
HAL Id: hal-02966390
https://laas.hal.science/hal-02966390v1

Preprint submitted on 14 Oct 2020 (v1), last revised 4 May 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HOMOGENEOUS POLYNOMIALS AND SPURIOUS
LOCAL MINIMA ON THE UNIT SPHERE

Jean-Bernard Lasserre

To cite this version:
Jean-Bernard Lasserre. HOMOGENEOUS POLYNOMIALS AND SPURIOUS LOCAL MINIMA ON
THE UNIT SPHERE. 2020. �hal-02966390v1�

https://laas.hal.science/hal-02966390v1
https://hal.archives-ouvertes.fr


HOMOGENEOUS POLYNOMIALS AND SPURIOUS LOCAL

MINIMA ON THE UNIT SPHERE

JEAN B. LASSERRE

Abstract. We consider degree-d forms on the Euclidean unit sphere.
We specialize to our setting a genericity result by Nie obtained in a more
general framework. We exhibit an homogeneous polynomial Res in the
coefficients of f , such that if Res(f) 6= 0 then all points that satisfy
first- and second-order necessary optimality conditions are in fact local
minima of f on S

n−1. Then we obtain obtain a simple and compact
characterization of all local minima of generic degree-d forms, solely in
terms of the value of (i) f , (ii) the norm of its gradient, and (iii) the first
two smallest eigenvalues of its Hessian, all evaluated at the point. In
fact this property also holds for twice continuous differentiable functions
that are positively homogeneous. Finally we obtain a characterization
of generic degree-d forms with no spurious local minimum on S

n−1 by
using a property of gradient ideals in algebraic geometry.

1. Introduction

Let S
n−1 (resp. En) denotes the unit sphere (resp. Euclidean unit ball)

in R
n, and consider the optimization problem

(1.1) f∗ = min
x

{ f(x) : x ∈ S
n−1 } ,

where f is a degree-d form and f∗ is understood as the global minimum.
(For linear f or degree-2 forms, (1.1) can be solved efficiently.)

In this paper we provide a characterization of forms which have no spu-
rious local minimum on S

n−1, i.e., every local minimum on S
n−1 is a global

minimum as for convex polynomials. This issue is important as then any
algorithm that searches for a local minimum (e.g. first- and/or second-order
minimization algorithms) will eventually find the global minimum. To put
it differently, the initial (in general hard) non-convex problem (1.1) becomes
easy to solve.

Along the way we obtain a characterization of points which satisfy first-
and second-order optimality conditions, solely in terms of the norm of the
gradient of f and the first two smallest eigenvalues of its Hessian, which to
the best of our knowledge seems to be new. Hence for generic forms (in a
sense defined later) all local minima are characterized by some property of
the spectrum off the Hessian; namely how its first two smallest eigenvalues
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relate to the value of f , an algebraic property of the form. Indeed in the
context (1.1), convexity plays little if no role for the absence of spurious
local minima. For instance, an arbitrary quadratic form x 7→ f(x) := xTQx
has always a unique local (hence global) minimum (the smallest eigenvalue
of Q) no matter if f is convex or not.

Background. In large-scale optimization problems (as is typical in ma-
chine learning applications), so far only first-order methods (e.g. stochastic
gradient and its variants) can be implemented. Therefore in the quest of the
global minimum it is important to be able to escape spurious local minima
(see e.g. works by Jin et al. [4]) or identify and characterize cases where
no spurious local minimum exist (as e.g. in Ge et al. [9]). See also the
discussions in [4, 9] and references therein.

In this paper, by restricting to optimization of forms on the unit Euclidean
sphere, we characterize in relatively simple mathematical terms the “no
spurious local minimum” situation. This is because for generic forms we
can characterize all local minima as we show that they coincide with all
points that satisfy first- and second-order necessary optimality conditions;
to do so we specialize to our specific context (1.1) a result by Nie [13] in a
much more general context.

We hope that this novel characterization may help in bringing some in-
sights into less restrictive settings.

Even though minimizing forms on the unit sphere is a quite specific prob-
lem, it has important applications For instance:

- Finding the maximal cardinality of α(G) of a stable set in a graph G
reduces to minimizing a cubic form on the unit sphere.

- Deciding convexity of an n-variate form reduces to minimizing a form
on S

2n−1.
- Deciding nonnegativity of an even degree form reduces to minimizing

this form on S
n−1.

- Deciding copositivity of a symmetric matrix reduces to check whether
some associated quartic form is is nonnegative on R

n (equivalently on S
n−1).

- In quantum information, the Best Separable State problem also relates
to homogeneous polynomial optimization; see e.g. [8].

