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Abstract - This paper presents an optimization of the Sequential 

Spatial Adaptive Sampling (SSAS) algorithm to accelerate near-

field scanning of printed circuit boards or integrated circuits. The 

first originality of this approach is to configure this algorithm from 

the spatial distribution characteristic of near field on a planar 

surface. The second originality is to propose three selection criteria 

to adjust the targeted accuracy with the objective to reduce the 

measurement time. The low time-consuming algorithm selects 

only measurement points, which carry the most information, in 

order to reduce significantly the number of captured points 

without increasing the measurement error. The analysis of 

measurement results, based on this algorithm applied on two case 

studies, validates its effectiveness compared to the classical full 

regular grid sampling. 

 
Keywords - EMC, near-field scanning, adaptive sampling, 

FPGA, fast measurement. 

 
LIST OF SYMBOLS 

Parameter Definition Unit 

𝛼 Absolute attenuation of field magnitude from the 
maximum level. 

[dB] 

Ax, Ay Represents the size in 2D plane along x axis and y 

axis of space domain of measurement. 
[mm, mm] 

d Final resolution of the full sampling map [mm] 

D Total number of points of the full sampling map at 
a final resolution d. 

 

F Represents a regionalized variable representing the 

near-field radiated by the DUT. 
 

𝐹(𝑝𝑖) Represents an achievement of F at the point 𝑝𝑖. [dBA/m] 

�̂�(𝑝𝑖) Estimation of F value at the position 𝑝𝑖. [dBA/m] 

𝐹𝑀 Final measurement dataset of F.  

hmeas Height of the measurement. [mm] 

M Total number of points where F is measured.  

N Number of points captured during the first step.  

Nq Number of points captured during the step 

q={2..Q} 
 

Ω Represents the space domain of measurement.  

𝑝𝑞𝑖 ind position evaluated during the step q. {𝑥, 𝑦} 

𝑃𝑐(𝑝𝑞𝑖) Local dataset of the Nc points neighboring 𝑝𝑞𝑖 . {𝑥, 𝑦}𝑁𝑐  

𝑃𝑀 Final dataset of the M points where F is measured. {𝑥, 𝑦}𝑀 

𝑃�́� Temporary dataset of the �́� points where F is 

measured during SSAS algorithm process. 
{𝑥, 𝑦}�́� 

 
These results have been obtained in the framework of the IRT Saint 

Exupery’s research projects: ROBUSTESSE and FELINE. We acknowledge 

the financial and in-kind support (background knowledge and services) from 

the IRT Saint Exupery’s industrial and academic members and the financial 
support of the French National Research Agency. October 2013. 

𝑃𝑁 Initial dataset of the N points where F is measured 

during the first step. 
{𝑥, 𝑦}𝑁 

Q Total number of steps. [step] 

rLoop Loop radius of the magnetic near field probe. [mm] 

W Initial sampling step. [mm] 

 

I. INTRODUCTION 

ITH the current industrial economic constraints, it is 

necessary to evaluate electromagnetic behavior of an 

electronic device as early as possible in its development 

process. If simulation tools fail to predict accurately the 

electromagnetic compatibility (EMC) of a complex equipment, 

the EMC engineer must have efficient measurement-based 

investigation tools. The near-field scanning (NFS) approach 

applied on electronic devices has been developed for several 

years. The experimental investigation performances allowed by 

NFS is triggering an increasing interest among the electronic 

equipment and component manufacturers for this EMC 

investigation measurement method. Owing to the precision and 

dexterity of modern automation, the NFS test bench based on a 

well-controlled robot moving probe, represents a powerful and 

cost-effective investigation tool. This contactless measurement 

is carried out above an electronic device under test (DUT) 

without the need to implement specific design constraints. 

Moreover, high measurement results reproducibility (<1dB) [1] 

is ensured by the intrinsically weak sensitivity of the 

experimental read-out from the equipment set-up configuration.  

Despite the aforementioned key features offered by the NFS 

measurements, a limiting factor, hindering a wider industrial 

deployment of this approach, is the effective scanning time 

duration. In investigation context, measuring only one field 

component (Hz) can be enough to identify the root cause of the 

EMC related issue. According to the authors’ experience, 

gathered over more than 10 years of industrial EMC expertise, 

typical near-field measurement may last between 15 minutes up 

to 5 hours.  

However, a complete characterization of the electric and 

magnetic fields above a complex DUT may require much 
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longer measurement time (e.g. in device modeling context). 

Depending from the nature of the DUT (integrated circuit, 

electronic board or electronic equipment), the size of the 

measurement area could be rather large (1cm² up to 400cm²). 

As an example, for a 200x150mm aeronautic calculator scanned 

with 1mm sampling step, more than 30 000 points are necessary 

to properly execute the measurement. Let consider two 

magnetic field components are measured, and 3 seconds read-

out time for each point is within the selected frequency 

bandwidth (typically 30MHz-200MHz with RBW = 9KHz and 

200MHz-3GHz with RBW=120KHz). The total measurement 

time reaches more than 25 hours. Three main factors contribute 

to the total duration of the near-field measurement: 

 Tmeas : the time for the capture equipment (e.g. spectrum 

analyzer) to measure the voltage across the near-field 

probe in the selected frequency range. 

 Tmove : the time for the robot to move the probe across all 

points above the DUT. 

 Tctrl : the computer processing time to control the test 

bench (communication with all equipments and to 

process and save measurement data). 

In general, with currently available robots and computers, in 

the worst case scenario, Tmove and Tctrl account for less than 10% 

of the total measurement time. Communication protocols are 

now optimized to ensure a rapid data transfer from the capture 

equipment. Thus, the main contributor left is Tmeas, that is 

directly linked to the acquisition speed and the number of 

captured points. Therefore, the most straightforward strategy to 

reduce the measurement time consists in decreasing the number 

of points. 

The most effective method to reach this goal is to use a 

spatial adaptive sampling. If a full planar sampling is 

considered (for example the full sampling map in Fig. 11), most 

of the scanned points do not carry significant information about 

the radiated sources. For decades, several adaptive sampling 

approaches have been developed [2],[3] on the wave 

propagation application [4],[5] and for planar surface [6],[7]. 

