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Smooth motion planning for car-like vehicles

F. Lamiraux and J.-P. Laumond

Abstract|This paper presents a steering method for a car-

like vehicle providing smooth paths subjected to curvature

constraints. We show how to integrate this steering method

in a global motion planning scheme taking obstacles into

account. The main idea of the paper is to consider the car

as a 4-dimensional system from a kinematic point of view

and as a 3-dimensional system from a geometric point of

view of collision checking. The resulting planned motions

are guaranteed to be collision-free and C

2

between two cusp

points.

Keywords|Smooth Motion Planning, Nonholonomic Car-

like Robot.

I. Introduction

In the framework of motion planning for nonholonomic

systems, the car-like vehicle has been the most investi-

gated system. Numerous motion planners including ob-

stacle avoidance capabilities are today available (e.g. [3],

[4], [17], [15], [8], [21], [11], [24], [29]). All these approaches

consider the car-like as a 3-dimensional system moving in

the plane and subjected to constraints on the curvature (in

addition to the nonholonomic constraint of rolling without

slipping). The pioneering work by Dubins [7], and then

by Reeds and Shepp [23], showed that the minimal length

1

paths for a car-like vehicle consist of a �nite sequence of two

elementary components: arcs of circle (with minimal turn-

ing radius) and straight line segments. From then, almost

all of the proposed motion planners compute collision-free

paths constituted by such sequences. As a result the paths

are piecewise C

2

, i.e. they are C

2

along elementary com-

ponents, but the curvature is discontinuous between two

elementary components. To follow such paths, a real sys-

tem has to stop at these discontinuity points in order to

ensure the continuity of the linear and angular velocities.

To overcome this inconvenience several authors have pro-

posed to smooth the sequences straight line-arc of circle by

clothoids (e.g., [12], [9]). The paths are then C

2

between

two cusp points. However, this approach raises another

problem: clothoids do not have a closed form making the

control of their shapes di�cult and dangerous in the pres-

ence of obstacles. This smoothing technique usually a�ects

the completeness of the motion planner. The only excep-

tion is the work appearing in [24].

In this paper, we propose to revisit the problem by con-

sidering a car as a 4-dimensional system from a control

point of view: the steering angle is a con�guration vari-

able. Such a system has been investigated from a control

point of view (e.g., [30]) but without considering the ob-

A shorter version of this paper appears in the 6th International
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More precisely, the length here is the length of the path followed

by the middle of the rear wheel axis.

stacle avoidance problem.

After introducing the model of the car (Section II), we

present the steering method which is derived fromamethod

previously developed by the authors for a mobile robot

pulling trailers (Section III). This approach guarantees the

curvature of the path to be C

2

between cusp points. Then

we show how to plug the steering method within two di�er-

ent nonholonomic motion planning schemes (Section IV).

In the �rst scheme, the algorithm computes a collision-

free holonomic path in R

2

� S

1

(the nonholonomic con-

straints are ignored, only the obstacles of the environment

are taken into account); then the path is approximated by

a sequence of admissible paths computed with the steer-

ing method applied to the 4-dimensional control system.

In the second case, the local method is plugged into PRM

(Probabilistic Roadmap Planner): A graph is constructed

by picking random free con�gurations and by connecting

them by collision-free paths returned by our local method.

To ensure the completeness of these schemes, the steering

method has to account for the small-time controllability of

the system: to connect con�gurations close to each other,

the steering method has to produce paths that remain close

to these con�gurations [25].

The main contribution of this paper is not to provide

a completely new method, but to combine existing tech-

niques from an adequate model of the car and to propose

a practical well-grounded algorithm for planning collision-

free paths such that the curvature is continuous between

cusp points.

II. Controllability of a car and admissible paths

Control model. The modeling of vehicles according to their

locomotion systems is well understood (see [6]). Let us

consider the system represented in Figure 1. The distance

between the reference point (x; y) and the middle point of

the driving wheels is assumed to be 1. The orientation of

the car is denoted by �. The con�guration space C = R

2

�

(S

1

)

2

of this system is 4-dimensional. The two controls

of a car are the velocity v of the driving wheels and the

time derivative ! of the steering angle �. The steering

angle is constrained by mechanical bounds: j�j � �

max

.