Crucial in the above problems is the search for the global optimum and if
possible rates of convergence of specialized algorithms like e.g., the Moment-
SOS-hierarchy [7, 8] for converging sequences of lower bounds and another
(different) Moment-SOS-hierarchy for converging sequences of upper bounds
described in Lasserre [10] with rates provided in de Klerk and Laurent [6].
For more details on applications of homogeneous optimization on the sphere,
the interested reader is referred to the discussion in Fang and Fawzi [8], de
Klerk and Laurent [6] and the references therein.

Contribution. We restrict (1.1) to degree-d forms, with d > 2 since for
d ≤ 2 the problem has an easy solution in closed form. Our contribution is
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three-fold:

• We first provide the following characterization of standard first-order
and second-order necessary optimality conditions (respectively denoted by
(FONC) and (SONC)).

If x∗ ∈ S
n−1 is a local minimum then (FONC)-(SONC)) reads:

(1.2)

‖∇f(x∗)‖ = d |f(x∗)| and

{
λ1(∇

2f(x∗)) ≥ d f(x∗), if f(x∗) ≥ 0,
λ2(∇

2f(x∗)) ≥ d f(x∗), if f(x∗) < 0,

where∇2f(x∗) is the Hessian of f at x∗ and λ1(∇
2f(x∗)) (resp. λ2(∇

2f(x∗)))
denotes the smallest (resp. second smallest) eigenvalue of ∇2f(x∗).

Notice that (1.2) is stated solely in terms of (i) the value of f , (ii) the norm
of its gradient, and (iii) the first two smallest eigenvalues of its Hesssian,
evaluated at the point x∗. To the best of our knowledge this characteriza-
tion appears to be new. It is also worth noticing that this characterization
remains valid for functions that are positively homogeneous (of degree d)
and twice continuously differentiable, i.e., such that f(λx) = λdf(x) for all
λ > 0 and all x.

• Next, we specialize to our simple setting (1.1) a result of Nie [13] ob-
tained in a more general context of polynomial optimization, where (i) the
criterion and constraints are all arbitrary but with bounded degree (fixed),
and (ii) the number of constraints is also fixed. In contrast, (1.1) has a
single constraint (the sphere constraint) with known associated polynomial
x 7→ ‖x‖2 − 1, and the criterion is also very specific as it is a degree-d form.

In this setting we obtain a single homogeneous polynomial Res ∈ R[f ]

(a certain resultant) where the variables f ∈ R
s0 (with s0 =

(
n−1+d

d

)
) are

coefficients of forms of degree d (fixed). If Res(f) 6= 0 then in fact (FONC)-
(SONC) (equivalently, (1.2)) characterize all local minima of f on S

n−1.
Hence such “nice” forms are “generic” as they are located outside the (real)
zero set of a polynomial in the input space of coefficients, i.e., they belong
to a Zariski open set.

Then for a generic form, checking whether a point x is a local minimum is
remarkably simple. It reduces to check (1.2), i.e., check whether ‖∇f(x)‖ =
d |f(x)| and then compare the value f(x) with the two smallest eigenvalues
of the Hesssian. This is very useful for any local optimization algorithm
since one can easily check whether the curent iterate satisfies (1.2).

• Finally, with any degree-d form f we associate a polynomial g of degree
d such that (i) g coincide with f on S

n−1, and (ii) all points x ∈ S
n−1

that satisfy (FONC) are critical points of g (i.e. ∇g(x) = 0) and the
converse is also true. Then by using our characterization (1.2) of local
minima for generic degree-d forms, and invoking a certain decomposition of
gradient ideals already nicely exploited by Nie et al. [12] for unconstrained
optimization, we provide a characterization of generic forms with no spurious
local minimum on S

n−1.
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Notice that the previous genericity result is important as otherwise if
(1.2) would characterize all local minima only for some small set of “exotic”
degree-d forms, then our characterization of those with no spurious local
minimum would be even more exotic, and so with little value.

At last but not least, we also remark that if a form f can take negative
values then minimizing f on the (convex) Euclidean unit ball En is easier
than on S

n−1 and yields same (negative) minima and minimizers. In this
case one may adapt the previous result and characterize the larger set of
degree-d forms with no spurious negative local minimum on S

n−1.