The planar sampling is suited for electronic equipment 

scanning. The method described in [7] provides a significant 

reduction of the number of samples. Note that the authors 

present no specific indicators to quantify this observation. The 

choice of the full meshing resolution, taken as reference, is not 

justified. The main limitation of this approach is the massive 

used of the Kriging interpolation model. The computation of 

model at each iteration take a lot of time. The method described 

in [8] partially improves this point. A second limitation is the 

use of a random sampling. This sampling approach significantly 

increases the total path between all the captured points, thereby 

increasing the measurement duration. 

The orientation retained in this paper is to reduce the number 

of measurement points by capturing only the points that bring 

the most significant information. The advantages of the 

Sequential Spatial Adaptive Sampling (SSAS) proposed here 

are to be a very low time-consuming algorithm and 

configurable from the characteristics of near-field spatial 

distribution on a planar surface. Several indicators are also 

proposed to clearly quantify the performance of the SSAS and 

facilitate the comparison with other approaches to reduce near-

field scanning duration. The full meshing resolution is fixed by 

the spatial distribution characteristic of the near-field map, 

which defines a reference metric to analyze the reduction of 

measurement duration. 

The first version of this algorithm, introduced in [9], suffers 

of inaccuracies to estimate the maximum emission level. In this 

paper, a modified version is presented to provide a faithful 

representation of the near-field above the DUT. Special 

attention is paid to improve the accuracy around the maximum 

and the local maxima emission levels of the near-field map. 

After a description of the SSAS algorithm in section II and 

the interpolator used for this study in section III, the section V 

discuses about the benefits of using this algorithm based on 

both case studies described in section IV. All the symbols used 

to describe the algorithm are summarized in annex I. 

II. DESCRIPTION OF THE SPATIAL ADAPTIVE SAMPLING 

ALGORITHM  

Let Ω ⊂ ℝ² the space domain of the measurement defined as 

a rectangular planar surface above the DUT. The near-field 

emission above the DUT can be represented by a regionalized 

variable F captured by the near-field probe at several positions 

of Ω defined by the dataset 𝑃𝐷 = {𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑝𝑖 ∈ Ω}𝑖=1
𝐷 .  

𝐹(𝑝𝑖) is the measurement of F at the probe positions 𝑝𝑖  and D 

is the number of samples of F in Ω. The minimum distance 

between each probe position along x and y axes, noted d, is the 

resolution of the final near-field scan. Let 𝐹𝐷 = {𝐹(𝑃𝐷)} the full 

sampling dataset. 

In this paper, only the measurement of the magnitude of the 

field (𝐹 ∈ ℝ) as described in the standard IEC 61967-3 is 

considered [10]. The measurement is carried out at only one 

frequency. The purpose of the SSAS is to provide a reduced set 

of probe positions without introducing a significant loss of 

information on F. At the end, the near-field map with the final 

resolution d is reconstructed by interpolation. 

The SSAS algorithm is based on the Multi-Level Adaptive 

approach [11] initially introduced in [9]. The first step consists 

in collecting an initial dataset of F. Let N the initial number of 

sampling points and 𝑃𝑁 = {𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑝𝑖 ∈ Ω}𝑖=1
𝑁  the initial 

dataset of probe positions. The initial dataset of near-field 

values captured by the probe is defined by 𝐹𝑁 = {𝐹(𝑃𝑁)}. The 

objective is to map Ω with a limited number of points by an 

optimal spatial cover without any a priori knowledge about F. 

The initial dataset 𝐹𝑁 has a serious impact about the optimality 

of the final solution. If the spatial dispersion between samples 

is high, it is possible to lose relevant information on F. In this 

condition, the adaptive algorithm may converge to a bad 

solution. On the contrary, a too small spatial dispersion meshing 

target could induce a large number of initial samples and 

therefore a weak reduction of the measurement time. 

As seen in Fig. 1, several sampling methods [12] could be 

used to cover Ω. Two types of sampling method exist. The 

pseudo-random sampling methods capture samples at random 

positions on Ω. The advantage is that each point of Ω has the 
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same probability to be captured. This is the most popular 

approach but it can introduce a significant increase of the 

number of sampling points in order to minimize the spatial 

dispersion criterion. This parameter is linked to the standard 

deviation of (σg) the distribution of (W) the gap between each 

point and their nearest neighbors on Ω. A low spatial dispersion 

meshing criterion value means that Ω is uniformly meshed 

(σg0). The second approach is the regular sampling. The gap 

W is constant including a more optimal value of the spatial 

dispersion criterion (σg0). This approach is very easy to 

implement and not time-consuming. The drawback of this 

approach is that the sampling dataset may not be statistically 

representative of F. The choice of W value is critical and it must 

be related to the spatial characteristics of F. 

 
Fig. 1. 16-points Sampling methods (-- boundary of Ω; ● pi sampling points) 

If the boundaries of Ω are properly defined, it is reasonable 

to think that sampling the boundaries of Ω does not carry a lot 

of information on F. The field values should be low at the 

boundaries. Adding to a short calculation time, the Sukharev 

regular sampling is used to collect the initial 𝐹𝑁 dataset in the 

proposed SSAS algorithm. 

SSAS algorithm is split in a sequential number of step Q as 

presented in Fig. 2 (Q = 5 steps in this example). At the 

beginning, the full regular grid is built. During the first step1, 

the initial dataset 𝐹𝑁 is collected to capture some points from Ω 

according to the Sukharev grid with a step W. Then, step by step 

the spatial resolution is progressively decreased according to a 

selection criterion that defines whether the next point provides 

enough information about F to be captured.  

As shown in Fig. 2, SSAS algorithm progressively meshes 

Ω. Step by step, the sampling resolution starts with a value of 

W at the first step and it decreases linearly up to the d value. At 

each step q, a set of point 𝑃𝑁𝑞𝑚𝑎𝑥
= {𝑝𝑞𝑖 , 𝑞 = 2. . 𝑄}

𝑖=1

𝑁𝑞𝑚𝑎𝑥  is 

defined to progressively cover Ω, where Nqmax is the maximum 

number of points for the step q.  

 
Fig. 2. Spatial adaptive sampling where Ω={Ax,Ay} is progressively 
covered in 5 steps according to the two input parameters : d and W 

According to the size of Ω = {Ax,Ay} and W, Nqmax is 

bounded by the couple {𝑁𝑞𝑚𝑎𝑥 𝑚𝑖𝑛
, 𝑁𝑞𝑚𝑎𝑥 𝑚𝑎𝑥

}. Fig. 3 shows an 

example of the Nqmax boundaries for W=2.d =2mm (Q=3 Steps). 

