
HAL Id: hal-02987044
https://laas.hal.science/hal-02987044

Preprint submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand, David E Smith

To cite this version:
Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand, David E Smith. FAPE: a Constraint-based Planner
for Generative and Hierarchical Temporal Planning. 2020. �hal-02987044�

https://laas.hal.science/hal-02987044
https://hal.archives-ouvertes.fr

ar
X

iv
:2

01
0.

13
12

1v
1

 [
cs

.A
I]

 2
5

O
ct

 2
02

0

FAPE: a Constraint-based Planner for

Generative and Hierarchical Temporal Planning

Arthur Bit-Monnot1, Malik Ghallab1, Félix Ingrand1, and David E. Smith2

1LAAS-CNRS, Université de Toulouse, INSA, CNRS, France
2Formerly at NASA Ames Research Center, USA

Abstract

Temporal planning offers numerous advantages when based on an expressive representa-
tion. Timelines have been known to provide the required expressiveness but at the cost of
search efficiency. We propose here a temporal planner, called FAPE, which supports many of
the expressive temporal features of the ANML modeling language without loosing efficiency.

FAPE’s representation coherently integrates flexible timelines with hierarchical refinement
methods that can provide efficient control knowledge. A novel reachability analysis technique
is proposed and used to develop causal networks to constrain the search space. It is employed
for the design of informed heuristics, inference methods and efficient search strategies. Ex-
perimental results on common benchmarks in the field permit to assess the components and
search strategies of FAPE, and to compare it to IPC planners. The results show the proposed
approach to be competitive with less expressive planners and often superior when hierarchi-
cal control knowledge is provided. FAPE, a freely available system, provides other features,
not covered here, such as the integration of planning with acting, and the handling of sensing
actions in partially observable environments.

1

http://arxiv.org/abs/2010.13121v1

Contents

1 Introduction 3

2 A Hierarchical Time-oriented Representation 4
2.1 Main Components . 4
2.2 Tasks and Action Templates . 7
2.3 Chronicles . 8
2.4 Plan: Transformations and Solutions . 10
2.5 Discussion . 12

3 A Plan-Space Planning Procedure 12
3.1 Overview . 12
3.2 Flaws and Resolvers . 13
3.3 Constraint Networks . 18
3.4 Search Space: Properties and Exploration . 20

4 Search Control 22
4.1 Instantiation and Refinement Variables . 22
4.2 Reachability Analysis . 24
4.3 Causal Network . 33
4.4 Search Strategies . 39

5 Empirical Evaluation 42
5.1 Evaluation of the Different Components of the Planner . 42
5.2 Empirical Comparison with IPC Planners . 50

6 Related work and discussion 52
6.1 PDDL Temporal Planners . 52
6.2 Hierarchical planners . 53
6.3 Timeline based Representations and Planners . 55

7 Conclusion 56

References 58

A Overlength Proofs 64
A.1 Proof of Soundness and Completeness (Proposition 3.2) . 64
A.2 Proof of the convergence of earliest appearances (Proposition 4.1) . 65
A.3 Proof that late nodes are unreachable (Proposition 4.2) . 66

B Example of ANML domains 69
B.1 Dock Worker . 69
B.2 Blocks-PartHier . 70
B.3 Blocks-FullHier . 70

2

1 Introduction

There are numerous advantages in making time a central entity in planning. An explicit time
representation permit in particular:
• to model action duration;

• to model effects, conditions, and resources borrowed or consumed by an action at various
moments along its span, as well as delayed effects;

• to handle goals with relative or absolute temporal constraints;

• to plan with respect to expected future exogenous events;

• to plan with actions that maintain a value while being executed, as opposed to just changing
that value (e.g., tracking a target, keeping a spring latch in position);

• to handle the concurrency of actions that have interacting and joint effects; and

• to allow for flexible plan execution through dispatching and synchronization mechanisms.
Several success stories in the application of automated planning have illustrated these advantages,
e.g., in logistics [Wil+08] or space planning [Jon+00].

Planning with explicit time relies either on a state-space representation or a timeline representation.
The former uses temporally qualified durations between states, i.e., instantaneous snapshots of
the entire system. The latter describes possible evolutions of individual state variables over time,
i.e., partial local views of state trajectories, together with temporal constraints between elements
of timelines.

Recent contributions to temporal planning have generally used a state-space representation
based on PDDL2.1 [FL03]. This is explained by the wealth of search techniques, heuristics, and
test domains that have been developed for state-space planning, resulting in significant perfor-
mance improvements. However, these planners, but of a few exceptions, do not have all the
abilities listed above, in particular the handling of required concurrency.

The timeline representation is more expressive, as it focuses on local changes and partial
plans, which correspond to entire sets of states. A few timeline modeling languages have
been proposed, e.g., IxTeT [GL94], AML [Rab+99], NDDL [FJ03], or the more expressive ANML
[SFC08]. The timeline representation is often perceived as having an efficiency drawback com-
pared to state-space planning: it mostly relies on plan-space search algorithms and CSP tech-
niques, for which known heuristics are not as efficient as state-space heuristics. Only a few
planners have been proposed for the timeline languages. In particular, to our knowledge, no
planner but FAPE fully support the temporal or the hierarchial features of the powerful ANML
language.

Our purpose in developing FAPE (Flexible Acting and Planning Environment) was mainly to
benefit from the expressivity of a representation combining timelines and task hierarchy. We
developed a reachability analysis and heuristics which make our timeline approach competitive.
We specifically report here on the following contributions:
1. We introduce a temporal planning representation, which consistently blends timelines with

hierarchical refinement methods to allow for additional control knowledges;

2. We present a planning algorithm for the proposed representation, analyze its search space
and prove its soundness and completeness;

3. We propose an original reachability analysis method for a relaxed problem integrating earliest
times; we use it to develop specific causal networks and potential causal chains toward goals;

3

we exploit the preceding structures for the design of informed heuristics;

4. We propose search strategies that take advantage of the designed heuristics and the hierarchi-
cal control knowledge, when available;

5. We present empirical evaluation results on classical benchmarks of the field, which allows
us to assess the various components and search strategies of FAPE, and to compare it to
IPC planners; the results show that FAPE is competitive with less expressive planners, and
generally superior when hierarchical control knowledge is introduced.

Other features of FAPE are not covered here for the sake of focus, e.g., the integration with acting,
or observation actions in partially observable environments [BMGI16; BM16].1

The following five sections detail successively the five preceding items. Related work is
discussed in Section 6, before a conclusion.

2 A Hierarchical Time-oriented Representation

Our representation is based on the ANML language [SFC08]. We use the same notion of actions
whose conditions and effects are stated as assertions on multi-valued state variables. Assertions
are related to an action’s start and end timepoints through temporal constraints and can appear
at arbitrary times. As in ANML, our representation allows for describing the expected evolution
of the environment and temporally extended goals.

A subtle difference with ANML lies in the encoding of hierarchical knowledge. A high-
level action in ANML has subactions expressed through additional assertions on dedicated state
variables. Instead, we provide a separate notion of task which relates to the HTN planning. This
is complemented by an optionnal notion of task-dependency, encoding the fact that an action must
be part of a task network as in a classical HTN. Task-dependency enables to handle generative
planning as well as HTN planning domains in a uniform way.

Example 2.1 (Running Example). For the purpose of illustrating the representation, we use a
restricted version of the dock worker domain of [GNT04]. There, a harbor with several connected
docks is served by automated trucks and cranes that move containers between different locations
to load and unload ships. We have three primitive actions:
• Move(r, d, d′): truck r moves from dock d to dock d′ if the two are connected . A dock can
contain a single truck. The duration depends on the distance between d and d′.

• Load(r, c, d): container c is loaded onto a truck r if both are in the same dock d where a crane
is available to perform the loading.

• Unload(r, c, d): container c is unloaded from a truck r in a dock d if c is currently on r and r
is at dock d where a crane is available to perform the task.

We are interested in planning the loading and unloading of ships that will be docked at a specific
location for a limited amount of time. �

2.1 Main Components

Temporal Variables and Constraints. We use a quantitative time representation based on time-
points. We rely on temporal variables (e.g. t, t1), designating a timepoint and ranging over

1FAPE and the tested domains are publicly available at: https://github.com/laas/fape

4

https://github.com/laas/fape

integers. Temporal variables are constrained through the usual arithmetic operators to specify
absolute (e.g. t ≥ 9) or relative constraints (e.g. t1 + 1 ≤ t2 ≤ t3 − 2). Temporal variables are
attached to specific events such as the start of an action or the instant at which a given condition
must be fulfilled.

Atemporal Variables and Constraints. We consider a finite set of domain constants O, e.g.,
docks or trucks in Example 2.1. A type as a subset of O, e.g., Docks = { dock1, dock2, dock3 }.
A type can be composed from other types by union or intersection (e.g. Vehicles = Ships ∪
Trucks).

An object variable o with type T is a variable whose domain dom(o) is a subset of T. A numeric
variable i is a variable whose domain is a finite subset of the integers.2

A constraint over a set of variables { x1, . . . , xn } is a pair (〈x1, . . . , xn〉, γR) where γR ⊆
dom(x1)× · · · × dom(xn) is the relation of the constraint, giving the allowed values for the tuple
of variables. γR can be given as a table of allowed values or a function, e.g., travel-time(d, d′) = δ

is met when δ is the time it takes from d to d′.
Numeric variables can also appear in temporal constraints. For instance, (travel-time(d, d′) =

δ) ∧ (ts + δ ≤ te) enforces a delay δ between the timepoints ts and te whose value is constrained
by the time needed to travel from d to a location d′.