2. Homogeneous optimization on the sphere

2.1. Notation and preliminary results. Let R[x] denote the ring of poly-
nomials in the variables x = (x1, . . . , xn) and let Σ[x] ⊂ R[x] be there
space of sums-of-squares polynomials (SOS). Denote by R[x]d ⊂ R[x] the
space of polynomials of degree at most d. Let ∇f(x) (resp. ∇2f(x)) de-
note the gradient (resp. Hessian) of f at x. Recall that given polynomials
g1, . . . , gs ∈ R[x], the notation I = 〈g1, g2, . . . , gs〉 stands for the ideal

{
s∑

j=1

hj gj : hj ∈ κ[x] } , (κ = R or C),

of κ[x] generated by the polynomials g1, . . . , gm.
A polynomial f ∈ R[x] is homogeneous of degree d (and called a form)

if f(λx) = λd f(x) for all x ∈ R
n and all λ ∈ R. Then the important

Euler’s identity states that 〈∇f(x),x〉 = d f(x) for all x ∈ R
n. Similarly,

x 7→ ∇f(x) is homogeneous of degree d−1 and so∇2f(x∗)x = (d−1)∇f(x).
Given a polynomial p ∈ R[x]d, its homogenization p̃ ∈ R[x0,x]d is defined

by

(x0,x) 7→ p̃(x0,x) := xd0 p(x/x0), (x0,x) ∈ R
n+1.

Given n forms f1, . . . , fn ∈ R[x] with respective coefficient vectors f1, . . . , fn,
and given the system of polynomial equations

f1(x) = · · · = fn(x) = 0,

the resultant Res(f1, f2, . . . , fn) ∈ R[f1, . . . , fn] is a homogeneous polynomial
in (f1, . . . , fn) with the property:
(2.1)

Res(f1, f2, . . . , fn) = 0 ⇔ ∃u (6= 0) ∈ C
n ; f1(u) = · · · = fn(u) = 0 .

See e.g. [5, 14, 12].
For a real symmetric matrix A ∈ R

n×n, denote by λ1(A) ≤ λ2(A), . . . ≤
λn(A), its eigenvalues arranged in increasing order.

Optimization on the Euclidean sphere. A point x ∈ S
n−1 is said to

be a local minimizer (and f(x∗) a local minimum) if there exists ε > 0
and a ball B(x∗, ε) = {x : ‖x − x∗‖ < ε} such that f(x∗) ≤ f(x) for all
x ∈ S

n−1 ∩B(x∗, ε).
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Below we recall some standard results in optimization, concerned with
necessary and/or sufficient for optimality, in the context of the optimization
problem (1.1); for a detailed account see e.g. Bertsekas [2].

Proposition 2.1. Let f ∈ R[x] and for every x ∈ S
n−1, let x⊥ := {u ∈

S
n−1 : uTx = 0}. If x∗ ∈ S

n−1 is local minimizer of (1.1) then there exists
λ∗ ∈ R such that:

(i) The First-Order Necessary Optimality-Condition (FONC) holds:

(2.2) ∇f(x∗) + 2λ∗x∗ = 0 .

(ii) The Second-Order Necessary Optimality-Condition (SONC)
holds:

(2.3) uT∇2f(x∗)u+ 2λ∗ ≥ 0 , ∀u ∈ (x∗)⊥.

(iii) Conversely, if x∗ ∈ S
n−1 satisfies (2.2) and the Second-Order Suffi-

ciency Optimality-Condition (SOSC)

(2.4) uT∇2f(x∗)u+ 2λ∗ > 0 , ∀u ∈ (x∗)⊥,

then x∗ is a local minimizer of (1.1).

Proof. At x∗ ∈ S
n−1 the gradient of the constraint ‖x‖2 = 1 at x∗ is sim-

ply x∗ (6= 0) and therefore is linearly independent, i.e., a basic constraint
qualification holds true. Therefore (2.2)-(2.3) and (iii) follow from standard
results in non-linear programming [2]. �

The following result is an easy consequence of Proposition 2.1 but useful
for our purpose.

Corollary 2.2. Let f be a degree-d form and x∗ ∈ S
n−1 be a local minimizer.

Then in (2.2), 2λ∗ = −d f(x∗). In addition, (2.2) holds if and only if

(2.5) ‖∇f(x∗)‖2 = d2f(x∗)2 ,

and (SONC) reads:

(2.6) uT∇2f(x∗)u ≥ d f(x∗) , ∀u ∈ (x∗)⊥.

Proof. In (2.2) we obtain

λ∗
f (x

∗) = 〈∇f(x∗),x∗〉 = −2λ∗‖x∗‖2 = −2λ∗,

and therefore ‖∇f(x∗)‖2 = (2λ∗)2 ‖x‖2 = d2f(x∗)2. Then (2.6) follows
from (2.3). Conversely, assume that (2.5) holds at x∗ ∈ S

n−1. Then

‖∇f(x∗)−d f(x∗)x∗‖2 = ‖∇f(x∗)‖2−2d f(x∗)〈∇f(x∗),x∗〉
︸ ︷︷ ︸

=−2d2f(x∗)2

+d2f(x∗)2‖x∗‖2,

that is,

‖∇f(x∗)− d f(x∗)x∗‖2 = ‖∇f(x∗)‖2 − d2f(x∗)2 = 0 ,

and so (2.2) holds with λ∗ = −d f(x∗)/2, and again (2.6) follows from
(2.3). �
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2.2. A distinguished representation. In this section we obtain a more
specific characterization of points that satisfies (FONC)-(SONC) solely in
terms of f(x∗), λ1(∇

2f(x∗)) and λ2(∇
2f(x∗)).