 
Fig. 3. {𝑁𝑞𝑚𝑎𝑥𝑚𝑖𝑛

, 𝑁𝑞𝑚𝑎𝑥𝑚𝑎𝑥
} definition for W=2mm and Q = 3steps. 

A selection criterion (cf §II.C) is used to define whether the 

point pqi must be captured during the step q. Let’s define 𝑃𝑁𝑞 =

{𝑝𝑞𝑖}
𝑖=1

𝑁𝑞
, as the set of 𝑁𝑞 ≤ 𝑁𝑞𝑚𝑎𝑥

 sampling points which are 

captured (according to the selection criterion) during the step q. 

Step by step, the sum of the captured points 𝑀 = 𝑁 + ∑ 𝑁𝑞
𝑄
𝑞=2  

progressively increases at an exponential rate according to q as 

shown in Fig. 4.  

 
Fig. 4. Evolution of the sampling points 𝐷 = 𝑀𝑚𝑎𝑥 = 𝑁 + ∑ 𝑁𝑞𝑚𝑎𝑥

𝑄
𝑞=2  

evaluated by the SSAS algorithm according to the Q parameter 

The dataset 𝐹𝑀 = {𝐹(𝑃𝑀), 𝑃𝑀 = {𝑝𝑖}𝑖=1
𝑀 ∈ Ω} is built from 

all points captured step by step, where 𝑀 defines the total 

number of measured points of F at all specific positions 𝑃𝑀. The 

objective is to minimize M (and so Nq) while ensuring that the 

dataset FM allows building an estimator that minimizes the 

prediction error of F at any position on Ω. 

SSAS algorithm requires only three input parameters: d, W 

and the selection criterion. In the following, the definition and 

the justification of these three parameters are discussed. 

A. Definition of the final sampling resolution d 

The final resolution value d can be defined from the type of 

source. Regardless of the measurement height, the spatial 

distribution of the radiated emission is linked to the nature of 

DUT. A power electronic device or a silicon of microcontroller 

do not produce the same near-field spatial distribution. 

Consequently, the resolution of near-field probe is selected 

according to the type of measured sources (DUT). In this case, 

the final sampling resolution d is linked to the probe resolution. 

A commonly accepted rule-of-thumb is that a magnetic probe 

resolution is equal to the radius rloop of the near-field probe used 

to measure F. Therefore, the lower value of the final sampling 

resolution d will be set to the probe radius value. 

 d = 𝑟𝑙𝑜𝑜𝑝 (1) 

B. Definition of the initial sampling step W 

The initial sampling step W is an important parameter. With 
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a large sampling step, relevant information about F may be 

missed out. A small sampling step increases the number of 

sampling points, which conflicts with the objective of reducing 

the measurement time. In this paper, the development of a 

relationship between the number of points N of the initial 

dataset and the spatial characteristics of F is proposed. In near-

field region, the distribution of the magnetic field is related to 

the current that flows through the DUT. That is why the 

magnetic near-field components are usually measured (using 

Hxy or/and Hz magnetic probes as presented in Fig. 5). 

 

 
Fig. 5. Spatial distribution of Hy (Hx) and Hz magnetic field above a wire 

(Wtrace≈0) with 1mA excitation current at 100MHz, with and without ground 
plane (at z=0) and hwire=1mm, hmeas=1mm 

Let’s consider a current i flowing through a long thin wire 

above ground plane. From the spatial distribution of each 

magnetic near-field component, some relevant spatial 

characteristics about F can be extracted. For example, the 

maximum of Hxy magnetic field appears as a main lobe above 

the wire. The initial spatial sampling rate W could be defined in 

order to ensure that a least two measurement points are placed 

within this lobe. Let 𝑊𝐻𝑦(𝛼) and 𝑊𝐻𝑧(𝛼) be the width of this 

lobe according to the attenuation 𝛼 (dB) compared to the 

maximum value of magnetic field as defined in Fig. 5. 

Both 𝑊𝐻𝑦(𝛼) and 𝑊𝐻𝑧(𝛼) parameters can be extracted from 

derivation of the radiated electric dipole equation [13] 

summarized in Fig. 6. 

 
 

  𝐻𝜑 = 𝐾𝐻 ⋅ 𝑠𝑖𝑛(𝜃) ⋅ (
𝑗

𝛽𝑟
+

1

𝛽2𝑟2)  (2) 

Fig. 6. Radiating electric dipole equation 

Let 𝜃 = 𝜋
2⁄ . From the radiated electric dipole equation, the 

expression of the three magnetic field components can be 

rewritten in the Cartesian coordinate system according to (3-6): 

 𝐻𝑥 = 0   (3) 

 𝐻𝑦 = 𝐾𝐻 ⋅ 𝛽2 ⋅ (
𝑗

𝛽𝑟
+

1

𝛽2𝑟2) ⋅ 𝑠𝑖𝑛(𝜑) (4) 

 𝐻𝑧 = 𝐾𝐻 ⋅ 𝛽2 ⋅ (
𝑗

𝛽𝑟
+

1

𝛽2𝑟2) ⋅ 𝑐𝑜𝑠(𝜑) (5) 

 𝑟 = √𝑦2 + ℎ𝑚𝑒𝑎𝑠
2 =

𝑦

𝑐𝑜𝑠(𝜑)
=

ℎ𝑚𝑒𝑎𝑠
2

𝑠𝑖𝑛(𝜑)
 (6) 

The modulus of magnetic field components can be written 

from both geometric parameters y and hmeas, as given by (7-8). 

 |𝐻𝑦| =
𝐾𝐻.ℎ𝑚𝑒𝑎𝑠

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

3 2⁄ . √1 + 𝛽2. (𝑦2 + ℎ𝑚𝑒𝑎𝑠
2) (7) 

 |𝐻𝑧| =
𝐾𝐻.𝑦

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

3 2⁄ . √1 + 𝛽2. (𝑦2 + ℎ𝑚𝑒𝑎𝑠
2) (8) 

The previous equations can be simplified if the 

term 𝛽2. (𝑦2 + ℎ𝑚𝑒𝑎𝑠
2) ≪ 1. So, in free space, if r < 3 cm 

and 𝑓 ≪ 15 𝐺𝐻𝑧, the parameters 𝑊𝐻𝑦(𝛼) and 𝑊𝐻𝑧(𝛼) are not 

significantly impacted by the frequency in the near-field region 

and they only depend on both geometrical parameters y and 

hmeas. Consequently, the maximum absolute value of magnetic 

field components can be extracted from the derivation of the 

simplified equations of Hy and Hz, as given by (9-12) 