A con�guration X = (x; y; �; �) is said to be admissible

if j�j < �

max

. A car corresponds to the following control

system:
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Applying the technique of the Lie bracket rank condition,

such a system is proved to be small-time controllable at

any point (see for instance [20]). This means that, starting
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Fig. 1. Model of a car and a canonical curve.

from any con�guration, for any time T , the domain reach-

able with bounded velocity (jvj < 1, j!j < 1) and in time

less than T always contains a neighborhood of the starting

con�guration.

In a lot of path planning work, the steering angle is not

a con�guration variable. In this case, the model can be

simpli�ed as follows. By setting ~v = v cos � and ~! = v sin �

we get the following 3-dimensional control system:

0
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~v +
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This system looks like the kinematic model of the so called

unicycle. The main di�erence lies in the admissible control

domains. Here the constraints on ~v and ~! are no longer

independent. By setting v

max

=

p

2 and �

max

=

�

4

we

get: 0 � j~!j � j~vj � 1. The curvature of the path should

be smaller than 1, whenever it is de�ned. The various

existing motion planners for cars usually consider this 3-

dimensional model.

In the next section, we build a steering method based on

the combination of canonical paths. The idea is to combine

two paths passing by two di�erent con�gurations to get a

feasible path that goes from the �rst to the second con-

�guration. We de�ne now what we call a canonical path

associated to a con�guration.

Canonical paths, canonical curves Let us consider a su�-

ciently smooth path followed by the reference point. Simple

computations show that the tangent to the path gives the

orientation � of the car, while the steering angle � is re-

lated to the curvature

2

� of the path by � = tan �. These

relations de�ne a one-to-one mapping between the space of

admissible con�gurations and R

2

� S

1

� [�1; 1]. In other

word, any con�guration can be parameterized by a vector

(x; y; �; �) where � is the curvature de�ned above. Now,

given a con�guration X = (x; y; �; �), there exists a unique

feasible path passing by X and keeping � constant. This

canonical path, denoted by �(X; s), is obtained by inte-

grating system (1) with v = 1 and ! = 0 over the time

interval [0; s]. The corresponding curve 
(X; s) followed

by the reference point (x; y) is an arc of circle if � 6= 0 and

a straight line if � = 0. Let us notice that this curve is

parameterized by arc-length s. 
(X; s) is called the canon-

2

This property derives from the notion of 
atness recently intro-

duced in control theory [10].

ical curve associated to X. By construction we get the

following property:

Property 1: The canonical path of an admissible con-

�guration veri�es the curvature constraint.

III. A steering method

To any con�guration X, the de�nition above associates

a path passing by this con�guration. We are now going to

show how to use these canonical curves to build a feasible

path between two con�gurations.

We de�ne a smooth increasing function � from [0; 1] into

[0; 1] verifying: �(0) = 0, �(1) = 1, _�(0) = ��(0) = _�(1) =

��(1) = 0. Let X

1

and X

2

be the initial and goal con�gu-

rations respectively.

It can be easily veri�ed that the curve P (t) = (1 �

�(t))
(X

1

; t)+�(t)
(X

2

; t�1) has the same position, tan-

gent, and curvature as 
(X

1

; t) for t = 0 and as 
(X

2

; t�1)

for t = 1. Therefore, it corresponds to a feasible path X(t)

in C going fromX

1

toX

2

when t goes from 0 to 1. The con-

�gurations along X(t) are computed from the curve P (t),

the orientation of its tangent, and its curvature using the

relation � = arctan �. The key point here is that � is con-

tinuous along X(t).

This construction de�nes a steering method that allows

the car to reach any con�guration from any other one.

However, this steering method is not suitable for integra-

tion in our collision free scheme described below since it

does not account for small-time controllability as de�ned

now (see [25] for details).

De�nition: A steering method Steer is said to ac-

count for small-time controllability if it satis�es the follow-

ing property:

8" > 0; 9� > 0; 8(X

1

; X

2

) 2 C

2

d(X

1

; X

2

) < �) Steer(X

1

; X

2

) � B(X

1

; ")

where d is a distance in the con�guration space C of the

system and B(X

1

; �) is the ball of radius � centered on X

1

(using distance d), and Steer(X

1

; X

2

) is the path followed

by the steering method between X

1

and X

2

.

To account for small-time controllability, it can be easily

stated that a steering method has to generate cusp points.