State variables and fluents. The state evolution over time is captured by multi-valued state
variables. A state variable maps time and a tuple of objects to an object. For instance loc :
Time× Trucks → Docks gives the position of a truck over time. The time parameter of state
variables is usually kept implicit and we say that the state variable sv(x1, . . . , xn) has the value v
at time t meaning sv(t, x1, . . . , xn) = v. A complete definition of the state of the environment at a
given time is specified by taking a snapshot of all state variables at that moment.

A fluent is a pair of a state variable sv and its value v, denoted 〈sv=v〉, and is said to hold at
time t if sv has the value v at time t.

Temporally Qualified Assertions. An assertion is a temporally qualified fluent. We use per-
sistence and change assertions to express knowledge or constraints on the evolution of a state
variable (as in [GNT16, Sec. 4.2.1]).

A persistence assertion, denoted 〈[ts, te] sv=v〉, requires the state variable sv to keep the same
value v over the temporal interval [ts, te]. In planning domains, persistence assertions are typi-
cally used to express requirements such as goals or pre-conditions of actions. For instance, the
persistence assertion 〈[400, 500] loc (r1)=dock2〉 can represent the objective that the truck r1 is
at dock2 at time 400 and stays there through time 500. We also allow a persistence assertion to
be defined at an instant t (denoted [t]) rather than over an interval.

A change assertion, denoted 〈[ts, te] sv : v1 7→ v2〉, asserts that the state variable sv changes
from having the value v1 at time ts to having value v2 at time te. It expresses knowledge on the
evolution of the environment, whether it results from the proper dynamics of the environment
or is a consequence of an agent’s activity. For an action, a change assertion represents a pre-
condition that must be met (sv must have the value v1 at time ts) and an effect of the action (sv
will have the value v2 at time te). Over the temporal interval]ts, te[the value of sv is unspecified.

2Note that numeric variables are distinct from temporal variables, which can have infinite domains.

5

This allows to represent durative change on a state variable without explicitly specifying the
details of the transition. For instance, the change assertion 〈[100, 150] loc (r1) :dock1 7→ dock2〉,
means that the truck r1 will move from dock1 to dock2 over the temporal interval [100, 150]. The
details of its location over]100, 150[are unspecified.

A temporally qualified assignment, denoted 〈[t] sv :=v〉, asserts that the state variable sv will
take the value v at time t. For instance the assignment 〈[0] loc (r1) :=dock1〉 states that the truck
r1 is at location dock1 at the initial time. An assignment 〈[t] sv :=v〉 is a special case of a change
assertion 〈[t− 1, t] sv : any 7→ v〉 where any is an unconstrained variable that can take any value.

Assertions can involve object and temporal variables. A planner has to find activities to be
performed and constraints on the variables such that the expected evolution of the system is both
feasible and achieves the desired goals.

Given a temporally qualified assertion α = 〈[ts, te] sv=v〉 or α = 〈[ts, te] sv : v1 7→ v2〉, we
denote ts and te as start(α) and end(α) respectively.

Timelines. A timeline is a pair (F , C) where F is a set of temporal assertions on a state variable
and C is a set of constraints on object and temporal variables appearing in F . A timeline gives
a partial view of the evolution of a state variable over time. For instance, the following timeline
describes the whereabouts of a truck at different points in time.

Example 2.2. The following is a timeline containing three temporally qualified assertions on the
state variable loc (r1).

〈{ [t1, t2] loc (r1) :dock1 7→ d, [t2, t3] loc (r1)=d, [t4, t5] loc (r1) : d 7→ dock4 }

{ t1 < t2 < t3 < t4 < t5, connected(dock1, d), connected(d, dock4) }〉

t1 t2 t3 t4 t5

l
o
c
(r
1
)

time
dock1

d

d

dock4

The truck r1 is at dock1 at time t1. Over the time span [t1, t2], it moves to a yet undetermined
dock d. Its location over]t1, t2[is unspecified. The truck is then constrained to stay at d until
time t3. Its whereabouts are not constrained over the period]t3, t4[. However it must be at the
same dock d at time t4 from where it will move to dock4. The constraints impose a total order on
all temporal events and restrict the possible instantiations of d to places connected to both dock1

and dock4. �

A timeline may have uninstantiated temporal and object variables: it represents a set of
possible evolutions of a state variable. In Example 2.2, the state variable loc (r1) will go through
different values depending on the value assigned to d. Assertions related to an instantiated state
variable, such as loc(r) for r ∈ trucks, refer to a set of timelines.

A timeline (F , C1) is an instantiation of a timeline (F , C2) if (i) C2 ⊆ C1 and (ii) all variables
in F and C1 are instantiated. While a state variable can only have a single value, it is possible for
two assertions to require conflicting values for the state variable. For instance, two persistences

6

〈[t1, t2] sv=v〉 and 〈[t3, t4] sv=v′〉 are conflicting if ([t1, t2] ∩ [t3, t4] 6= ∅) ∧ (v 6= v′). These
constraints need to be taken into account in a timeline to unsure its consistency.

Definition 2.1 (Possible Consistency of a Timeline). A timeline (F , C) is possibly consistent if it
has an instantiation (F , C ′) such that C ′ is a consistent set of constraints and the state variable
has no conflicting values in this instance.

Definition 2.2 (Necessary Consistency of a Timeline). A timeline (F , C) is necessarily consistent if
all its instantiations are consistent timelines.

A timeline that is not possibly consistent cannot describe a valid evolution of its state variable.
A necessarily consistent timeline does not contain any conflicting assertions regardless of the
choices made when binding its variables: it must have a set of constraints such that (i) no two
change assertions can overlap, (ii) no persistence can overlap a change assertion, (iii) any two
overlapping persistences must be of the same value (by definition of a timeline, they are on the
same state variable). The timeline of Example 2.2 is necessarily consistent because the temporal
constraints impede assertions from overlapping.

Definition 2.3 (Causal Support). An assertion α ∈ F is causally supported in a timeline (F , C),
for α = 〈[t1, t2] sv=v〉 or α = 〈[t1, t2] sv : v 7→ v′〉 iff:
• there is an assertion β ∈ F that produces 〈sv=v〉 at a time t0 ≤ t1; β, called the causal
supporter of α, is either an assignment 〈[t0] sv :=v〉 or if it is a change 〈[t, t0] sv : v′′ 7→ v〉; and

• sv keeps the value v from the end of β until the start of α, i.e., 〈sv=v〉 holds in [t0, t1].
Any assignment assertion 〈[t] sv :=v〉 is a priori causally supported. �

In Example 2.2, the persistence assertion, [t2, t3] loc (r1)=d is causally supported by the first
change assertion, [t1, t2] loc (r1) : dock1 7→ d, since (i) their temporal intervals meet, and (ii) the
fluent 〈loc (r1)=d〉 produced is the one required. However none of the two change assertions
are causally supported. This might seem surprising for the second change assertion because the
fluent 〈loc (r1)=d〉 is produced by the first assertion. This fluent is however not constrained to
hold during]t3, t4[and, as a consequence, loc (r1) might still be modified during that interval.
This second change assertion could be made causally supported by the addition of a persistence
condition ending at t4, e.g. [t3, t4] sv=d. Another way of supporting it would be the introduction
of a new change assertion 〈[t, t4] sv : d′ 7→ d〉, such an assertion would itself need to be causally
supported.

To have all assertions of a timeline causally supported, the earliest one must be an assignment,
which is by definition a priori supported.

2.2 Tasks and Action Templates

An action has a unique name and a set of parameters. The pre-conditions and the effects of
an action are encoded by a set of temporally qualified assertions. A set of constraints restrict
the allowed values taken by the parameters and temporal variables in the action. We augment
this usual view of an action with hierarchical features: (i) we define a set of parametrized task
symbols T , (ii) each action is associated with a task symbol in T representing the task this action
achieves, (iii) an action can have a set of subtasks representing tasks that must be achieved for
this action to provide its desired effects. Furthermore, an action can be marked as task dependent
in which case it cannot be used freely by the planner but only as a subtask of some other action.

An action template A is a tuple (head(A), task(A), dependent, subtasks(A),FA , CA) where:

7

• head(A) is the name and the list of typed parameters of A. The parameters refer to object
variables. Temporal variables are kept implicit in the parameter list; tstart and tend are respec-
tively the start and end timepoints of A. An action template may also use a duration variable
which is not a binding argument nor a free variable, but a mean to couple temporal and object
constraint networks (see Section 3.3.3).

• task(A) ∈ T is the task it achieves with parameters from those of A.

• dependent ∈ {⊤,⊥} is true if the action is task dependent, otherwise the action is said to be
free. The intuition (formalized in the next section) is that a task dependent action can only be
inserted in a plan if it achieves a task whose achievement was required either in the problem
definition or through a subtask of another action.3

• subtasks(A) is a set of temporally qualified subtasks. For any action instance in a plan, a
subtask 〈[ts, te] τ〉 states that the plan should also contain an action instance a that (i) starts
at ts, (ii) ends at te, and (iii) has task(a) = τ. The timepoints ts and te need not be grounded;
they are related to other timepoints through temporal constraints, possibly inducing a partial
order on the subtasks.

• (FA, CA) is a set of possibly consistent timelines. FA provides the conditions and effects of
A on some state variables through persistence and change assertions. CA imposes constraints
on the possible instantiations of the temporal and object variables of A.
In hierarchical planning, one often distinguishes between high-level actions (or abstract tasks)

and primitive actions (or primitive tasks). A high-level action provides a method to achieve a given
task, expressed as a set of conditions and subtasks. A primitive action is intended to be executed
with a command whose effects are represented as assertions on state variables. While our model
does not make a distinction between the two, we will use the same terminology when needed to
convey the role of an action in a planning model.

Figure 1 illustrates a primitive action template for moving a robot r from dock d to d′. It
requires r to be in d at tstart, and d′ to be empty at some point t′ before tend. Its effects are to make
the location of the truck be d′ at tend, and to have d empty at some point t after tstart and before t′.
The action has no subtask and is the only achiever of the eponymous task move(r, d, d′). Figure 2
exemplifies high-level actions offering two methods for achieving the transport task of moving
a container c to a location d.