 
𝜕|𝐻𝑦|

𝑑𝑦
≈ (

𝑦

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

3 2⁄ )

′

=
3𝑦

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

5 2⁄ = 0  (9) 

 ⇨ 𝑦𝐻𝑦𝑚𝑎𝑥
= 0 ⇨ |𝐻𝑦𝑚𝑎𝑥

| ≈ 𝐾𝐻 .
1

ℎ𝑚𝑒𝑎𝑠
2 (10) 

𝜕|𝐻𝑧|

𝑑𝑦
≈ (

ℎ𝑚𝑒𝑎𝑠

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

3 2⁄ )

′

= 0 (11) 

 ⇨ 𝑦𝐻𝑧𝑚𝑎𝑥
= ±

ℎ𝑚𝑒𝑎𝑠

√2
  ⇨ |𝐻𝑧𝑚𝑎𝑥

| ≈ 𝐾𝐻 .
2

3.√3.ℎ𝑚𝑒𝑎𝑠
2 (12) 

The distance y0 that separates the maximum Hy field and 
the maximum field attenuated by α value is given in (13) and 

(14). In (15), 𝑊𝐻𝑦(𝛼) parameter is obtained by doubling y0, as 

shown in Fig. 5. 

 
|𝐻𝑦𝑚𝑎𝑥|

|𝐻𝑦|
≈

(𝑦2+ℎ𝑚𝑒𝑎𝑠
2)

3 2⁄

ℎ𝑚𝑒𝑎𝑠
3 = 𝛼 (13) 

 𝑦0𝐻𝑦
(𝛼) = ±ℎ𝑚𝑒𝑎𝑠√𝛼2/3 − 1 (14) 

 𝑊𝐻𝑦(𝛼) = 2. |𝑦0𝐻𝑦
| (𝛼)  (15) 

The same type of development is applied to extract 𝑊𝐻𝑧(𝛼) 

from Hz expression and for the configuration where the dipole 

is above an ideal ground plane. In the last case, the image theory 

is used to take into account the ideal ground plane. With the 

hypothesis that the trace width (Wtrace) is lower than the height 

of measurement hmeas, the relationship between W(α) and hmeas 

can be simplified by polynomial regression as presented in 

Table I.  
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Table I 

The relationship between 𝑊𝐻 parameters and hmeas according to a specific 

attenuation for each magnetic field components. 

 Attenu

ation 

Extraction from electric dipole equation 

 Without Ground plane With Ground plane 

WHxy 

-3dB ≈1.02·hmeas+0.37·hmeas² ≈0.70·hmeas-0.1·hmeas² 

-6dB ≈1.53·hmeas+0.64·hmeas² ≈1.01·hmeas-0.13·hmeas² 

-10dB ≈2.16·hmeas+1.1·hmeas² ≈1.34·hmeas-0.17·hmeas² 

WHz 

-3dB ≈1.39·hmeas+0.6·hmeas² ≈0.91·hmeas-0.05·hmeas² 

-6dB ≈1.85·hmeas+1.25·hmeas² ≈1.15·hmeas-0.025·hmeas² 

-10dB ≈2.49·hmeas+2.85·hmeas² ≈1.42·hmeas+0.005·hmeas² 
 

If α is fixed at 10 dB, the minimum sampling step 𝑊𝐻 for all 

the magnetic field components, for the initial dataset, can be 

estimated by : 

 𝑊𝐻 ≤ 2 ⋅ ℎmeas (16) 

A progressive spatial sweep is done on a number of 

sequential step 𝑄. 𝑄 could be defined from d and 𝑊𝐻 according 

to (17) where I is the biggest integer that validates 
𝑊𝐻

𝑑⁄ ≥

2𝐼 or according to (18) from the setup parameters definition. 

 𝑄 = 2 ⋅ 𝐼 + 1 (17) 

 𝑄 ≤ 2 ⋅ ⌊𝑙𝑜𝑔2(ℎ𝑚𝑒𝑎𝑠 𝑟𝑙𝑜𝑜𝑝⁄ )⌋ + 3 (18) 

According to the definition of 𝑄, the effective sampling step 

value W, defined by (19) and (20), determines the number of 

points N collected during the initial step. 

 𝑊 = d ⋅ 2(𝑄−1) 2⁄  (19) 

 𝑁 = ⌈
𝐴𝑥

𝑊
𝑑⁄

− 0.5⌉ ⋅ ⌈
𝐴𝑦

𝑊
𝑑⁄

− 0.5⌉ (20) 

If the size of Ω is close to W, the number of points collected 

during the first step could be low. Therefore, it is necessary to 

add a new constraint on W to ensure a minimum number of 

points N to start the algorithm. In this case, the problem may 

also be poorly defined and it can be necessary to increase the 

size of Ω to improve N. 

C. Definition of selection criterion 

After the collect of the initial dataset, the adaptive part of 

SSAS algorithm refines the sampling step by step (q>1). The 

definition of this selection criterion is the main point of this 

algorithm. The objective is to minimize M, by ensuring that the 

final set of M measurements of F allows building an estimator 

that minimizes the prediction error of F at any position on Ω. 

During iteration on the Nqmax points in the step q, the selection 

criterion validates whether the value 𝐹(𝑝𝑞𝑖) must be measured 

in order to minimize Nq. 

This criterion is based on the standard deviation approach 

calculated from a local estimator �̂�(𝑝𝑞𝑖) which estimates F at 

the position pqi. Let 𝑃�́� = {𝑝𝑚}𝑚=1
�́� ⊂ 𝑃𝑀  the temporary dataset 

resuming all the measurement positions of F already captured. 

𝑃𝐶(𝑝𝑞𝑖) = {𝑝𝑐}𝑐=1
𝑁𝑐 ⊂  𝑃�́� defines a local dataset including all 

the positions neighboring pqi as shown in Fig. 7. 

Selection criterion:   ∃𝑝𝑐| |𝐹(𝑝𝑐) − �̂�(𝑝𝑞𝑖)| > 𝑘 (21) 

In (21), the dataset 𝐹(𝑝𝑐) represents all field values captured 

at the positions 𝑝𝑐 of the 𝑃𝐶  dataset. As resumed by (21), the 

point pqi is captured whether the field deviation between �̂�(𝑝𝑞𝑖) 

and 𝐹(𝑝𝑐) is upper than k. k defines the maximum tolerated 

deviation of the field, between a point and its neighbors in M, 

to ensure an exact reconstruction of F. The definition of k 

provided in section II.C.2).  