When d ≤ 2 problem 1.1 is easy and completely solved analytically so we
only consider the case d > 2.

Lemma 2.3. Let f ∈ R[x] be a form of degree d > 2, and let x∗ ∈ S
n−1

satisfy (FONC). Define:

(2.7) τ(x∗) := min
u∈(x∗)⊥

uT∇2f(x∗)u .

Then

(2.8) λ1(∇
2f(x∗)) = min [ d (d− 1) f(x∗) , τ(x∗) ] .

If λ1(∇
2f(x∗)) = d (d − 1) f(x∗) then τ(x∗) = λ2(∇

2f(x∗)).
If τ(x∗) = λ2(∇

2f(x∗)) > λ1(∇
2f(x∗)) then λ1(∇

2f(x∗)) = d (d− 1) f(x∗).

Proof. Observe that R
n = θx∗ ⊕ γ (x∗)⊥ where θ, γ runs over R. Then

writing v ∈ S
n−1 as θx∗ + γu with u ∈ (x∗)⊥, one obtains ‖v‖2 = θ2 + γ2.

Next,

vT∇2f(x∗)v = θ2〈x∗,∇2f(x∗)x∗〉+ 2γθ 〈u,∇2f(x∗)x∗〉+ γ2 uT∇2f(x∗)u.

Using homogeneity of f (hence of ∇f(x) as well), yields

〈x∗,∇2f(x∗)x∗〉 = (d− 1)〈x∗,∇f(x∗)〉 = d (d − 1) f(x∗),

and

〈u,∇2f(x∗)x∗〉 = (d− 1)〈u,∇f(x∗)〉 = d (d− 1) f(x∗)uTx∗ = 0,

so that

vT∇2f(x∗)v = θ2 d(d− 1) f(x∗) + γ2〈u,∇2f(x∗)u〉 .

This yields

λ1(∇
2f(x∗)) = min

‖v‖=1
vT∇2f(x∗)v = min [ d (d − 1) f(x∗) , τ(x∗) ],

which is the desired result (2.8). Next, if λ1(∇
2f(x∗)) = d (d − 1) f(x∗)

(hence with associated eigenvector x∗), then

λ2(∇
2f(x∗)) = min

v⊥x
∗ ;‖v‖=1

vT∇2f(x∗)v = τ(x).

Conversely, if τ(x∗) = λ2(∇
2f(x∗)) > λ1(∇

2f(x∗)) then by (2.8), λ1(∇
2f(x∗)) =

d(d− 1) f(x∗). �

We are now in position to characterizes in a simple compact form, all
points of Sn−1 that satisfy (SONC) when f is a degree-d form.
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Corollary 2.4. Let f be a degree-d form with d > 2, and let x∗ ∈ S
n−1

satisfy (FONC). Then x∗ satisfies (SONC) if and only if:

λ1(∇
2f(x∗)) ≥ d f(x∗) if f(x∗) ≥ 0(2.9)

λ2(∇
2f(x∗)) ≥ d f(x∗) if f(x∗) < 0 .(2.10)

Moreover, if f(x∗) < 0 then λ1(∇
2f(x∗)) = d(d− 1)f(x∗).

If d = 2 then x∗ satisfies (SONC) if and only if λ1(∇
2f(x∗)) ≥ d f(x∗)

and there is only one local (hence global) minimum.

Proof. i) d > 2. First consider the case f(x∗) < 0. By (SONC), τ(x∗) ≥
d f(x∗) > d(d−1) f(x∗), and therefore by Lemma 2.3, λ1(∇

2f(x∗)) = d(d−
1) f(x∗) and λ2(∇

2(f(x∗)) = τ(x∗) ≥ d f(x∗).
Conversely, suppose that λ2(∇

2(f(x∗)) ≥ d f(x∗). Then λ1(∇
2f(x∗)) =

d(d − 1)f(x∗) because d(d − 1)f(x∗) < df(x∗) ≤ λ2(∇
2f(x∗)) and d(d −

1)f(x∗) is an eigenvalue. Hence by Lemma 2.3, λ2(∇
2f(x∗)) = τ(x∗) ≥

d f(x∗), i.e., (SONC) holds.
Next, consider the case f(x∗) ≥ 0. Then (SONC) ⇒ (2.9) follows from

Lemma 2.3. Indeed if λ1(∇
2(f(x∗)) = d(d − 1)f(x∗) then λ1(∇

2(f(x∗)) ≥
df(x∗), and if λ1(∇

2(f(x∗)) = τ(x∗) then λ1(∇
2(f(x∗)) ≥ df(x∗) by (SONC).