2.3 Chronicles

A chronicle is a triple (π,F , C) where π is a partial plan composed of action instances and unre-
fined tasks while (F , C) is a set of timelines. A chronicle is a temporal and hierarchical extension
of partial plans, as in the plan-space planning approaches. It extends the existing notion of
chronicle [GNT16, Sec. 4.2.4] with a new member π that keep tracks of tasks and actions in the
plan.

3The current draft of the ANML manual proposes a notion similar to our task-dependency, by the introduction of
the keyword motivated [Sch+13]. When placed in an action A, an instance a of A can only appear in the plan if there is
an action instance b that has a subtask achieved by a and such that [start(a), end(a)] ⊆ [start(b), end(b)]. Conceptually,
the presence of such an action must be “motivated” by the presence of a higher level action that requires its presence
and temporally envelops it. Our task-dependency setting differs as it does not require the “motivating” task to be part
of an action nor the subaction to be temporally contained by the said action. This simple difference allows us to
motivate the presence of actions from tasks placed in the problem definition. This capability is key in relating our
model to HTN planning in which all actions are derived from the initial task network.

8

move(r, d, d′)
task: move(r, d, d′)

dependent: no
subtasks: ∅

assertions: [tstart, tend] loc (r) : d 7→ d′

[tstart, t] occupant (d) : r 7→ nil

[t′, tend] occupant (d
′) :nil 7→ r

constraints: connected(d, d′) = ⊤
tend − tstart = travel-time(d, d′)
t < t′

Figure 1: An action to move a truck r from dock d to dock d′. The duration of the action
(tend − tstart) is set to be equal to the travel time from d to d′. connected(d, d′) = ⊤ is a constraint
on objects variables and requires that the two docks be connected, a temporally invariant property
of the planning domain. Left implicit for readability are the types of variables and the constraints
tstart < tend, tstart < t and t′ < tend.

m1-transport(c, d)
task: transport(c, d)

dependent: yes
assertions: [tstart, tend] pos (c)=d

subtasks: ∅

constraints: ∅

m2-transport(r, c, ds, d)
task: transport(c, d)

dependent: yes
assertions: [tstart]loc (r) = ds

[tstart]pos (c) = ds

subtasks: [tstart, t1] load(r, c, ds)
[t2, t3] move(r, ds, d)
[t4, tend] unload(r, c, d)

constraints: connected (ds, d)
ds 6= d
t1 < t2 < t3 < t4

Figure 2: High-level actions for achieving the task of transporting a container c to a location d.
The first one requires nothing to be done if c is already at its destination d. The second one states
that transporting c from ds to d can be achieved by a sequence of load, move and unload subtasks,
using a truck r.

9

A planning domain is a tuple Σ = (O,SV , T ,A) specifying a set of typed domain objects
O, a set of state variables SV , a set of task symbols T , and of action templates A. A planning
problem is a pair 〈Σ, φ0〉 where the chronicle φ0 = (π0,F0, C0) defines:
• π0 a set of temporally qualified tasks that must be achieved.

• F0 a set of temporally qualified assertions that describe the initial state of the environment
and its expected evolution together with a set of goals. The initial state and its evolution
is typically depicted by assignment assertions (that do not require causal support). Goals are
typically represented by persistence assertions whose causal support will require additional
activity to be considered by the planner.

• C0 is a set of constraints restricting the allowed values for the temporal and object variables
in π0 and F0. They express temporally extended goals, timed initial literals and ordering
constraints on the tasks to be achieved.
The chronicle below represents a planning problem with two trucks r1 and r2, initially at

dock1 and dock2 respectively, and a ship that is expected to be docked at pier1 at a future
interval of time. The problem is to perform a transport task of moving container c1 that is
initially on ship1 to dock3 and to have the two trucks in their initial locations at the end. Note
that φ0 states the planning objectives (i) as tasks to perform, as in HTN, and (ii) as goals to satisfy,
as in generative planning.

φ0

tasks: [t, t′] transport(c1, dock3)
assertions: [tstart] loc (r1) :=dock1

[tstart] loc (r2) :=dock2

[tstart] on (c1) :=ship1

[tstart + 10] docked (ship1) :=pier1

[tstart + δ] docked (ship1) :=nil

[tend] loc (r1)=dock1

[tend] loc (r2)=dock2

constraints: tstart < t < t′ < tend ∧ 20 ≤ δ ≤ 30

Figure 3: The initial chronicle of a planning problem.

Planning with this representation is a sequence of transformations of a chronicle, starting
from φ0, until a solution plan is found. We now describe the possible transformations and the
conditions a solution plan must meet.

2.4 Plan: Transformations and Solutions

HTN planners build plans by systematically decomposing tasks, while generative planers synthe-
sizes them by iteratively introducing new action instances. In FAPE, both processes are combined,
interleaved with the insertion of temporal and binding constraints.

2.4.1 Task Refinement

A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by decomposing
an unrefined task τ ∈ πφ with a new action instance a such that task(a) = τ. This transformation

10

is denoted by φ
τ,a
−−→D φ′ and results in the following φ′:

πφ′ ← πφ ∪ { a } ∪ subtasks(a) \ {τ}

Fφ′ ← Fφ ∪ assertions(a)

Cφ′ ← Cφ ∪ constraints(a) ∪ { task(a) = τ }

The refining action a may introduce additional tasks and assertions representing both the
conditions and the effects of this action. In addition to the constraints from the action template,
the constraint task(a) = τ unifies all parameters of task(a) and τ and enforces a to start and end
at the times specified by the temporal qualification of this task.

2.4.2 Action Insertion

A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by the insertion of

a free action instance a, i.e., a is not task-dependent. This transformation is denoted by φ
a
−→I φ′

and results in the following φ′:

πφ′ ← πφ ∪ { a } ∪ subtasks(a)

Fφ′ ← Fφ ∪ assertions(a)

Cφ′ ← Cφ ∪ constraints(a)

Note that task dependent actions can only be used through task decomposition and must
respect all constraints specified on that task.

2.4.3 Plan Restriction Insertion

A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by the insertion
of restrictions (F , C), where F is a set of persistence assertions and C is a set of constraints over

temporal and object variables. This transformation is denoted by φ
(F ,C)
−−−−→R φ′ and results in the

following φ′:

πφ′ ← πφ

Fφ′ ← Fφ ∪ F

Cφ′ ← Cφ ∪ C

This transformation restricts a chronicle by either (i) adding persistence conditions to achieve
the causal support of an assertion, (as for causal links in plan-space planning), or (ii) restricting
allowed values of some variables to remove potential inconsistencies in the chronicle, for instance
by imposing an order on two actions with conflicting requirements, or to unify task and actions
instances that can be unified.

2.4.4 Reachable and Solution Plans

A chronicle φ′ is reachable from a chronicle φ if there is a sequence of task refinements, action
insertions, and plan restrictions that transformes φ into φ′. The planner has to find a sequence of
transformations such that the resulting chronicle corresponds to a feasible plan.

11

Definition 2.4 (Solution plan). A chronicle φ∗ = (π∗,F ∗, C∗) is a solution to a planning problem
(Σ, φ0) if:
• φ∗ is reachable from φ0,

• π∗ has no unrefined tasks,

• all assertions in F ∗ are causally supported.

• (F ∗, C∗) is a necessarily consistent set of timelines. �

The solution plan is given by the actions in π∗ with the constraints from C∗. Since φ∗ must
be reachable from φ0, the actions in φ∗ must fulfill hierarchical constraints: if an action in π∗

is task-dependent then it was inserted through task refinement and must respect all constraints
placed on the task it refines. Furthermore, all assertions in φ∗ are causally supported. Finally, all
instantiations of variables in π∗ are consistent. Uninstantiated variables allow to delay choices
until execution time. This is typically the case for temporal variables whose instantiation is often
decided dynamically at execution time.

2.5 Discussion

The proposed representation builds on the rich temporal semantics of ANML. It supports (i)
temporal actions with assertions placed at arbitrary timepoints, (ii) the description of the current
state of the environment as well as its expected evolution over time and (iii) temporally extended
goals. It also supports a unique mix of generative and hierarchical planning. The notion of task-
dependency allows for a seamless integration of generative and hierarchical models especially
allowing for partial hierarchies and the capability of allowing task insertion.

This representation extends the expressivity of existing planners allowing to encode genera-
tive planning problems (i.e. with no tasks nor task-dependent actions) as well as HTN problems
(i.e. where all actions are task-dependent). In the following sections, we introduce a planning
algorithm supporting this representation as well as several dedicated search control methods.

3 A Plan-Space Planning Procedure

3.1 Overview

FAPE extends the chronicle planning approach [GNT16, Sec. 4.3], which was initially proposed
in IxTeT [GL94]. Our contribution is a planning procedure that seamlessly supports both hierar-
chical and generative planning.

Given a planning problem with an initial chronicle φ0, the planner attempts to transform
φ0 into a solution chronicle φ∗ where all tasks have been refined, all assertions are causally
supported and the set of temporal assertions defines necessarily consistent timelines. For that,
the planner detects flaws in a chronicle: features that prevent the chronicle from being a solution.
A flaw in a chronicle (π,F , C) is either:
• an unrefined task τ ∈ π,

• an unsupported assertion α ∈ F , or

• conflicting assertions: a pair of assertions (α, β) ∈ F ×F that can be conflicting given C.
Each type of flaw matches one of the necessary conditions for a chronicle to be a solution plan

(Definition 2.4); the last two types generalize respectively the notions of open-goals and threats

12

in plan-space planning. Every flaw must be resolved to transform a chronicle into a solution plan.
Resolving a flaw requires the application of one or several plan transformations (Section 2.4).