 
Fig. 7. Definition of the datasets of points in the neighbourhood of 𝑝𝑞𝑖 

1) Definition of the local interpolator 

The selection criterion is computed for each point of 𝑃𝑁𝑞 ∈

𝑃�́�. It is mandatory to limit the calculation time of this criterion. 

The simplest way to create an estimator is to calculate the mean 

value of the neighbors. To increase the effect of the closest 

points of pqi, the mean value of the neighboring points is 

weighted by the distance between pqi and each point pc. The 

Inverse Distance Weighting (IDW) interpolator [14] is a widely 

used method for the spatial estimation (22). Its very short 

computing time makes it a good choice to compute �̂�(𝑝𝑞𝑖). 

Note that during the optimization phase, the weighting 

coefficient value p was fixed at 3. 

 �̂�(𝑝𝑞𝑖) = ∑ 𝜆𝑗(𝑝𝑞𝑖). 𝐹(𝑝𝑗)
𝑁𝑐
𝑗=1  (22) 

Where: 

  𝜆𝑗(𝑝𝑞𝑖) =
𝑤𝑗(𝑝𝑞𝑖)

∑ 𝑤𝑙(𝑝𝑞𝑖)
𝑁𝑐
𝑙=1

 ;     𝑤𝑢(𝑝𝑞𝑖) = (
1

𝑑(𝑝𝑢, 𝑝𝑞𝑖) 
)

𝑝

 (23) 

2) Definition of the k parameter 

k defines the acceptable field deviation between two nearest 

points to keep enough information about F. In (21), if k value is 

low, the probability to capture 𝑝𝑞𝑖  is high. Otherwise, if k value 

increases, the probability to capture 𝑝𝑞𝑖  decreases. In order to 

adjust the algorithm performance according to the objective, 

three definitions of k parameter are hereafter proposed. . The 

section V.B presents a comparative study of the SSAS 

algorithm using these three k parameters. 

According to the definition of W (with α=10dB), the 

maximum deviation from the mean was fixed at 10dB. (24) 

defines the first simple definition of k, used in [9]. 

 𝑘1 = 10 [𝑑𝐵]  (24) 

Near-field measurement is often used to localize the main 

root cause of EMC issues, which can be identified by a hot spot 

of the near-field emission map. From an industrial point of 

Far neighborhood 

Close neighborhood 

𝑝𝑞𝑖  : Point in test during step q 

𝑃𝐶  : Closest neighbors of 𝑝𝑞𝑖 

𝑃𝐹 ⊃ 𝑃𝐶 : Far neighbors of 𝑝𝑞𝑖 

𝑃𝑀
′ ⊃ 𝑃𝐹 : All points captured 
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view, the maximum level of radiated emission coupled to the 

accuracy of measurement are the most important information. 

Therefore, it is mandatory to focus on both parameters during 

the development of the SSAS algorithm.  

The mean error added by the SSAS algorithm degrades the 

accuracy of measurement. k1 must be upgraded to improve the 

accuracy of measurement around the position of the maximum 

emission level of F. A second definition of k is proposed: k2, 

defined by (25). It takes into account whether the value �̂�(𝑝𝑞𝑖) 

is close to the maximum level of 𝐹𝑀
′ . 

𝑘2 = 𝐾𝐴 + (𝐾𝐵 − 𝐾𝐴) ⋅ √
max(𝐹𝑀

′ )−�̂�(𝑝𝑞𝑖)

max(𝐹𝑀
′ ) −min(𝐹𝑀

′ )
  [𝑑𝐵]  (25) 

Where:  𝐾𝐵 ≥ 𝐾𝐴 ≥ 0 

Note that  𝑘1 is a special value of 𝑘2 where 𝐾𝐵 = 𝐾𝐴 = 10𝑑𝐵. 

As shown in Fig. 8, if  �̂�(𝑝𝑞𝑖) is close to the maximum level 

of 𝐹𝑀
′  dataset, 𝑘2 tends to 𝐾𝐴. Otherwise, if  �̂�(𝑝𝑞𝑖) is close to 

the minimum level of 𝐹𝑀
′  dataset, 𝑘2 tends to 𝐾𝐵. Both 

coefficients 𝐾𝐴 and 𝐾𝐵 must be defined in order to find a 

tradeoff between the number of point M and the mesh 

optimization around the maximum level of 𝐹𝑀
′  dataset. 

According to the tolerated deviation from the mean,  𝐾𝐵 is set 

at 𝑘1 = 10dB.  𝐾𝐴 defines the probability that 𝑝𝑞𝑖  is captured 

when �̂�(𝑝𝑞𝑖) is close to the maximum level of 𝐹𝑀
′  dataset. If 𝐾𝐴 

is set at zero, all the points around the maximum level will be 

captured, increasing the number of points M. It is accepted that 

the repeatability of near-field measurement is lower than 1dB 

[1]. So, in order to limit the number of sampling points M, 𝐾𝐴 

is fixed to 1dB.  

The definition of k2 is relevant to refine the meshing around 

the maximum level of the near-field emission map. Note that 

not all the sources should produce the same maximum level. 

Actually, several local maxima should likely appear on the 

near-field emission map. With 𝑘2 definition, measurement will 

be only refined around the maximum level of F and not around 

all these local maxima. To solve this issue, (26) proposes a last 

improvement of the definition of k parameter.  

𝑘3 = 𝐾𝐴 + (𝐾𝐵 − 𝐾𝐴) ⋅  

 √
max(𝐹𝑀

′ )−�̂�(𝑝𝑞𝑖)

max(𝐹𝑀
′ ) −min(𝐹𝑀

′ )
 ⋅ min (1, √max(𝐹𝐹(𝑝𝑞𝑖))−�̂�(𝑝𝑞𝑖)

10
 ) [𝑑𝐵] (26) 

With �̂�(𝑝𝑞𝑖) ≤ max (𝐹𝐹 (𝑝
𝑞𝑖

)) ≤ max(𝐹𝑀
′ ) 

𝑘3 introduces a proportional coefficient relative to the gap 

between �̂�(𝑝𝑞𝑖) and max (𝐹𝐹(𝑝𝑞𝑖)) the local maximum value 

extracted from a local sub-dataset of 𝐹𝑀
′  centered around 𝑝𝑞𝑖  and 

named 𝐹𝐹(𝑝𝑞𝑖) = {𝐹 (𝑃𝐹(𝑝𝑞𝑖)) , 𝑃𝐶 ⊂ 𝑃𝐹 ⊂  𝑃𝑀
′ }. Here 

𝑃𝐹(𝑝𝑞𝑖) = {𝑝𝑓}
𝑓=1

𝑁𝐹
 defines the set of the NF far neighboring 

positions from 𝑝𝑞𝑖  as defined in Fig. 7.  