(2.9)⇒ (SONC). Again by Lemma 2.3, τ(x∗) ≥ λ1(∇2f(x∗)) ≥ df(x∗),
(SONC) holds.

ii) d = 2. Then d(d − 1) = d and f(x) = xTQx for some real matrix
Q. Then each point x∗ that satisfies (FONC) is en eigenvector of Q with
associated eigenvalue f(x∗) ∈ {λ1, λ2, . . . , λn} and ∇2f(x) = 2Q for all x.
So let x∗ satisfies (FONC).

If f(x∗) = λj with j > 1, then necessarily τ(x) = dλ1 ≤ df(x∗) with
equality only if λk = 1 for all 2 ≤ k ≤ j. Hence (SONC) holds only if
f(x∗) = λ1 and therefore λ1(∇

2f(x∗)) = dλ1 ≥ df(x∗). Conversely let
λ1(∇

2f(x∗)) (= dλ1) ≥ df(x∗) then necessarily f(x∗) = λ1 and (SONC)
holds because τ(x) = dλ2 ≥ dλ1 = df(x∗). �

So Corollary 2.4 states that in homogeneous optimization on the Eu-
clidean sphere, first- and second-order necessary optimality conditions can
be easily checked by inspection of the gradient and the first two smallest
eigenvalues of the Hessian of f .

Remark 2.5. It is worth noticing that the characterization of (FONC)
in (2.5) and (SONC) in Corollary 2.4 remains valid for twice continuously
differentiable and positively homogeneous functions of degree d, that is, func-
tions f that satisfy f(λx) = λdf(x) for all λ > 0 and all x ∈ R

n. Indeed
nowhere in the proof we have used the fact that f is a polynomial.

2.3. Minimizing on En rather than on S
n−1. Notice that (2.2) (or equiv-

alently (2.5)) also holds at a local maximum.
In this section we remark that if f is a form, all non positive local minima

of f in (1.1) are also local minima on En. Conversely, all local minima on
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En are non positive and are local minima on S
n−1; hence no local maximum

on S
n−1 can be negative.

So if f can take negative values then it is definitely better and easier (as
En is a convex set) to minimize on En. In doing so one obtains a negative
local minimum and avoid any positive local minimum on S

n−1.

Lemma 2.6. Let f ∈ R[x] be a form of degree d. Then:
(i) Every local minimum f∗ on En satisfies f∗ ≤ 0, and it is attained at

some x∗ ∈ S
n−1; therefore f∗ is also a local minimum on S

n−1.
(ii) Every local minimum f∗ ≤ 0 on S

n−1 is also a local minimum on En.

Proof. (i) Assume that f∗ > 0 is a local minimum on En hence for some
local minimizer 0 6= x∗ ∈ En. Then λx∗ ∈ En for every λ ∈ (0, 1), and
by homogeneity of f one obtains f(λx∗) = λdf(x)∗ = λdf∗ < f∗, in
contradiction with the hypothesis. Next, assume that x∗ ∈ En is a local
minimizer with ‖x∗‖ < 1. Then z∗ := λx∗ ∈ S

n−1 for some λ > 1, and
f(z∗) = λdf(x∗) ≤ f(x∗) = f∗ ≤ 0 and therefore, necessarily f∗ = 0 and
z ∈ S

n−1 is also a (local) minimizer. If f∗ < 0 then necessarily x∗ ∈ S
n−1.

(ii) We proceed by contradiction. Assume x∗ ∈ S
n−1 is a local minimizer

of f on S
n−1 with f∗ ≤ 0 and not a local minimizer on En. Let Bj(x

∗) :=
{y : ‖y − x∗‖2 < 1/j}. Then for every integer j > n0, there exists yj ∈
Bj(x

∗) ∩ En with f(yj) < f(x∗) ≤ 0. Letting zj := yj/‖yj‖ ∈ S
n−1, one

obtains f(zj) = ‖yj‖−df(yj) ≤ f(yj) < f(x∗). By letting j increase one
has exhibited a sequence (zj)j∈N ⊂ S

n−1 converging to x∗ and with cost
f(zj) < f(x∗) for all j, in contradiction with our hypothesis. �

So if f is homogeneous and not nonnegative on R
n, then its global mini-

mum f∗ on S
n−1 is strictly negative. Then Lemma 2.6 states that searching

for the global minimum f∗ is equivalent to searching for the global mini-
mum of f on the larger (but convex) set En. In addition, notice that there
may be no spurious negative local minimum on S

n−1 (hence no spurious
local minimum on En) while spurious positive local minima on S

n−1 may
exist. In such a case any local minimization algorithm on En converging to
a Karush-Kuhn-Tucker point (i.e. a point that satisfies (FONC)) will find
a the global minimum on En (and hence on S

n−1), and optimizing over En
is certainly easier than on S

n−1.