Algorithm 1 is a nondeterministic abstract view of the planning procedure. For a given chron-
icle, the planner chooses a flaw ϕ to solve. Since all flaws must eventually be solved, this choice
is not a backtracking point. Next, the planner nonderterministically chooses of a resolver ρ to
handle the flaw; it may backtrack on this choice. The resolver results in a transformation of φ

into a refined chronicle φ′ in which the flaw ϕ is absent, and from which the search proceeds
recursively. The algorithm returns when it encounters a solution plan (i.e. a flaw-less chronicle)
or a deadend (i.e. a flaw with no resolvers).

Algorithm 1 Fape algorithm: returns a solution plan achieving the tasks and goals in φ for the
domain Σ, or failure if none exists.

function Fape(Σ, φ)
Flaws ← flaws in φ

if Flaws = ∅ then return φ

ϕ← select a flaw in Flaws
Resolvers ← resolvers for ϕ

if Resolvers = ∅ then return failure

nondeterministically choose ρ ∈ Resolvers
φ′ ← Transform(φ, ρ)
return FapePlan(Σ, φ′)

This procedure follows the general refinement planning framework [KKY95; Sch09], which
has been used by partial order planners [PW92; YS03], generative temporal planners [GL94;
VG06], and hierarchical planners, e.g., HiPOP [Bec+14] and PANDA [Sch09]. The differences
between all those planners lie in four aspects: (i) their definition of flaws and resolvers, (ii) the
type of constraints and propagation used to reason about variables in the plan, (iii) their internal
representation of a chronicle, and (iv) the strategy for exploring the search space

The remainder of this section details successively these first three aspects, while the search
guidance will be addressed in Section 4.

3.2 Flaws and Resolvers

The definition of flaws is critical for the soundness of the planning procedure. Their resolvers
condition the completeness. Ill-defined resolvers may also result in redundancies in the search
space. Let consider the three types of flaws and their resolvers.

3.2.1 Unsupported Assertions

The first type of flaw is a lack of causal support for some assertion in the current chronicle. The
planner incrementally tracks this property by associating every assertion that requires causal
support to an assertion that produces the desired fluent. The causal link relation β → α denotes
that the assertion β is the causal supporter of α. A causal link is created by inserting an additional
persistence assertion [end(β), start(α)] sv=v, which prevents any change on the value of the state
variable sv from the end of β until the start of α.

13

With the exception of a priori supported assertions, the planner assumes all assertions to be
unsupported until a causal link is added to the chronicle. Any change or persistence assertion
that does not have an incoming causal link constitutes an unsupported assertion flaw. Such a flaw
in a chronicle φ is solved by finding another assertion β that can serve as a support: either β is
already in Fφ, or β can be added through the insertion of an action.

Action insertion must take into account the hierarchical features of the domain. Instead of
directly inserting an action that provides causal support, we select or create a refinement tree in
which the supporting assertion will be chosen.

Possible effects. We say that the fluent f = 〈sv = v〉 is a direct effect of an action a if a has an
assertion of the form 〈[t, t′] sv : v′ 7→ v〉 or 〈[t′′] sv :=v〉.

Possible effects represent fluents that can be produced as part of the refinement tree of a task
or an action. A fluent f is a possible effect of an action a, denoted f ∈ E+

a , if it is either a direct
effect of a or a possible effect of the refinement of one of its subtasks. A fluent f is a possible effect
of a task τ, denoted f ∈ E+

τ , if f is a possible effect of an action a that refines τ.

E+
a = direct_effects(a)

⋃

τ∈subtasks(a)

E+
τ

E+
τ =

⋃

m ∈ {a | task(a)=τ}

E+
m

The possible effect f of an action a (resp. a task τ) is also associated with a duration represent-
ing the minimal delay from the moment the action (resp. task) starts to the instant at which the
possible effect can be produced, noted ∆PosE f f (a, f). This minimal delay is computed by taking
an optimistic view of the delays enforced as temporal constraints in the actions, as illustrated in
the following example.

Example 3.1. The move(r,d,d’) action of Figure 1 has a direct effect 〈loc (r)=d′〉. It is produced at
time tend, thus its associated delay is the minimal duration of the action: tend − tstart.

∆PosE f f (move(r, d, d′), 〈loc (r)=d′〉) = min-delay(tstart, tend) = travel-time(d, d′)

The fluent 〈loc(r)=d′〉 is also a possible effect of the action m2-transport (Figure 2) because
the presence of its move subtask means it can be produced as a result of inserting m2-transport in
the plan. The delay associated with the possible effect is defined recursively as:

∆PosE f f (m2-transport(r, c, d, d′), 〈loc (r)=d′〉)

= min-delay(tstart, t2) + ∆PosE f f (move(r, d, d′), 〈loc (r)=d′〉)

= min-delay(tstart, t2) + travel-time(d, d′)

= min-delay(tstart, t1) + min-delay(t1, t2) + travel-time(d, d′)

= duration(load(r, d, c)) + 1 + travel-time(d, d′)

The computation of minimal delays is done by a shortest path computation in an STN containing
all timepoints and temporal constraints of the action. �

A supporting assertion β for an unsupported assertion α is either:

14

• already in the plan,

• introduced by decomposing an unrefined task τ ∈ π, such that τ has a possible effect sup-
porting α, denoted cond(α) ∈ E+

τ), or

• introduced through the addition of a free action a, such that a has a possible effect supporting
α, i.e., cond(α) ∈ E+

a .
It is impractical for the planner to branch over all the assertions that can be used for causal

support. Instead, the planner branches on the choice of a source for providing the causal sup-
porter, e.g, for a given unsupported assertion, the planner commits to select its causal supporter
in the set of assertions resulting from the future refinement of a particular unrefined task τ ∈ πφ.

Supporting tasks commitments. When doing hierarchical planning, it might happen that sev-
eral decomposition steps occur before a task is fully decomposed into primitive actions. On the
contrary in plan-space planning, the resolution of an unsupported condition typically requires
the immediate insertion of a supporting action in the plan. To reconcile the two approaches,
we now present a mechanism that restricts the possible supporters of a condition to the actions
descending from a particular task. Effectively this allows expressing search commitments of the
form "a condition c must be supported by the yet unrefined task τ" and its corollary "τ must
decomposed in a way that supports c". This construct is to be exploited by the resolvers that we
present immediately after.

We associate an unsupported assertion α to a set of tasks DTα representing a commitment on
the origin of the supporter for α. More specifically, for any task τ ∈ DTα, the causal supporter of
α can only be chosen in the possible effects of an action that is a descendant of τ. An action is a
descendant of τ if it refines τ or if it refines a subtask of an action descending from τ.

This mechanism allows tying the resolution of an unsupported assertion to a tree or sub-
tree of the task network. DTα is initially empty and might be extended during search to track
commitments made on the origin of the support of α.

If there is an unrefined task τ ∈ DTα, the resolution of α is postponed until τ is refined.

Resolvers. Let us now explore the three different resolvers for an unsupported assertion α =
〈[ts, te] sv=v〉 (resp. an unsupported change assertion α = 〈[ts, te] sv : v 7→ v′〉):
• Direct Supporter. Let DSα be the set of all assertions β ∈ Fφ such that β produces 〈sv = v〉.

For any change assertion β ∈ DSα, a possible resolver for α is a causal link β→ α.

The transformation resolving the unsupported assertion α is a plan restriction that introduces

a causal link from β to α: φ
({ β→α },C)
−−−−−−−→R φ′. The additional set of constraints C simply

enforces that the value produced by β is the one needed by α. Furthermore, the assertion
representing the causal link is a priori supported since it is inseparable from β that causally
supports it.

For instance, if the assertion 〈[t1, t2] loc(r1) :d1 7→ d〉 was selected to be the causal support
of an assertion 〈[t3, t4] loc(r)=d4〉, we would have an additional set of constraints
t2 ≤ t3 ∧ r1 = r ∧ d = d4. The causal link would take the form of the persistence assertion
[t2, t3] loc (r1)=d4.

To avoid introducing redundancies in the search space, we must also take into account any
previous commitment that has been made regarding the source of the causal support of α. For
this reason, an assertion β is only considered as possible supporter if the action that added

15

β is a descendant of all tasks τ ∈ DTα. Put otherwise, the supporter must originate from the
refinement trees that were previously selected.

• Delayed support from existing task. Another possible source of supporting assertions is in
the unrefined tasks of φ. Let TSα be a subset of the unrefined tasks τ ∈ πφ such that:

• 〈sv = v〉 is a possible effect of τ, i.e., 〈sv=v〉 ∈ E+
τ , and

• there is enough time for the possible effect to occur before α, meaning that the addition
of the temporal constraint start(α) − start(τ) ≥ ∆PosE f f (τ, 〈sv=v〉) does not make the
temporal network inconsistent.

For any unrefined task τ ∈ TSα, a possible resolver for α is to add τ to DTα. While this does
not directly resolve the flaw, it makes a commitment to a subset of resolvers in the possible
effects of τ. The choice of a supporting assertion for α will be delayed until τ is refined.
The chosen refinement for τ will need to provide an enabler for α. It should be noted that
this resolver does not bring any change to the chronicle itself but constrains the planner to a
restricted set of solution plans.

Once again, to avoid redundancies in the search space, we must account for the previous
commitments made on the causal supporter of α. For this reason, we only consider as a
resolver a task τ ∈ TSα if, for any task τ′ ∈ DTα, τ is a descendant of τ′.

• Delayed support from new action. The last possible source of supporting assertions comes
from the introduction of free actions that have 〈sv=v〉 as a possible effect.