Fig. 8 illustrates the relationship between the different 

definitions of k parameter and the �̂�(𝑝𝑞𝑖) value. If �̂�(𝑝𝑞𝑖) is 

close to the max (𝐹𝑀
′ ), max (𝐹𝐹(𝑝𝑞𝑖)) tends to max(𝐹𝑀

′ ) 

resulting that 𝑘3 tend to 𝐾𝐴. 

 
Fig. 8. Relationship between the three k parameters and the �̂�(𝑝𝑞𝑖) value 

 
Fig. 9.  Evolution of  the three k parameters according to the local field values 

Now let’s consider 𝑝𝑞𝑎 close to a local maximum, if �̂�(𝑝𝑞𝑎) 

tends to max (𝐹𝐹(𝑝𝑞𝑎)), 𝑘3 also tends to 𝐾𝐴. Expression of 𝑘3 

builds a tradeoff between the proximity of field value at 𝑝𝑞𝑖  with 

both the maximum of 𝑃𝑀
′ and the local maxima. 𝑘3 improves 

the meshing around all the local maximum level of 𝐹𝑀
′  with a 

meshing enhancement for the highest local maxima. Fig. 9 

presents an example of the evolution of the three k parameters 

values according to the field distribution. For readability 

purpose, the field is plotted in only one spatial dimension. The 

difference between k2 and k3 parameters is clearer in this figure. 

k3 tends to zero for all local maxima (max (𝐹𝑀
′

) included), 

leading to a large capture probability, while k2 tends to zero only 

for the max (𝐹𝑀
′

). With k3, the meshing is more refined around 

all local maxima. 

III. DEFINITION OF THE INTERPOLATOR 

After SSAS algorithm process, M points irregularly 

distributed on Ω are captured. To reconstruct the near-field map 

with the final resolution d, it is necessary to interpolate the field 

from the FM dataset captured in Ω. The evaluation of the spatial 

sampling is linked to the performance of the interpolator. The 

more extensively interpolation is performed the higher is the 

number of constraints about spatial sampling which must be 
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relaxed and hence the number of samples which will be 

reduced. The most popular spatial interpolation methods are 

listed below:  

 Inverse Distance Weighting (IDW) interpolator [14] 

 Triangulated Irregular Network (TIN) interpolator also 

called Delaunay triangulation interpolator [15] 

 Kriging interpolator [16] 

A. Kriging interpolator 

The Kriging interpolation method is used here. If we accept 

a slightly longer computing time, it is the most powerful spatial 

interpolator among all the methods cited above. The Kriging 

interpolator, also known as Gaussian Process regression, is an 

efficient spatial unbiased estimator with minimum variance. 

The Scikit library on Python [18] has been used to process the 

adaptive meshing interpolation. The interpolator is initialized 

with the Exponential kernel. 

B. Definition of the comparison indicators  

In order to compare the performance of the SSAS algorithm 

according to the W and Q parameters (19) and (17), and the 

choice of the definition of the parameter k (21), it is necessary 

to define some indicators related to the objective of the SSAS 

algorithm. The main purpose of this algorithm is to reduce the 

measurement time, which is directly related to the total number 

M of measured points. The error at interpolated points is another 

important indicator. It defines the loss of information resulting 

of the SSAS algorithm process. The logarithmic error value is 

computing according to (27). 

𝐸𝑟𝑟𝑜𝑟𝑑𝐵(𝑃𝑞𝑖) = 20. |𝑙𝑜𝑔10 (�̂�(𝑝𝑞𝑖)) − 𝑙𝑜𝑔10 (𝐹 (𝑝𝑞𝑖))|  (27) 

In (27), �̂�(𝑝𝑞𝑖) represents the interpolated value of F based on 

Kriging interpolator and 𝐹(𝑝𝑞𝑖) represents the true value of F 

at the position 𝑝𝑞𝑖. An important feature of the Kriging 

interpolator is that it is an unbiased estimator, so that it 

introduces no interpolation error on the input measurement 

points (𝐸𝑟𝑟𝑜𝑟𝑑𝐵(𝐹𝑀) = 0).  

The error is computed only for the highest values of F. It is 

not relevant to compute interpolation error for the field values 

close to the noise floor of the measurement receiver. So only 

the points having a field value greater than 

[max(FM)+2·min(FM)] /3 are used to evaluate the error. The 

number of points M, the mean error and the maximum 

ErrorOnLocalMax are the most important indicators to evaluate the 

performance of the SSAS algorithm.  

Note that the maximum error value can be affected by the 

outlier on the upper tail of the error distribution due to the 

spatial location error introduced after interpolation process. 

Therefore, it is not a relevant indicator.  

Other indicators can also be added. The 95 % quantile and 

the number of points affected by an error less than 3 dB 

(NbPtserror ≤ 3dB) are evaluated since they are not affected by the 

outlier. ErrorOnMax, defines the error on the maximum of F. It is 

relevant to validate the ability of SSAS algorithm to capture the 

maximum level of near-field map without significant error. This 

indicator must be completed by the maximum ErrorOnLocalMax to 

take into account the error on local maxima of F. The complete 

indicators list used in this study is listed in Table II. 

Table II : Indicators for SSAS Algorithm Evaluation 

Indicators Definition Unit 

Time The complete time of measurement 

including TAlgo, TMeas and TMove. 

[min:s] 

TAlgo Algorithm processing time [min:s] 

TMeas Time to capture FM. [min:s] 

TMove Total time to move probe on PM. [min:s] 

M Total number of captured points. [pts] 

MeanError Mean interpolation error value. [dB] 

ErrorOnLocalMax Error values measured on each local 

maximum value of FM. 

[dB] 

ErrorOnMax Error value measured on the maximum 

value of 𝐹𝑀. 

[dB] 

Quantile@95% Maximum value of the 95% of points 

with the lowest error. 

[dB] 

NbPtserror ≤ 3dB Number of points where the interpolation 

error is lower than 3dB. 