3. No spurious local minimum on S
n−1

In this section we provide a necessary and sufficient condition for a generic
degree-d form to have no spurious local minimum on S

n−1. As a prelimi-
nary result we show that for a generic degree-d form, every point that sat-
isfies (FONC) and (SONC), also satisfies (SOSC). Therefore (FONC)-
(SONC) completely characterizes all local minimizers of (1.1).
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3.1. Genericity of (SOSC). Let d ∈ N be fixed and consider polynomial
optimization problems (POPs) of the form

(3.1) P : inf
x

{ p0(x) : p1(x) = 0 },

where p0 ∈ R[x]d and p1 ∈ R[x]2 with respective coefficient vector p0 ∈ R
s0

and p1 ∈ R
s1 , with s0 =

(
n+d
n

)
and s1 =

(
n+2
n

)
. Then we may and will

identify the input data (p0,p1) of P with a point in R
s0+s1 . The following

result is from Nie [13], adapted to problem (3.1).

Proposition 3.1. (Nie [13]) There exist an integer m and polynomials
ϕ1, . . . , ϕm ∈ R[p0,p1] such that if ϕj(p0,p1) 6= 0 for all j = 1, . . . ,m, then
(SOSC) holds at every point x∗ of P that satisfies (FONC)-(SONC).

Said differently, “generically” every local minimizer of (3.1) satisfies (SOSC)
as the “good” input data of couples of polynomials (p0, p1) in Proposition
3.1, lie in a Zariski open set of Rs0+s1 .

Remark 3.2. Proposition 3.1 is very nice as it provides a purely algebraic
characterization of the locus of (potentially) “bad polynomials”, and more-
over this locus is “negligible” in terms of its Lebesgue volume in the input
space.

However Proposition 3.1 is mainly a result of theoretical nature. Indeed
even though the (ϕj)’s can be obtained in principle, their computation re-
quires computing discriminant and resultants, and so far is limited to very
modest dimensions. However some recent progress described in Bender [1]
suggest that in some cases where structure can be exploited, problems of
larger dimension can be addressed.

Problem (1.1) is an instance of a POP (3.1) with p∗0 = f and p∗1 :=
1 − ‖x‖2, and with respective vector of coefficients p∗

0 and p∗
1. Therefore

if ϕj(p
∗
0,p

∗
1) 6= 0 for all j = 1, . . . ,m, then (SOSC) holds at every local

minimizer of f on S
n−1. However, observe that

- p∗1 is a specific degree-2 polynomial, and
- f is a degree-d form and so also a very specific polynomial as all its

coefficients associated with monomials of degree strictly less than d, vanish.
Therefore it is not clear whether ϕj(p0,p

∗
1) 6= 0 for all j = 1, . . . ,m, for

a generic degree-d form p0 ∈ R[x]. However in the framework of Problem
(1.1) one can provide further insights. Namely it suffices to prove that for
a generic form of degree d, (2.4) holds whenever x∗ satisfies (FONC) and
(SONC) in Corollary 2.2.

Lemma 3.3. Let x∗ ∈ S
n−1 satisfy (FONC) and (SONC), and let

(3.2) x 7→ D(x) := det

[
∇2f(x)− d f(x) I x

xT 0

]

∈ R[x] .

Then (SOSC) ⇔ D(x∗) 6= 0.
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Proof. Observe that D(x∗) = 0 if and only if the matrix in (3.2) has at
least one zero eigenvalue. Equivalently, if and only if there exists a vector
u∗ ∈ (x∗)⊥ and scalars γ, θ, λ with γ2 + θ2 + λ2 = 1, such that

[
∇2f(x∗)− d f(x∗) I x∗

(x∗)T 0

] [
γ u∗ + θ x∗

λ

]

= 0 ,

that is,
(∇2f(x∗)− d f(x∗) I) (γu∗ + θx∗) + λx∗ = 0

θ ‖x∗‖2 = 0 ,

so that θ = 0. Next, multiplying the first equation by γu∗ yields

γ2 (〈u∗,∇2f(x∗)u∗〉 − d f(x∗)) = 0 .

The case γ = 0 (combined with θ = 0) yields λ2 = 1 and (x∗, 0) = (0, 0),
which is not possible. Therefore γ 6= 0 and 〈u∗,∇2f(x∗)u∗〉 = d f(x∗),
which shows that D(x∗) = 0 if and only if (SOSC) does not hold. �

Next, consider the system of (n+ 1) polynomial equations:

∂f(x)

∂xi
− d f(x)xi = 0 , i = 1, . . . , n

D(x) = 0 .