If the planner already made a commitment to support α from a particular task (i.e., DTα 6= ∅),
then no such resolver is applicable. Indeed, any supporter must appear by means of task
refinement only. When DTα = ∅ we need to consider the insertion of free actions outside of
any existing decomposition trees. Let ASα be a set of action templates A such that 〈sv=v〉 ∈
E+

A . For any action A ∈ ASα, a possible resolver for α is brought by inserting an instance a
of A in φ and adding task(a) to DTα. This resolver ensures that α will be supported either by
a direct effect of a or by an effect of one of its subactions. The choice of which assertion will
support α is delayed.

To summarize, every assertion needs a causal supporter with and explicit causal link. We dis-
tinguish three cases for the selection of the causal supporter depending on whether it is already
in the plan, can be introduced by refining pending tasks in the plan, or requires the introduction
of new actions outside of existing decomposition trees. In the two latter choices, the selection of
the actual causal supporter is delayed until the task network is refined.

3.2.2 Unrefined Tasks

A task is unrefined if (i) it has been required either in the problem specification or as a subtask
of an action in the plan, and (ii) it has not been refined by a task refinement transformation
(Section 2.4.1). Given a chronicle φ = 〈πφ,Fφ, Cφ〉, any task τ appearing in πφ is an unrefined
task. Resolving an unrefined task requires selecting an action that achieves it and applying the
corresponding task decomposition transformation. Our procedure extends the usual HTN task
decomposition to account for the commitments previously made while resolving unsupported
assertion flaws.

Let τ : tsk(x1, . . . , xn) be an unrefined task, and PRτ be the set of action templates A such that
task(A) is unifiable with τ. For any action template A ∈ PRτ, a possible resolver to the unrefined

16

task τ is to apply the decomposition transformation φ
τ,a
−−→D φ′, where a is an instance of A. In

the resulting chronicle φ′, the unrefined task τ has been replaced by a new action instance a.
Furthermore, we need to account for the possible commitments already made for the support

of unsupported assertions. For this reason, we only consider as a resolver an action template
A ∈ PRτ if for any unsupported assertion α such that τ ∈ DTα, A has a possible effect e ∈ E+

τ

that could support α.

3.2.3 Possibly Conflicting Assertions

This flaw occurs when a chronicle φ = (πφ,Fφ, Cφ) has an instantiation that makes two assertions
conflicting. We start by studying the case of persistence assertions and then consider change
assertions.

Two persistence assertions p1 = 〈[ts
1, te

1] sv1 =v1〉 and p2 = 〈[ts
2, te

2] sv2 =v2〉 are conflicting
when they concurrently require distinct values for the same state variable. More precisely they
are possibly conflicting when the conjunction of these three conditions holds:

• they can refer to the same state variable, that is sv1 and sv2 are respectively of the form
sv (x1, . . . , xn) and sv (y1, . . . , yn) and Cφ ∪{ x1 = y1 ∧ · · · ∧ xn = yn } is a consistent set of
constraints,

• they can temporally overlap, i.e., [ts
1, te

1]∩[t
s
2, te

2] 6= ∅ is consistent with the temporal con-
straints in Cφ, and

• their values can be different, i.e., v1 6= v2 is consistent with Cφ.

Resolving a conflict requires enforcing that the two assertions cannot be conflicting in any
instantiation of the chronicle. A conflict involving a pair of assertions (p1, p2) can be resolved by

a plan restriction φ
(∅,{ c })
−−−−−→R φ′ where c is one of the following:

• a state variable separation constraint, i.e., c is one of { x1 6= y1, . . . , xn 6= yn } where x1..n and
y1..n are the arguments of the state variables of p1 and p2 respectively,

• a temporal separation constraint, i.e., c is either te
1 < ts

2 or te
2 < ts

1, or

• a unification constraint (v1 = v2) that requires the two values to be the same .
A change assertion [ts, te] sv : vs 7→ ve is more complex and, for the purpose of identifying

conflicts, can be seen as a combination of three persistences:
• a start persistence assertion [ts] sv=vs ,

• an intermediate persistence 〈]ts, te[sv = undefined〉, where undefined is a special value that
is not unifiable with any variable including undefined itself (i.e., ∀v, undefined 6= v), and

• an end persistence [te] sv=ve .
A conflict involving a change assertion can be identified, and resolved, by reasoning on its

three components, as for persistences. We note that this definition allows the start and end points
of the change assertion to overlap with other assertions. However, the inner part of the change
assertion that denotes the interval over which the value is changing cannot overlap with any
other assertion on the same state variable.

For the purpose of identifying conflicts, an assignment assertion 〈[t] sv :=v〉 is seen as a
change assertion 〈[t− 1, t] sv : any 7→ v〉 where any is an unbounded variable that can take any
value.

Conflicting assertions extend the threats of plan space planning with assertions spanning
over temporal intervals. The resolvers are separation constraints on temporal as well as on object

17

variables in the two conflicting assertions.

3.3 Constraint Networks

FAPE makes an important use of constraint networks to manage the temporal aspects of the prob-
lem and to maintain partially instantiated chronicles. The constraint networks have to efficiently
store the constraints accumulated by the planner and answer various queries necessary for the
identification of flaws and finding resolvers.

For instance, finding whether assertions are possibly conflicting requires testing their possible
temporal overlap and unification of their state variables. For this purpose we have two distinct
constraint networks: one responsible for temporal reasoning and one for handling binding con-
straints. A special case of constraints are duration constraints that refer to variables present in both
networks. such as the one enforcing travel time in Figure 1. We start by presenting the temporal
and binding constraint networks independently, and then show how they are synchronized to
handle duration constraints.

3.3.1 Temporal Constraint Network

Temporal variables (or timepoints) and temporal constraints are handled as a Simple Temporal
Networks (STN) [DMP91]. Given a set of timepoints X , a temporal constraint is an inequality of
the form t2 − t1 ≥ d, where t1 and t2 are timepoints in X and d is an integer constant. Such a
constraint means that the minimal delay from t1 to t2 must be at least d. The consistency and the
minimal network of an STN can be computed in polynomial time.

The Floyd-Warshall All-Pairs Shorter Path algorithm [Flo62; War62] gives the minimal net-
work where the minimum and maximum distances between all pairs of timepoints are explicitly
computed. This is performed in Θ(|X |3). We use the incremental version of this algorithm, as
presented by Planken [Pla08], that has a quadratic complexity of O(|X |2).

We denote as distSTN(t1, t2) the minimal delay between t1 and t2, which is given in the mini-
mal network. The maximum delay from t1 to t2 is simply −distSTN(t2, t1).

3.3.2 Binding Constraint Network

A binding constraint network is a tuple (XBind,DBind, CBind) where:
• XBind is a set of object variables and integer variables.

• DBind is a set of finite domains for each variable in XBind. The initial domain of object variables
is a subset of the objects in the problem having the type of the object variable. The initial
domain of integer variables is the set of integers.

• CBind is a set of constraints on the variables of XBind. A constraint is either:

• an equality constraint, e.g., x1 = x2,

• a difference constraint, e.g., x1 6= x2,

• a general relation constraint, e.g., travel-time(x1, . . . , xn−1) = xn. Relation constraints are
associated with a table that gives the allowed tuple of values for the variables x1..n,

• an inequality on a integer variable, e.g., x1 ≤ 12 where x1 is a integer variable, or

• disjunctive equality constraint, e.g., x = x1 ∨ x = x2 ∨ · · · ∨ x = xn.

18

The main purpose of the constraint network is to detect inconsistencies in the set of constraints
and to answer various queries on binding variables. Typical queries on the constraint network
include (i) the domain of a variable, (ii) knowing if two variables are equal, (iii) knowing if two
variables can be made equal or different. These constraints correspond to NP-complete CSPs.
(Networks with inequality constraints alone are NP-Complete.)

To find a trade-off between accuracy and efficiency we use an arc-consistency algorithm (AC-
3 [Mac77]) for constraint propagation. More specifically, we maintain a work list of constraints
QBind. When a new constraint is added to the network, it is added to QBind. Until QBind is empty,
propagation iterates overs the following three steps:
(i) A constraint c is extracted from QBind.

(ii) For any variable x involved in c, remove from dom(x) any value that cannot satisfy this
constraint.

For a relation constraint c = 〈R(x1, . . . , xn−1) = xn〉, we first remove from the relation any
tuple of values (v1, . . . , vn) that is not achievable (i.e., ∃i ∈ [1, n] | vi 6∈ dom(xi)). For all
remaining tuples, projecting them on a single variable xi gives a set of allowed values Projc

xi
.

The domain of each variable xi is restricted to the values in Projc
xi

.
For a disjunctive equality constraint c = 〈x = x1 ∨ x = x2 ∨ · · · ∨ x = xn〉, the domain of x

is restricted to
⋃

i∈[i,n] dom(xi).

(iii) If the domain of any variable x was updated during propagation, all constraints involving x
are added to QBind.
If a variable x ∈ XBind has an empty domain, the network is not consistent. Otherwise the

network is arc-consistent which is used as an optimistic approximation of consistency by the
planner. Full consistency is only checked at the end to ensure that a plan with no flaw is indeed
a solution to a planning problem (i.e., that the binding constraint network is consistent). If
the network is not fully consistent, the corresponding chronicle is a dead-end and the planner
backtracks.

The network is used to identify flaws and filter out impossible resolvers. The binding con-
straint network considers that two variables x1 and x2 are:
• Unified if they have the same singleton domain or if there is an equality constraint between

the two.

• Separable if they are not unified.

• Unifiable if they have intersecting domains and there is no inequality constraints between
them (or between any two variables unified with x1 and x2 respectively).

• Separated if they are not unifiable, i.e., they have non intersecting domains or there is an
inequality constraint between them.

