Steer(X 1 ; X 3 ) = Steer (X 1 ; X 3 ), 2. otherwise Steer(X 1 ; X 3 ) is composed of two sub-paths. The rst one goes from X 1 to X 2 following Steer (X 1 ; X 2 ) between X 1 and X 2 . The second one goes from X 2 to X 3 following (X 3 ; t). With this construction Steer can access a neighborhood of a con guration X 1 without escaping any given ball centered on X 1 (Figure 2). It accounts for small-time controllability. As a consequence, if X 1 and X 3 are admissible con gurations close enough, then 1 and 3 are close enough in ] max ; max to guarantee that all the con gurations (x; y; ; ) generated by Steer(X 1 ; X 3 ) are admissible, i.e., they verify 2] max ; max . Gathering this result with the curvature continuity result we get the following property:

Property 2: For two su ciently close admissible congurations X 1 and X 3 , all the con gurations of the path Steer(X 1 ; X 3 ) are admissible. The path followed by the reference point is C 2 between X 1 and X 2 and between X 2 and X 3 . Remark: The collision free path planning scheme we de ne later builds paths composed of sequences of sub-paths generated by Steer. The continuity of the curvature between two sub-paths ensures us that a real system can follow these paths without stopping between each sub-paths. The rst path planning scheme works for any small-time controllable system. Introduced in 17] it consists in approximating a collision-free (holonomic) path by a sequence of collision-free admissible ones. It only requires a steering method accounting for small-time controllability (De nition Section III).

A. Approximation of a holonomic path Geometric planner: The rst step is to nd a geometric path, that is a collision free path that does not take into account the nonholonomic constraints. The car is viewed as a polygon moving freely in translation and rotation in R 2 among obstacles. The con guration space of this system is then R 2 S 1 . Numerous techniques are available to address the motion planning problem in that case 16]. Among them we chose the \distributed representation approach" 2] that leads to resolution-complete algorithms (such algorithms are guaranteed to nd a solution when a solution exists at a given resolution when modeling the search space by a grid). This algorithm is based on the construction of a potential eld over the con guration space, the global minimumof which is the goal con guration. This potential eld is built from two potential elds in the plane applied to two control points of the robot. Then the algorithm consists of an alternating sequence of gradient descent and a procedure lling the potential wells. Figure 4 shows an example of a path computed using this method. Approximation step Let us denote by hol the geometric path computed in R 2 S 1 by the previous step. From now on, we consider hol as a path in C by setting = 0. The approximation step recursively decomposes hol as follows. A con guration X is chosen in the middle of hol . This con guration is connected to X start and X goal using Steer, generating two feasible sub-paths. Collision with obstacles and the curvature constraint j j < max are checked along these sub-paths. If one of these constraints is violated, the corresponding sub-path is discarded and a new subgoal is chosen on hol between the beginning and the end of the discarded sub-path.

Figure 4(right) shows the result of the approximation scheme performed on the holonomic path of Figure 4(left). All the computation are performed in a few seconds. 

B. Probabilistic roadmap approach

We have plugged our local method in Move3D, a generic platform for path planning 27]. Move3D can solve path planning problems for any system as long as a geometric description of the system and a local steering method is provided. We have implemented the steering method dened in Section III within Move3D. Move3D plans path using the probabilistic roadmap approach 13]. Free congurations are randomly picked. A roadmap is built by connecting to each other con gurations between which the steering method returns a local path without collision. A path planning problem is solved once the initial and goal con gurations lie in the same connected component of the roadmap.

Figures 5 and6 show paths computed for a car by Move3D. The maximal steering angle max is 30 degrees in both cases.

C. Convergence and completeness

The convergence of the approximation step is guaranteed to nish in nite time as soon as the holonomic path belongs to an open domain of the collision-free con guration space and the steering method accounts for small-time controllability as de ned above. The completeness of the algorithm thus inherits from the completeness of the geometric planner: it is resolution complete.

The probabilistic roadmap approach is probabilistically complete (i.e. the probability of nding a path if one exists tends toward 1 when the searching time increases) if the steering method accounts for small-time controllability. Smoothing step: Both planning algorithm provide a sequence of elementary admissible paths computed by Steer. This sequence usually include useless maneuvers and detours. A smoothing step tries to connect pairs of con gurations randomly chosen on the path using the steering method to shorten the rst solution path. Remark on optimal paths The minimal length paths for the system 2 have been characterized by Reeds and Shepp 23]. This result is proven in the absence of obstacles. Adding obstacles give rise to a challenging problem: solutions exist via dynamic programming approaches 3], approximated approaches 26] or for special classes of obstacles 1], 5]. All these work do not consider any constraint on the continuity of the path curvature. Computing minimal length paths for the system 1 remains today an open problem even in the absence of obstacle 28]. Therefore the paths computed by the algorithm presented in this paper are not optimal. We just argue that they are satisfactory from a practical point of view.

V. Conclusion

A path for car-like robot is a nite sequence of curves linking cusp con gurations. Between two cusps the curves should be su ciently smooth to allow non zero velocity at any point. In other words, the curvature should be continuous on these curves. The main purpose of this paper is to propose an e cient steering method for a car-like vehicle that computes such piecewise smooth paths. Moreover the proposed steering method has been integrated within two motion planning schemes. In the approximation scheme, the global solution path of Figure 4 has been computed within a few seconds. In the probabilistic approaches (Figures 5 and 6) the solution paths have been computed within a few seconds after a pre-processing time of a few minutes.

The main idea underlying the method proposed in this paper is to consider the car as a four-dimensional system. In such a way the constraint on the steering angle is treated as an obstacle. The approach avoids numerical issues such as the one arising in previous methods based on clothoids.
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 1 Fig. 1. Model of a car and a canonical curve.
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 2 Fig. 2. Steer accounts for small-time controllability.
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 3 Fig. 3. Two paths generated by Steer. The rst one (left) without cusp is a convex combination of the canonical curves associated to each con guration. the second one (right) is composed of a convex combination between the rst con guration (bottom) and a cusp con guration, and of the canonical path associated to the second conguration (top).
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 4 Fig. 4. A rst geometric path and the feasible path generated by the approximation scheme with max = 60 deg

Fig. 5 .

 5 Fig.5. A path computed by Move3D. The environment is a Mayan city with a pyramid. The car has to make a U-turn in a constrained corridor. Initial con guration is shown on the right. Final con guration is the same with opposite direction. This problem necessarily requires a long detour.

Fig. 6 .

 6 Fig.6. A path computed for a car-like toy using Move3D.

This property derives from the notion of atness recently introduced in control theory 10].
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