In [14], we show how to build a steering method account-

ing for small-time controllability using the above convex

combination of canonical curves. We brie
y recall here the

main ideas of this construction. Let X

1

= (x

1

; y

1

; �

1

; �

1

)

and X

2

= (x

2

; y

2

; �

2

; �

2

) be initial and �nal con�gurations.

We de�ne M

2

as the orthogonal projection of (x

2

; y

2

) on


(X

1

; t). We de�ne v

2

the parameter of this projection on


(X

1

; t): M

2

= 
(X

1

; v

2

). Then we slightly modify the

above construction of P (t) as follows:

P (t) = (1� �(t))
(X

1

; v

2

t) + �(t)
(X

2

; v

2

(t� 1)):

The corresponding path in C, that we denote by

Steer

�

(X

1

; X

2

)(t), still represents a feasible path going from

X

1

to X

2

. Importantly, if X

2

is on the canonical path

associated toX

1

, Steer

�

(X

1

; X

2

)(t) is exactly the canonical
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Fig. 2. Steer accounts for small-time controllability.

Fig. 3. Two paths generated by Steer. The �rst one (left) with-

out cusp is a convex combination of the canonical curves associated

to each con�guration. the second one (right) is composed of a con-

vex combination between the �rst con�guration (bottom) and a cusp

con�guration, and of the canonical path associated to the second con-

�guration (top).

path �(X

1

; t). The continuity of Steer

�

w.r.t. X

1

and X

2

enables us to prove that an open set around the canonical

path �(X

1

; t) (the shaded area in Figure 2) is reachable by

Steer

�

without escaping the ball of radius " centered on X

1

.

Using now the continuity of �(X; t) w.r.t. X, we establish

that if a con�guration X

3

is close to X

1

, �(X

3

; t) intersects

the open set we have just de�ned close to X

1

and we can

chose a con�guration X

2

in this intersection. This process

de�nes another steering method Steer as follows:

1. if X

3

is in the open set reachable by Steer

�

, then

Steer(X

1

; X

3

) = Steer

�

(X

1

; X

3

),

2. otherwise Steer(X

1

; X

3

) is composed of two sub-paths.

The �rst one goes from X

1

to X

2

following Steer

�

(X

1

; X

2

)

between X

1

and X

2

. The second one goes from X

2

to X

3

following �(X

3

; t).

With this construction Steer can access a neighborhood

of a con�guration X

1

without escaping any given ball cen-

tered on X

1

(Figure 2). It accounts for small-time con-

trollability. As a consequence, if X

1

and X

3

are admissible

con�gurations close enough, then �

1

and �

3

are close enough

in ] � �

max

; �

max

[ to guarantee that all the con�gurations

(x; y; �; �) generated by Steer(X

1

; X

3

) are admissible, i.e.,

they verify � 2]� �

max

; �

max

[. Gathering this result with

the curvature continuity result we get the following prop-

erty:

Property 2: For two su�ciently close admissible con-

�gurations X

1

and X

3

, all the con�gurations of the path

Steer(X

1

; X

3

) are admissible. The path followed by the

reference point is C

2

between X

1

and X

2

and between X

2

and X

3

.

Remark: The collision free path planning scheme we de�ne

later builds paths composed of sequences of sub-paths gen-

erated by Steer. The continuity of the curvature between

two sub-paths ensures us that a real system can follow these

paths without stopping between each sub-paths.

Fig. 4. A �rst geometric path and the feasible path generated by the

approximation scheme with �

max

= 60deg

Figure 3 shows two examples of paths generated by Steer.

IV. Plug-in Steer in two motion planning schemes.

The �rst path planning scheme works for any small-time

controllable system. Introduced in [17] it consists in ap-

proximating a collision-free (holonomic) path by a sequence

of collision-free admissible ones. It only requires a steering

method accounting for small-time controllability (De�ni-

tion Section III).

A. Approximation of a holonomic path

Geometric planner: The �rst step is to �nd a geometric

path, that is a collision free path that does not take into

account the nonholonomic constraints. The car is viewed

as a polygon moving freely in translation and rotation in

R

2

among obstacles. The con�guration space of this sys-

tem is then R

2

� S

1

. Numerous techniques are available

to address the motion planning problem in that case [16].