Its homogenization is a system of (n+ 1) forms qi ∈ R[x0,x], which reads:

qi(x0,x) = 0 , i = 1, . . . , n(3.3)

q0(x0,x) (:= D̃(x0,x)) = 0 ,(3.4)

with associated resultant Res(q0, q1, . . . , qn). By (2.1) :

Res(q0, q1, . . . , qn) = 0 ⇔ ∃u ∈ C
n+1 (u 6= 0) ; q0(u) = · · · = qn(u) = 0 .

Moreover, Res(q0, q1, . . . , qn) is an homogeneous polynomial in the coeffi-
cients of f , that is, letting f ∈ R

s0 be the coefficient vector of f ∈ R[x]d,

(3.5) Res(q0, q1, . . . , qn) =: Q(f) ∈ R[f ] .

Theorem 3.4. Consider problem (1.1) and let Q(f) be as in (3.5). If a
degree-d form satisfies Q(f) 6= 0 then every point x∗ ∈ S

n−1 which satisfies
(FONC) and (SONC) also satisfies (SOSC) and is a local minimizer of
f on S

n−1.
Hence this last property is true for a generic degree-d form and so x∗ ∈

S
n−1 is a local minimum of a generic degree-d form f if only if ∇f(x∗) =

d f(x∗)x∗ and

(3.6)

{
λ1(∇

2f(x∗)) ≥ d f(x∗) if f(x∗) ≥ 0
λ2(∇

2f(x∗)) ≥ d f(x∗) if f(x∗) < 0 .

Proof. The vector of coefficients of f is an element f ∈ R
s0 (recall that

s0 =
(
n−1+d

d

)
). Let x∗ ∈ S

n−1 satisfy (FONC) and (SONC). Then (3.3)

holds at 0 6= u := (1,x∗) ∈ R
n+1. But then (3.4) cannot hold otherwise

Q(f) = 0. Hence, D(x∗) 6= 0 and by Lemma 3.3, (SOSC) holds at x∗.
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Finally, the set {f ∈ R
s0 : Q(f)} = 0 is a set of zero Lebesgue measure

in the input space of coefficients, and therefore the property is true for a
generic degree-d form f . Finally (3.6) follows from Corollary 2.4 since all
local minima of a generic degree-d form satisfy (FONC)-(SONC). �

3.2. Forms with no spurious local minimum on Sn−1. We are now
in position to characterize all generic degree-d forms that have no spurious
local minimum on S

n−1. The following result is a direct consequence of
Theorem 3.4

Corollary 3.5. Let f be a degree-d (d > 2) generic form, i.e. such that
Q(f) 6= 0 with Q as in (3.5), and let

Θ := {x ∈ S
n−1 : ‖∇f(x)‖ = d |f(x)| } ,

i.e., Θ is the set of all points of Sn−1 that satisfy (FONC).
i) If f is nonnegative then it has no spurious local minimum on S

n−1 if
and only if f is constant on the set

{x ∈ Θ : λ1(∇
2f(x)) ≥ ‖∇f(x)‖ } .

ii) If f can take negative values then it has no spurious local minimum
on S

n−1 if and only if

{x ∈ Θ : f(x) ≥ 0 ; λ1(∇
2f(x)) ≥ ‖∇f(x)‖ } = ∅ ,

and f is constant on the set

{x ∈ Θ : f(x) < 0 ; λ2(∇
2f(x)) ≥ −‖∇f(x)‖ } .

Proof. By Corollary 2.2, ‖∇f(x)‖ = d|f(x)| on Θ. Then we just apply
Theorem 3.4 when there is only one local (hence global) minimum. �

We next show that the characterization in Corollary 3.5 is also related
to property of gradient ideals of R[x]. We introduce a polynomial with the
following nice property. On S

n−1:
- (i) it coincides with f (up to a multiplicative constant), and
- (ii) all its critical points coincide with points that satisfy (FONC) for

f .
We then invoke a property of gradient ideals nicely exploited in Nie et al.

[12].

Given a degree-d form f , let g ∈ R[x]d be the polynomial

(3.7) x 7→ g(x) := f(x) (1−
d

d+ 2
‖x‖2) , x ∈ R

n .

Proposition 3.6. Let f be a degree-d form and let g ∈ R[x] be as in (3.7).
Then on S

n−1:

(3.8) ∇g(x) = 0 ⇔ ∇f(x) = d f(x) · x ⇔ ‖∇f(x)‖2 = (d f(x))2 ,
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That is, all critical points x∗ ∈ S
n−1 of g satisfy (FONC) for f , and con-

versely, all points x∗ ∈ S
n−1 that satisfy (FONC) for f are critical points

of g.