[%] 

 

IV. PRESENTATION OF THE VALIDATION CASE STUDIES  

A. Case study #1 from simulation data: “Dipoles” 

The first proposed case study (Fig. 10) is a 75 mm x 75 mm 

printed circuit board (PCB) simulation model including six 

traces routed in air at 1mm above an ideal ground plane. 

 
Fig. 10. Description of case study #1 “Dipoles” 

The six traces have the same width equal to 0.05 mm and are 

routed in three different directions (0°, 45° and 90°). They are 

excited by a sinusoidal current source at 100 MHz. The 

magnitude of the three magnetic field components radiated by 

the wire is computed [19] from analytical equations (4)(5) at 

several heights hmeas (1, 5 and 18 mm). Image theory is used to 

take into account the ideal ground plane. The sampling 

resolution d is 0.5 mm. 

B. Case study #2 from measurement data: “FPGA” 

Fig. 14 presents the XILINX Spartan 6 FPGA device test 

board. The frequency range of the magnetic near-field 

measurements starts at 5 MHz and increases up to 1.8 GHz. 

Two types of magnetic field probe are used: one for the Hx and 

Hy components and another for the Hz component. The spatial 

resolution of the probes is 0.5 mm. The probes are moved at 1.1 

mm above the FPGA package. The height of measurement is 

fixed at hmeas=1.85mm above the top of the IC substrate. More 

information about the configuration of the FPGA is presented 

in [17].  

For both case studies, it is possible to define the theoretical 

optimal configuration of W and Q parameters according to (19) 

and (18), as summarized in Table III. 

Scanning surface 

75mm 

75mm 

d1 

d2 

d3 
d4 

d6 

d7 

Dipoles 
Current 

[mA] 
d1 

d2 

d3 

d4 

d5 

d6 

0.03 

0.01 

0.33 

1 

0.001 

1 
 

di i [mA] 
@100MHz 

Ground plane 

Dipole 
1mm 
h

meas
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Fig. 11. Evaluation of the impact of W and Q parameters : Case Study #1 “Dipoles” (Hy measurement, hmeas = 5mm, Selection criterion=k1) (Note: “KO” means 
that the reconstructed of the near-field map is erroneous)  

NbPts (M/D)  “Dipoles” @100MHz  MeanError NbPts (M/D) “FPGA” @ hmeas=1.85mm MeanError 

 [%] hmeas=1mm hmeas=5mm hmeas=18mm [dB] [%] @489.9MHz @1.394GHz   [dB] 

 

 

 
Fig. 12. Evaluation of the impact of W, Q and k parameters on both case study  (Note: “x” means the reconstructed of the near-field map is erroneous) 

 

Fig. 13. Near field measurement results vs. frequency for each field component on the case study #2 “FPGA” – k1 – 5 Steps 

W=64mm / Q=15Steps 

68.34 / 1.33 

4.21 dB / 88.94% 

1.18 / 21.46 

1020 (1) – (4.5%) 

1050 (0.391 + 29.83 + 1020) 

W=1mm / Q=3Steps W=2mm / Q=5Steps W=4mm / Q=7Steps W=8mm / Q=9Steps W=16mm / Q=11Steps W=32mm / Q=13Steps (A) Full Sampling  
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Fig. 14. Description of cases studies #2 : “FPGA” 

Table III : SSAS Algorithm Parameters 

Parameters 
Values for case studies 

Unit 
#1 #2 

rLoop 0.5 0.5 [mm] 

hmeas 1 / 5 / 18 1.85 [mm] 

𝑄 ≤ 3 + 2 ⋅ ⌊𝑙𝑜𝑔2(ℎ𝑚𝑒𝑎𝑠 𝑟𝑙𝑜𝑜𝑝⁄ )⌋  5 / 9 / 13 5 [step] 

𝑊 = 𝑟𝑙𝑜𝑜𝑝 ⋅ 2(𝑄−1) 2⁄  2 / 8 / 32 2 [mm] 

Data of both case studies, including measurements, are 

available [20] for non-commercial and academic use only. 

V. VALIDATION OF THE PROPOSED SSAS ALGORITHM 

A. Discussion about W and Q parameters 

The parameters d, W (and Q) initialize the SSAS algorithm. 

W and Q are coupled and define the resolution of the first step 

where all points are captured. Expression (19), in section II, 

gives the optimal expression of W according to the 

measurement height hmeas. Fig. 11 and Fig. 12 present the results 

of the SSAS algorithm applied on case study #1 for several 

measurement heights and several values of the parameter W 

(and Q).  

 

The configuration for the optimal value of W (and Q) is 

underlined in light red in Fig. 11 and Fig. 12. It can be observed 

that the optimal values of W and Q offer the best configuration 

to minimize the number of points while maintaining the lowest 

mean error. If W is set with a greater value than this optimal 

value proposed in (19), the number of measurement points is 

not significantly reduced but the interpolation error increases 

rapidly leading to an erroneous reconstruction of the near-field 

map. This situation is marked in Fig. 12 by ‘x’ including the 

number of points at zero and no value for the mean error. It is 

particularly true when the k1 criterion is used. It seems that 

criteria k2 and k3 are more robust than k1. These results validate 

the optimal choice of W and Q which are defined by the simple 

equations (19) and (18) according to the measurement 

configuration (hmeas and rloop). 

B. Discussion about selection criteria 

Three selection criteria were introduced in section II.C. The 

selection criterion must be chosen according to the 

measurement objective. The selection criterion k1 is the best 

choice to reduce the measurement time at the price of an 

increase in the interpolation error. k2 criterion reduces the 

interpolation error around the point of maximum level and k3 

around all the local maxima. However, it leads to an increase of 

measurement points. This general conclusion is illustrated in 

Fig. 15 which shows an evaluation of the number of points M,  

the MeanError and the maximum ErrorOnLocalMax for both case 

studies using the three selection criteria.  

 MeanError [dB] 

NbPts (M/D) [%] MaxErrorOnLocalMax [dB] 

   
 @80MHz / Q=5Steps @264.9MHz / Q=5Steps  

   
 @489.9MHz / Q=5Steps @1.394GHz / Q=5Steps  

  
 hmeas=5mm / Q=9Steps hmeas=18mm / Q=13Steps 

Fig. 15. Comparison of the SSAS algorithm performances according to the 
three selection criteria for both case studies 

Fig. 16 completes this evaluation in a large frequency range. 