Among them we chose the \distributed representation ap-

proach" [2] that leads to resolution-complete algorithms

(such algorithms are guaranteed to �nd a solution when

a solution exists at a given resolution when modeling the

search space by a grid). This algorithm is based on the con-

struction of a potential �eld over the con�guration space,

the global minimumof which is the goal con�guration. This

potential �eld is built from two potential �elds in the plane

applied to two control points of the robot. Then the algo-

rithm consists of an alternating sequence of gradient de-

scent and a procedure �lling the potential wells. Figure 4

shows an example of a path computed using this method.

Approximation step Let us denote by �

hol

the geometric

path computed in R

2

�S

1

by the previous step. From now

on, we consider �

hol

as a path in C by setting � = 0.

The approximation step recursively decomposes �

hol

as

follows. A con�guration X is chosen in the middle of �

hol

.

This con�guration is connected to X

start

and X

goal

using

Steer, generating two feasible sub-paths. Collision with ob-

stacles and the curvature constraint j�j < �

max

are checked

along these sub-paths. If one of these constraints is vio-

lated, the corresponding sub-path is discarded and a new

subgoal is chosen on �

hol

between the beginning and the

end of the discarded sub-path.

Figure 4(right) shows the result of the approximation

scheme performed on the holonomic path of Figure 4(left).

All the computation are performed in a few seconds.
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Fig. 5. A path computed by Move3D. The environment is a Mayan

city with a pyramid. The car has to make a U-turn in a constrained

corridor. Initial con�guration is shown on the right. Final con�gu-

ration is the same with opposite direction. This problem necessarily

requires a long detour.

Fig. 6. A path computed for a car-like toy using Move3D.

B. Probabilistic roadmap approach

We have plugged our local method in Move3D, a generic

platform for path planning [27]. Move3D can solve path

planning problems for any system as long as a geometric

description of the system and a local steering method is

provided. We have implemented the steering method de-

�ned in Section III within Move3D. Move3D plans path

using the probabilistic roadmap approach [13]. Free con-

�gurations are randomly picked. A roadmap is built by

connecting to each other con�gurations between which the

steering method returns a local path without collision. A

path planning problem is solved once the initial and goal

con�gurations lie in the same connected component of the

roadmap.

Figures 5 and 6 show paths computed for a car by

Move3D. The maximal steering angle �

max

is 30 degrees

in both cases.

C. Convergence and completeness

The convergence of the approximation step is guaran-

teed to �nish in �nite time as soon as the holonomic path

belongs to an open domain of the collision-free con�gura-

tion space and the steering method accounts for small-time

controllability as de�ned above. The completeness of the

algorithm thus inherits from the completeness of the geo-

metric planner: it is resolution complete.

The probabilistic roadmap approach is probabilistically

complete (i.e. the probability of �nding a path if one exists

tends toward 1 when the searching time increases) if the

steering method accounts for small-time controllability.

Smoothing step: Both planning algorithm provide a se-

quence of elementary admissible paths computed by Steer.

This sequence usually include useless maneuvers and de-

tours. A smoothing step tries to connect pairs of con�g-

urations randomly chosen on the path using the steering

method to shorten the �rst solution path.

Remark on optimal paths The minimal length paths for the

system 2 have been characterized by Reeds and Shepp [23].

This result is proven in the absence of obstacles. Adding

obstacles give rise to a challenging problem: solutions exist

via dynamic programming approaches [3], approximated

approaches [26] or for special classes of obstacles [1], [5]. All

these work do not consider any constraint on the continuity

of the path curvature. Computingminimal length paths for

the system 1 remains today an open problem even in the

absence of obstacle [28]. Therefore the paths computed by

the algorithm presented in this paper are not optimal. We

just argue that they are satisfactory from a practical point

of view.

V. Conclusion

A path for car-like robot is a �nite sequence of curves

linking cusp con�gurations. Between two cusps the curves

should be su�ciently smooth to allow non zero velocity at

any point. In other words, the curvature should be contin-

uous on these curves. The main purpose of this paper is to

propose an e�cient steering method for a car-like vehicle

that computes such piecewise smooth paths. Moreover the

proposed steering method has been integrated within two

motion planning schemes. In the approximation scheme,

the global solution path of Figure 4 has been computed

within a few seconds. In the probabilistic approaches (Fig-

ures 5 and 6) the solution paths have been computed within

a few seconds after a pre-processing time of a few minutes.

The main idea underlying the method proposed in this

paper is to consider the car as a four-dimensional system.

In such a way the constraint on the steering angle is treated

as an obstacle. The approach avoids numerical issues such

as the one arising in previous methods based on clothoids.
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