Proof. Observe that

∇g(x) = ∇f(x)(1−
d

d+ 2
‖x‖2)−

2d

d+ 2
f(x)x .

Therefore if x ∈ S
n−1 then g(x) = 2

d+2f(x) and ,

∇g(x) =
2

d+ 2
∇f(x)−

2d

d+ 2
f(x) · x =

2

d+ 2
(∇f(x)− d f(x)x ) ,

and so ∇g(x∗) = 0 if and only if (2.2) holds with 2λ∗ = −d f(x∗), which
yields the desired result (3.8). �

Moreover, on S
n−1 minimizing f is strictly equivalent to minimizing g

since on S
n−1, g(x) = 2f(x)/(d + 2). Next, with g as in (3.7), define the

gradient ideal:

Igrad(g) := 〈
∂g(x)

x1
, . . . ,

∂g(x)

xn
〉,

and its associated variety

Vgrad(g) := V (Igrad(g)) = {z ∈ C
n : ∇g(z) = 0 }.

Then Vgrad(g) is a finite union of irreducible subvarieties Wj’s, that is,

Vgrad(g) = W0 ∪ W1 . . . ∪Ws ,

with W0 ∩ R
n = ∅ and in addition, g is a real constant on each Wj, j ≥ 1;

see e.g. [3, §2] and [12, p. 592]. So we can regroup all components on which
g takes the same value, and write

(3.9) Vgrad(g) = W0 ∪ W̃1 . . . ∪ W̃r ,

where g(x) = gj on W̃j and gj 6= gi for all 1 ≤ i, j with i 6= j.
We are now in position to provide a characterization of degree-d forms f

with no spurious local minimum on S
n−1.

Theorem 3.7. Consider problem (1.1) where f is a degree-d form (d > 2)
that satisfies Q(f) 6= 0 (with Q as in (3.5)). Then f has no spurious local
minimum on S

n−1 if and only if there is only one index j∗ in (3.9) such that

W̃j∗ ∩ Ω 6= ∅ ,

where

Ω := {x ∈ S
n−1 : f(x) < 0 ; λ2(∇

2f(x)) ≥ −‖∇f(x)‖ }

∪ {x ∈ S
n−1 : f(x) ≥ 0 ; λ1(∇

2f(x)) ≥ ‖∇f(x)‖ } .(3.10)

Proof. Under the assumption of the theorem and (3.8), f has no spurious
local minimum on S

n−1 if and only if f is constant (hence g is constant) on
Vgrad(g) ∩Ω with Ω as in (3.10). In view of the decomposition (3.9) and its
properties, one obtains the statement of the theorem. �
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We have seen that if a degree-d form can take negative values then all
its local minima on En are negative local minima on S

n−1, and the converse
is true. Then for minimizing on En, it is interesting to characterize those
degree-d forms with the less restrictive condition of no spurious negative
local minimum on En (hence on S

n−1).

Corollary 3.8. Consider problem (1.1) where f is a degree-d form (d > 2)
that satisfies Q(f) 6= 0 (with Q as in (3.5)). Then f has no spurious negative
local minimum on S

n−1 if and only if there is only one index j∗ in (3.9) such
that

W̃j∗ ∩ Ω 6= ∅ ,

where Ω = {x ∈ S
n−1 : f(x) < 0 ; λ2(∇

2f(x)) ≥ −‖∇f(x)‖ }.

4. Conclusion

In this paper we have considered homogeneous polynomial optimization
on the Euclidean sphere Sn−1 and completely characterize all points that sat-
isfy first- and second-order necessary optimality conditions, solely in terms
of f , its gradient and the two smallest eigenvalues of its Hessian. This
characterization is valid for a generic degree-d form f where “genericity” is
fully characterized in terms of the resultant of a single system of polynomial
equations. Then for those generic forms f , the absence of spurious local
minimum can be characterized, in particular via some decomposition of a
related gradient ideal.

While the characterization of all points that satisfy first- and second-order
necessary optimality conditions is also valid for positively homogeneous func-
tions, characterizing the absence of spurious minimum is challenging as we
cannot invoke any more algebraic properties of f and the genericity property
needs to be explicitated. Also, the second characterization of no spurious
minimum via the gradient variety is proper to forms. Another issue for fur-
ther investigation is the case where f is an arbitrary degree-d polynomial
and not a form any more.

Acknowledgement: The author gratefully acknowledges Professor Jiawang
Nie (UCSD at San Diego) for fruitful discussions that helped improve the
paper.

References

[1] M.R. Bender. Algorithms for sparse polynomial systems: Gröbner bases and
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