Using k3 criterion, the error value can be greatly reduced (the 

MeanError < 1 dB and the MaxErrorOnLocalMax < 2 dB) without 

a significant increasing of the number of points. Compared to 

the k1 and k2 criteria, using k3 criterion leads to an increase of 3 

to 6 % in the measurement points, which never exceeds 21 % 

of the total number of points of the near-field map with the final 

resolution d. With k1, the number of measurement points never 

exceeds 15 % of the total number of points, the MeanError 

value remains less than 1.6 dB, but the MaxErrorOnLocalMax value 

can reach up to 8 dB. 

Fig. 17 presents the spatial meshing characteristics according 

to the three selection criteria. Using k1 reduces significantly the 

number of points to refine the meshing around area with high 

field deviation. However, due to the low field deviation around 

the strongest values, the actual maximum is likely going to be 

missed out. Using k2 improves this issue by refining the 

meshing around the position of the maximum of field without 

affecting the local maxima. With k3, the sampling around the 

maximum of field and all maxima is improved, leading to a 

significant reduction of the interpolation error as confirmed by 

Fig. 15. 

As presented by Fig. 13 and Fig. 15, the frequency does not 

affect the performance of the SSAS algorithm. Only the spatial 

distribution of the field determines the reduction of the number 

of points. The larger the dispersion of the near-field values 

spatial distribution, the higher is the number of points increased 
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by the SSAS algorithm in order to keep enough information on 

F and hence to ensure a satisfactory reconstruction of the field 

within Ω. 

 NbPts MeanError [dB] MaxErrorOnLocalMax [dB] 

   
 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 

    
 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 

   
 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 8MHz 80MHz 1.8GHz 

Fig. 16. The evaluation of the errors indicators vs. frequency according to the 
three selection criteria on FPGA case study (Q=5-Steps) 

 
Fig. 17. Spatial meshing evaluation according to the three selection criteria on 
FPGA case study – Hz field component @264.9MHz 

C. Discussion about the measurement time optimization  

The measurement time optimization is the main objective of 

this study. Fig. 18 shows a comparison of the measurement time 

according to the selection criterion. The duration of the 

acquisition of 𝐹𝑀 by measurement equipment (TMeas), the near-

field probe displacement time on 𝑃𝑀 (TMove) and the execution 

time of the SSAS algorithm (TAlgo) are analyzed separately. 

Noteworthy is that the trends of these three durations are not 

impacted by the frequency. They only depend from the number 

of points. In order to calculate the measurement time, one 

second per point is taken as assumption. A constant speed of 20 

cm/s is considered to compute the probe displacement time 

(probe acceleration and deceleration phases are not taken into 

account). 

The SSAS algorithm reduces the number of measurement 

points in order to select only the points that give the most 

information about F. As shown in Fig. 18, the acquisition time, 

which is proportional to the number of measurement points, 

occurs for 99% of the measurement time (Tctrl is here 

neglected). Whatever is the configuration, the probe 

displacement time and especially the SSAS algorithm 

 processing time are negligible.  

SSAS algorithm processing represents less than 0.1% of total 

measurement time. It validates our objective to develop a low 

time-consuming algorithm. The probe displacement time is 

negligible compared to the acquisition time since it represents 

less than 1% of the total measurement time. This is the benefit 

of using a regular mesh (Sukharev grid) and a progressive 

sequential sweep described in Fig. 2. Moreover, the distance 

between two consecutive points is minimized. 

TMeas [s]:  

  
TMove [s]: 

   
TAlgo [s]: 

  
 Dipoles @100MHz  @ 80MHz @ 489.9MHz @ 1.394GHz  
 hmeas=5mm / Q=5Steps  FPGA - hmeas=1.85mm / Q=5Steps  

Fig. 18. Comparison of the different contributions to the measurement 
duration according to the selection criterion of the SSAS algorithm 

Table IV summarizes the measurement times with the full 

grid measurement and using SSAS algorithm configured with 

the three selection criteria. On case study #1 “Dipoles”, SSAS 

algorithm reduces measurement time to half an hour whereas 

the full measurement lasts more than six hours. SSAS algorithm 

ensures a reduction of the measurement time according to the 

frequency by a factor of 7 to 13 using selection criterion k1 and 

by a factor of 5 to 10 using k3. 

Table IV 

COMPARISON OF THE MEASUREMENT TIMES WITH THE DIFFERENT 

SELECTION CRITERION ON BOTH CASE STUDIES 

Configuration (Hy) 

 

Full 

Sampling 

Selection criterion 

k1 k2 k3 
“Dipoles”     

 hmeas=  1mm; Q=  5steps 6h20m58s 33m08s (  9%) 37m04s (10%) 38m23s (10%) 

 hmeas=  5mm; Q=  9steps 6h20m58s 21m43s (  6%) 34m42s (  9%) 36m31s (10%) 

 hmeas=18mm; Q=13steps 6h20m58s 24m12s (  6%) 40m59s (11%) 49m27s (13%) 

“FPGA”     

 @      80MHz; Q=5steps     56m11s   4m50s (  9%)   6m48s (12%)   8m20s (15%) 

 @ 264.9MHz; Q=5steps     56m11s   8m08s (14%) 10m39s (19%) 11m22s (20%) 

 @ 489.9MHz; Q=5steps     56m11s   5m26s (10%)   7m24s (13%)   8m18s (15%) 

 @  1.394GHz; Q=5steps     56m11s   4m03s (  7%)   4m55s (  9%)   5m44s (10%) 

VI. CONCLUSION 

The main objective of this work was to reduce the 
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measurement time of the near-field scanning of electronic 

equipment. To reach this goal, an existing progressive 

Sequential Spatial Adaptive Algorithm [9] has been updated 

and improved. The proposed SSAS algorithm presents a 

negligible computation time. In fact, depending from the device 

under test, the measurement time is reduced by a factor 5 to 13 

according to the spatial distribution of F and the choice of the 

selected criterion. 

Two points ensure the accuracy of the measurement method. 

At first, the W parameter definition guarantees that the minimal 

dataset is collected during the first acquisition step. Next, this 

paper presents two new selection criteria to complete the first 

proposal method [9]. A special attention has been given in the 

selection criterion definition to limit the error around the local 

maxima of the near-field map. The proposed approach keeps 

this error lower than 1 dB, which is the estimated near-field 

measurement error. 

The proposed selection criteria are based only on the 

magnitude of the field captured at one frequency. The 

performances of this algorithm on multi-frequency range 
and vector measurements have not been evaluated. The 
definition of a specific criterion would be certainly 
necessary. These questions will be addressed in future 
works. 
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