3.3.3 Duration Constraints

Consider the constraint t2 − t1 ≥ δ where t1 and t2 are timepoints and δ is an integer variable
in the binding constraint network. This duration constraint involves variables of both networks.
For instance, the introduction of an instance a of the move action of Figure 1, would result in the

19

following constraints:

travel-time(r, d, d′) = δ

∧ end(a) − start(a) ≥ δ

∧ start(a) − end(a) ≥ −δ

where r, d and d′ are object variables, start(a) and end(a) are timepoints and δ is a duration vari-
able. The last two constraints are mixed constraints as they involve variables from the temporal
network and from the binding constraint network.

A duration constraint is handled as follows:
• When a new constraint d ≥ t2 − t1 is added or inferred in the temporal network, we remove

from the domain of δ any value that would force a duration greater than d:

dom(δ)← { v | v ∈ dom(δ) ∧ d ≥ v }

If the domain of δ is modified by this operation, it will trigger propagation in the binding
network.

• When the domain of δ is modified in the binding constraint network, a new temporal con-
straint t2− t1 ≥ min{ v | v ∈ dom(δ) } is added to the STN. I.e the least constraining instantia-
tion of δ is propagated into the temporal network.
To handle the more general form of a duration constraint t2− t1 ≥ fn(x1, . . . , xn) where t1 and

t2 are timepoints of the temporal network, x1, . . . , xn are object variables in the binding network,
and fn is a function given as or transformed into a table, we reify fn(x1, . . . , xn) by (i) introducing
a new integer variable δ, (ii) imposing the relation constraint fn(x1, . . . , xn) = δ in the binding
network and (iii) enforcing t2 − t1 ≥ δ as above.

Hence the constraint tend − tstart = travel-time(r, d, d′) of Figure 1 is effectively reformulated
into the following conjuncts that can be handled separately:

travel-time(r, d, d′) = δ ∧ tend − tstart ≥ δ ∧ tstart − tend ≥ −δ

3.4 Search Space: Properties and Exploration

Here we analyze the characteristics of the search space of Fape.

Search space dimension. The search space of plan-space planners is infinite, since they explore
the set of plans which is infinite [GNT04, Chap. 5]. Indeed, even for a simple goal such as going
somewhere, there can be an infinite set of plans fulfilling it: one can go round and round in
circles an arbitrary number of time before getting to the destination. Similarly, the presence of
recursive methods can make the search space of HTN planners infinite [EHN94]

Since our search procedure is an extension to plan-space planning and can represent HTN
problems, the search-space of Fape is infinite as well. Under these conditions, the planner must
guarantee a methodical exploration of the search space to ensure that, if there is a solution
plan, it will be found. Algorithms such as depth-bounded search or iterative deepening meet
those expectations. More interestingly, best-first search (and A* in particular) also meet those
expectations as long as the addition of an action to the chronicle has a strictly positive cost for
its evaluation function. Indeed when the number of actions in a plan approaches infinity, the

20

evaluation functions will eventually prefer a shallower plan that is shorter. Our planner uses a
best-first search algorithm whose evaluation function allows for a methodical exploration (as we
will detail in Section 4.4.1).

Search space acyclicity. Another condition for the completeness of the search is either an acyclic
space or an adequate handling of cycles, if any, to avoid infinite loops.

Proposition 3.1. The search space of Fape is acyclic.

Proof. To show the acyclicity of the search space, we show that given a chronicle, there is no
infinite sequence of resolver applications that can lead to the same chronicle.

We first observe that the Transform(φ, ρ) of Algorithm 1 is incremental: it can add actions
or constraints but never removes anything. Furthermore, each Transform application results
in one flaw being solved (even in the case where the resolution of an unsupported assertion is
delayed, this unsupported assertion is only reconsidered when at least one other flaw has been
fixed). Since there are only a finite number of flaws in a chronicle, the repeated application of
Transform will either (i) result in a solution plan with no flaw, (ii) result in an inconsistent
plan or (iii) add a new action to the plan, possibly introducing new flaws. In the latter case, the
added action can never be removed and the planner cannot transform it back into the original
chronicle.

Soundness & Completeness. We now consider the soundness and completeness of our plan-
ning procedure.

Proposition 3.2. Fape is sound and complete.

Proof (Sketch). The full version of this proof is given in Appendix A.1.
For soundness, we remark that each type of flaw identifies one of the conditions of

Definition 2.4. Thus if a plan has no flaw, it fulfills all three requirements. The requirement that
the solution plan be reachable from the initial chronicle is always fulfilled as all resolvers are
defined in terms of the allowed transformation.

Given that the search space is acyclic and that the exploration is methodical, showing com-
pleteness requires us to show that a solution appears in the search space if one exists. We show
this by proving that, for each flaw, the set of resolvers is complete and does not overlook any
solution plan.

Discussion. The definition of resolvers results in a top down approach to hierarchical planning,
similar to that of other HTN planners. Indeed, the search starts from an existing task network,
which, at the end, is entirely decomposed over the course of planning. In practice, this means
that any action in the plan is inserted after the action it possibly descends from. This scheme has
the advantage of being well documented and understood.

This decomposition procedure is integrated into generative planning, using partially instan-
tiated plans. As a result, the planner is able to handle temporal planning problems spanning
from fully generative to fully hierarchical, together with mixed specification of generative and
hierarchical problems.

21

4 Search Control

Section 3.4 defined the search space of FAPE, obtained by extending the PSP algorithm to handle
hierarchical decomposition. Compared to most planners, the search space of constraint-based
planners (including FAPE) is much more compact as the lifted representation allows representa-
tion of many partial plans in a single search node. On the other hand, the maintenance of various
constraint networks make the expansion of a search node computationally expensive and such
planners still require good search strategies to perform efficiently. In this section, we detail the
strategies used for shaping and exploring the search space in FAPE. These can be roughly sepa-
rated into three categories:

• the strategy for choosing which flaw to solve next plays an important role in plan-space plan-
ning as it allows shaping the search space. For instance, choosing to first decompose all
unrefined tasks would lead to a very different search space than the one resulting from
resolving conflicting assertions first.

• the strategy of which partial plan to consider next is critical to guide exploration of the search
space towards a solution plan, even for planning problems involving only a handful of
actions.

• inference of necessary constraints to allow an early detection of specific characteristics of a
partial plan. An example of such inference capability would be the detection that a given
unsupported assertion cannot be achieved early because its establishment requires a long
chain of actions. Such new constraints can be used to reduce the search space by detecting
dead-ends or filtering out impossible resolvers.

These three aspects are strongly interconnected since flaw ordering and inference can be
seen as shaping up and restricting the search space that will be explored given the partial plan
selection strategy. We first explain the techniques used for automatic inference in FAPE (Sections
4.1 to 4.3). More specifically, Section 4.2 will detail a reachability analysis to infer what cannot
be achieved from a partial plan due to its temporal and hierarchical features and Section 4.3 will
provide techniques to reason about the current causal structure of a plan. Finally, Section 4.4 will
focus on the strategies for flaw and plan selection.

4.1 Instantiation and Refinement Variables

While the lifted representation is beneficial for the efficiency of the search, it makes reasoning on
a partial plan harder because a given lifted assertion can be refined into many ground ones. This
can be detrimental as most heuristic computations for planning rely on a ground representation.
To facilitate the mapping between lifted partial plans and ground heuristic techniques, we intro-
duce two types of variables that represent the possible instantiations of actions and the set of
ground actions that can be used to refine a task.

Any action template act is associated with a relation γact-inst that contains all possible ground
instances of act. A ground instance of act is one where all object variables are bound and sat-
isfy all binding constraints in the template. If act has a ground instance id = 〈act(c1, . . . , cn)〉,
then γact-inst will contain the tuple (c1, . . . , cn, id) where id is a unique identifier of this instance.
Table 1 gives an example of this relation for the move action of Figure 1.

22

Robot Origin Destination Action ID

r1 d1 d2 id1

r1 d2 d3 id2

r1 d2 d1 id3

r2 d1 d2 id4

r2 d2 d3 id5

. . .

Table 1: Table for the relation γmove-inst that give the instantiations of the move action. In this
example, id1 identifies the ground action move(r1, d1, d2).

A (lifted) action a : act(x1, . . . , xn) in πφ is associated with an instantiation variable Ia that takes a
value in the set of ground instances of act. At a given time, dom(Ia) should contain every ground
action that a might become once all its parameters are instantiated:

act(c1, . . . , cn) ∈ dom(Ia)⇐⇒ ∀i∈1..n ci ∈ dom(xi)

To enforce, this relationship, every time a (lifted) action instance a = 〈act(x1, . . . , xn)〉 is
added to the partial plan, a constraint (〈x1, . . . , xn, Ia〉, γact-inst) is added to the binding constraint
network.

This instantiation variable has two main benefits. First it allows us to find all possible instan-
tiations of an action which is a useful input for the reasoning techniques we will introduce later
in this section. This set of instantiations is iteratively refined through constraint propagation
whenever the parameters of the action are updated. Second, when a ground action is found to
be impossible, it can simply be removed from the allowed tuples in the relation. This change
will trigger propagation in the binding constraint network and be reflected on the parameters of
actions in the partial plan.

Similarly, every (lifted) task τ : tsk(y1, . . . , yn) is associated with a refinement variable Rτ with
values being the ground actions whose task is tsk. At a given time, dom(Rτ) contains any ground
action that might be used as a refinement for τ:

a ∈ dom(Rτ)⇐⇒ task(a) = tsk(c1, . . . , cn) ∧ ∀i∈1..n ci ∈ dom(yi)

More specifically, a task symbol tsk is associated with a relation γtsk-ref that gives the pos-
sible refinements of a task. If there is a possible ground action id = act(c1, . . . , cn) whose task
is tsk(p1, . . . , pm), then the relation γtsk-ref will contain the tuple (p1, . . . , pm, id). This identifies
that the action (uniquely identified by id) is a possible refinement of the task tsk(p1, . . . , pm).
When a new unrefined task tsk(y1, . . . , yn) is inserted into the partial plan, it is associated with
a refinement variable Rτ and constraint (〈y1, . . . , yn, Rτ〉, γtsk-ref).

When an action a is introduced as a refinement of task τ, their respective instantiation and
refinement variables are unified by the introduction of a constraint Ia = Rτ.

Instantiation and refinement variables make explicit the relationships between lifted actions and
tasks in a partial plan and the ground actions that will appear in a solution plan. In search control,
those variables are used to transform lifted partial plans into a grounded relaxed problem for

23

reachability analysis and heuristic computation. The result of reachability analysis is also used
to remove unreachable actions from the domains of both instantiation and refinement variables,
as we will see in the next subsection.

4.2 Reachability Analysis

Reachability analysis has been a crucial component of many planning systems including ff

[Hof01] and popf [Col+10]. This analysis is done by solving a relaxed version of the planning
problem in order to infer optimistic estimates of the set of states reachable from the initial state.
This further allows inferring which actions and fluents might appear in a solution plan. In
classical planners, this analysis is often done by taking the delete-free relaxation of a planning
problem. A set of reachable actions is then incrementally expanded by adding, one by one, any
action whose preconditions are achieved either in the initial state or by an action in the reachable
set.

This technique is not directly applicable to temporal problems that might contain inter-
dependent actions. Indeed, if two actions A and B are interdependent (as in Figure 4), inferring
that B is reachable requires knowing that A is reachable, which would require prior knowledge
that B is reachable. Planners such as popf get around this problem by further relaxing delete-free
problems: each durative action A is split in two instantaneous at-start and at-end actions, Astart

and Aend. Astart contains only the start conditions and start effects of A, while Aend contains only
the end conditions and end effects of A. Since Astart does not contain the end conditions A this
eliminates any possibility of inter-dependency [Col+08; CMR13]. To illustrate how reachability
works, in the above example if Astart were reachable, Bstart would be reachable, allowing Bend to
be reachable. This, in turn, allows Aend to be reachable. This works fine as long as B is shorter
than A. However, it is overly optimistic when B is longer than A, leading the analysis to conclude
that both actions are reachable when they are not.

A (duration: 10)

y

x

B (duration: 7)

x

y

Figure 4: Two interdependent actions: A with a start effect x and an end condition y, and B with
a start condition x and an end effect y.

Hierarchical problems introduce many of these kinds of problems, because a higher level task
requires that the subtasks be contained within it, and the subtasks require the presence of the
higher level task. An illustration of such interdependencies is given in Figure 5.

In this section, we describe a reachability analysis technique that takes into account the hierar-
chical properties of a problem and supports interdependent actions with no additional relaxation.
As in most existing planners, we consider delete-free actions in our relaxed model. To give an
intuition of what a delete-free relaxation would be in our planning model, consider a change
assertion [ts, te] sv : a 7→ b. This transition requires sv to have the value a at time ts (i.e. that the
fluent 〈sv=a〉 holds at ts) and states that sv will have the value b at time te, meaning that the

24

load(r1,c2,d1) move(r1,d1,d2) unload(r1,c1,d2)

m2-transport(r1,c1,d1,d2)

loc (r1) = d1

loc (r1) = d2

pos (c1) = r1

pos (c1) = d1

loc (r1) = d1

pos (c1) = d1

loc (r1) = d1

x y : x depends on y to achieve on of its conditions

x y : x depends on y to refine one of its subtask

x y : x is task-dependent and depends on y to provide the task it refines

Figure 5: Dependencies between actions in a plan achieving a single transport(c1,d2) task. The
m2-transport action is the one of Figure 2. Its three subtasks are refined by a move action (Figure 1)
and two task-dependent load and unload actions.

〈sv=a〉 no longer holds at time te. This change assertion thus has a positive effect on the fluent
〈sv=b〉 and a delete effect on the fluent 〈sv=a〉. In a delete-free model, we would consider that
after the change assertion the state variable has both the values a and b. Those delete-free actions
are extended with additional conditions and effects that account for hierarchical features of the
original actions.

This relaxed model is used to compute a set of actions that might appear in a solution to-
gether with information about their earliest appearance. This information is then used to infer
constraints on partial plans as well as to detect dead ends in the search.

4.2.1 Relaxed Problem

In order to perform a reachability analysis, we start by defining a relaxed planning problem. A
relaxed problem is a tuple 〈F, A, I〉 where F is a set of fluents, A is a set of elementary actions
and I is the initial set of timed fluents.

The set of fluents F contains all fluents in the original domain (i.e. all combinations of a state
variable and a value). Furthermore, for any task symbol τ in the original domain, F is extended
with required(τ), started(τ) and ended(τ), which take a value in {⊤,⊥}. Those respectively
represent that an action refining τ is needed, has started and has ended.

The elementary actions in A are simple temporal actions with a set of conditions and a single
positive effect. Conditions and effects are on fluents in F and can represent causal or hierarchical
requirements and effects of the original action.

The initial set of timed fluents I, represents a set of fluents whose appearance in a solution
plan is already supported. It is built from both the set of a priori supported assertions in the
original problem and from the effects of actions already in the partial plan.

Given a relaxed problem, the objective is to find the reachable subsets of F and A that can be
reached from the facts in I.

25

move f lat(r1, d1, d2)
conditions: [tstart] loc (r1) = d1

[tstart] occupant (d1) = r1

[t′] occupant (d2) = nil

effects: [tend] loc (r1) = d2

[t] occupant (d1) = nil

[tend] occupant (d2) = nil

[tstart] started(move(r1, d1, d2)) = ⊤
[tend] ended(move(r1, d1, d2)) = ⊤

constraints: connected (d1, d2)
tend − tstart = 10
tstart < t < t′ < tend

Figure 6: Flattened version of the move(r1,d1,d2) operator whose template is given in Figure 1.
The implicit temporal constraints are shown explicitly here.

Elementary actions. We start by transforming our actions (both high-level and primitive) into
a set of simpler actions with only single effects. Our objective is to obtain delete-free actions that
still encompass temporal and hierarchical aspects of the original action. We start by associating
any action a of the planning domain with a flat action a f lat with a set of conditions and effects
such that:

• for any persistence condition 〈[t, t′] sv = v〉 in a, a f lat has the condition 〈[t] sv = v〉
• for any assertion 〈[t, t′] sv : v 7→ v′〉 in a, a f lat has the condition 〈[t] sv = v〉 and the effect
〈[t′] sv = v′〉

• for any assignment assertion 〈[t] sv :=v〉 in a, a f lat has the effect 〈[t] sv = v〉
• given the task τa achieved by a, a f lat has the effect 〈[tstart] started(τa) = ⊤〉 and the effect
〈[tend] ended(τa) = ⊤〉

• if a is task-dependent and its task is τa, then a f lat has the additional condition
〈[tstart] required(τa) = ⊤〉

• for every subtask 〈[t, t′] τ〉 of a, a f lat has:

– two additional conditions 〈[t] started(τ) = ⊤〉 and 〈[t′] ended(τ) = ⊤〉
– one additional effect 〈[t] required(τ) = ⊤〉

• a f lat contains all constraints of a

Such flat actions define a relaxed version of the problem in which actions have no “delete ef-
fects” and hierarchical relationships are compiled as additional conditions and effects. It is impor-
tant to note that the resulting ‘flat’ problem relaxes some hierarchical aspects of the original one.
Indeed, a given subtask 〈[ts, te] τ〉 yields two conditions [ts] started(τ)=⊤ and [te] ended(τ)=⊤.
Those two conditions can be fulfilled by distinct actions, thus ignoring temporal constraints on
the unique action that should have achieved the subtask in the original model. Furthermore, a
single “subtask effect” could allow the presence of multiple task-dependent actions. This is how-
ever not a problem as this transformation is simply meant to expose some hierarchical features
of the problem for an optimistic reachability analysis.

The flat actions are still temporally complex and might feature numerous timepoints related
by temporal constraints. As a second preprocessing step, each flat action is split into simpler

26

moveloc (r1)(r1, d1, d2)
conditions: [−9] loc (r1) = d1

[−9] occupant (d1) = r1

[0] occupant (d2) = nil

[−9] required(move(r1, d1, d2)) = ⊤
effects: [1] loc (r1) = d2

constraints: connected (d1, d2)
moveoccupant (d1)(r1, d1, d2)

conditions: [0] loc (r1) = d1

[0] occupant (d1) = r1

[9] occupant (d2) = nil

[0] required(move(r1, d1, d2)) = ⊤
effects: [1]occupant (d1) = nil

constraints: connected (d1, d2)

Figure 7: The first two elementary actions generated from move f lat(r1,d1,d2)

elementary actions where all delays are fixed. An elementary action contains a single effect and
the necessary conditions to achieve this effect with a f lat. Specifically, given a flat action a f lat, the
set of elementary actions for a f lat is given by:

• for each effect e = 〈[te] f 〉 in a f lat, creating a new elementary action ae with 〈[1] f 〉 as the
only effect of ae. In practice this places the effect exactly one time unit after the start of the
elementary action, which facilitates reasoning of the relative placement of conditions and
effect in an elementary action.

• any condition c in a f lat is added to each ae with a least-constraining timing constraint
on when c is needed relative to the effect e. By least-constraining, we mean the latest
time at which c can be required to be true given the temporal constraints. For a condition
〈[tc]sv′ = v′〉 in a f lat, this is achieved by adding to ae a condition 〈[1 + max(tc − te)]sv′ = v′〉
where max(tc − te) is the maximal delay from te to tc as given by the temporal constraints
in the action.4

Figure 7 shows two elementary actions generated for the flat move of Figure 6. Three addi-
tional elementary actions are needed to cover the last three effects of the action.

Timed fluents. We now describe how the initial set of timed fluents I is derived from a partial
plan. It is meant to capture the fluents that are known to hold at a given time, regardless of
whether they derive from timed initial literals or actions in the current partial plan. A timed
fluent i ∈ I is denoted by 〈[t] f 〉 where f is a fluent and t is a time at which f holds. Given a
partial plan (π,F , C), I is composed of:

• for any assertion 〈[t1, t2] sv : v1 7→ v2〉 or 〈[t2] sv :=v2〉 in F ; if sv′ and v′2 are instantiations of
sv and v2 consistent with C, I contains 〈[t′2] sv′ = v′2〉 where t′2 is the smallest instantiation
of t2 consistent with C, given by distSTN(O, t2).

4Recall that in a delete-free problem, if a fluent holds at a given time t, it will hold for any subsequent time t′ ≥ t.

27

• for any unrefined task 〈[t1, t2] τ〉 in π; if τ′ is an instantiation of τ consistent with C, I con-
tains 〈[t′1] required(τ′) = ⊤〉 where t′1 is the smallest possible instantiation of t1 consistent
with C.

Definitions. An elementary action is applicable once all of its conditions are met. An action
with an effect f is called an achiever of the fluent f . A fluent becomes achievable after one of its
achievers becomes applicable. As a consequence of using (delete-free) elementary actions, once
a fluent is achievable or an action is applicable, it stays achievable/applicable at all subsequent
time points.

Action a is applicable at time t (denoted by applicable(a, t)) if for all conditions 〈[δ] f 〉 of a, f
is achievable at time t + δ. Similarly, a fact f ′ is achievable at time t′ (noted achievable(f ′ , t′)) if
there exists an achiever of f ′ applicable at time t′ − 1.

We say that an action a (resp. a fluent f) is reachable if there exists a time t such that
applicable(a, t) holds (resp. achievable(f , t) holds). The earliest appearance of a reachable action
a (denoted by ea(a)) is the smallest t for which applicable(a, t) holds. Similarly, the earliest
appearance of a reachable fluent f is the lowest t for which achievable(f , t) holds.

4.2.2 Reachability analysis with inter-dependent actions

The problem of inter-dependent actions. As shown by Cooper, Maris, and Régnier [CMR13],
the difficulty of doing reachability analysis with interdependent actions is due to the presence
of after-conditions: conditions that must hold when or after an effect of the action is achieved.
The end condition y of the action A of Figure 4 is an after-condition. Because the effect of our
elementary actions are placed at time 1, an after-condition can be easily detected as any condition
〈[t] f 〉 where t ≥ 1. All other conditions are referred to as before-conditions.

The approach taken by popf of splitting an action into instantaneous at-start and at-end
actions means that the after-conditions of at-start actions are ignored. As a result, a start effect can
be considered as reachable even when an end condition is not. In Figure 4, the action A would
indeed become an action Astart containing only an effect x and an action Aend with a condition y.
In this model, the effect x can thus be produced independently of the after-condition on y. This
constitutes an additional relaxation resulting in the elimination of all interdependencies in the
delete-free problem.

While this relaxation is reasonable for many generative planning problems, hierarchical prob-
lems typically feature many interdependencies between methods and their subtasks. The next
subsection describe a technique for reachability analysis that does not need any additional relax-
ation, thus taking all after-conditions into account.

Propagation. To handle after-conditions during reachability analysis, as detailed in
Algorithm 2, we alternate two steps: (i) a propagation that ignores all after-conditions by
performing a Dijkstra-like propagation in the graph composed of all fluents and elementary
actions; and (ii) a second step that enforces all after-conditions. Those two steps are
complemented with a pruning mechanism that repeatedly detects actions that have unsolvable
interdependencies.

Algorithm 2 begins by selecting a set of assumed reachable nodes (i.e. actions or fluents) from
which to start propagation (lines 4-12). The obvious candidates are fluents known to be true at

28

Algorithm 2 Algorithm for identifying reachable actions and fluents and computing their earliest
appearance.

1: A← Elementary actions
2: F ← Fluents
3: I ← Initial timed fluents
4: Q← ∅ ⊲ Priority queue of (action/ f luent, time) ordered by increasing time
5: for all f ∈ F do

6: reachable(f) ← ⊥

7: for all 〈[t] f 〉 ∈ I do

8: Q← Q∪{(f , t)}

9: for all a ∈ A do

10: reachable(a) ← ⊥
11: if a has no before-conditions then

12: Q← Q∪{(n, 0)}

13:

14: while Q non empty do

15: DijkstraPass

16: for all a ∈ A do

17: for all 〈[δ] f 〉 ∈ after-conditions of a do

18: if ¬reachable(f) then

19: (A, F)← RecursivelyRemove(a)
20: else if ea(a) < ea(f) − δ then
21: Q← Q∪{ (a, ea(f) − δ) }

22: for all a ∈ A do
23: if a is late then

24: (A, F)← RecursivelyRemove(a)

25:

26: procedure DijkstraPass

27: while Q non empty do

28: (n, t)← pop(Q)
29: if n already expanded in this pass then

30: continue

31: if reachable(n) ∧ ea(n) ≥ t then

32: continue

33: reachable(n) ← ⊤
34: ea(n) ← t
35: if n is an action with the effect 〈[1] f 〉 then

36: Q← Q∪{ (f , t + 1) }
37: else

38: for all a ∈ A with a condition on the fluent n do

39: if all before-conditions of a are reachable then

40: t′ ← max〈[δ] f 〉 ∈ cond(a) ea(f) − δ

41: Q← Q∪{(a, t′)}

29

a given time, e.g., fluents achieved by assertions in the problem definition or by actions in the
partial plan. All such fluents have been previously inserted in the initial set of timed fluents (I)
and are selected. We also optimistically select all actions that have no before-conditions, i.e., actions
whose conditions are all after-conditions. Those assumed reachable elements are inserted into
a priority queue Q of 〈n, t〉 pairs where n is either an elementary action or a fluent and t is a
candidate time for its earliest appearance.

The initial assumed reachable set is then iteratively extended with all fluents with an assumed
reachable achiever and any action whose all before-conditions are assumed reachable. This is
done by a Dijkstra-like propagation (line 15) that extracts the items in Q by increasing earliest
appearances. The corresponding actions (resp. fluents) are marked as reachable and the fluents
(resp. actions) depending on them are inserted into Q. More specifically, if a pair 〈a, t〉 is extracted
from Q and a is an action with the effect 〈[1] f 〉, the pair 〈 f , t + 1〉 is inserted into the queue. If
a pair 〈 f , t〉, with f ∈ F, is extracted from Q, all actions depending on f that have all their
before-conditions reachable are pushed onto Q (lines 38-41).

As a second step, we revise our optimistic assumptions by considering after-conditions:

• Line 19 removes any action a with an after-condition on an unreachable fluent f . More
specifically, the RecursivelyRemove procedure marks its parameter as unreachable and
removes it from the set of actions. The removal is recursive: if a removed action is the
only achiever for a fluent f then f is removed as well (and as a consequence all actions
depending on f will also be removed, etc.). Furthermore, if the first achiever of a fluent is
removed and there is at least one other achiever for it, then the fluent is added back to Q
with an updated earliest appearance.

• Line 21 takes an after-condition of an action a on a reachable fluent f and enforces the
minimal delay δ between ea(f) and ea(a). If the current delay is not sufficient, a is added
to Q and will be reconsidered upon the next Dijkstra pass.

Finally, late actions are marked unreachable and removed from the graph (line 24). We say
that an action a is late if for any non-late action a′, ea(a′) + dmax < ea(a) where dmax is the
highest delay in the relaxed model (either of a timed initial literal or between a before-condition
and an effect). In practice, this means that actions are partitioned into non-late and late, these
two sets being separated by a temporal gap of at least dmax. The intuition (demonstrated in
the next subsection) is that the earliest appearance of a late action is being pushed back due to
unachievable interdependencies with other late actions.

The two-step process is repeated (line 14) to take into account the newly updated reachability
information. In the subsequent runs, the Dijkstra algorithm will start propagating from the items
updated by the previous iteration, with lines 31-32 making sure that the earliest appearance
values ea(n) are never decreased to a too optimistic value. The algorithm detects a fix-point and
exits if the queue is empty, meaning that after-conditions did not trigger any change.

4.2.3 Analysis and Possible Variants

We now explore some of the characteristics of Algorithm 2. The first Dijkstra pass acts as an
optimistic initialization: it identifies a set of possibly reachable nodes and assigns them earliest
appearance times. All operations after this first pass will only (i) shrink the set of reachable
nodes; and (ii) increase the earliest appearance times.

30

It is helpful to see the relaxed problem as a graph whose nodes are the fluents and elementary
actions. Edges either represent a condition (edges from a fluent to an action) or an effect (edges
from an action to a fluent).

Definition 4.1 (Causal loop). We denote as a causal loop a cycle of actions and fluents f0 →
A0 → f1 → A1 . . . An → f0, such that each fluent fi is a condition of the elementary action Ai

and each action Ai is an achiever of the fluent fi+1.
Each edge of this loop is associated with a delay that is respectively the delay from when an

action Ai can start to the moment its effect fi+1 is achieved, or the delay from when a condition
fi is needed to the moment its containing action Ai can start.

We say that a causal loop is self-supporting if its length (i.e. the sum of the delays on its
edges) is less than or equal to 0.

A causal loop is said to be unfeasible if its length is strictly positive.

The notion of causal loop is crucial in the understanding of problems with interdependent

actions. The actions of Figure 4 form a self-supporting causal loop A
0
−→ x

0
−→ B

7
−→ y

−10
−−→ A,

which essentially means that B can be used to produce the condition y of A early enough for A
to be executable.

On the other hand, if B had a duration of 12, we would have an unfeasible causal loop

A
0
−→ x

0
−→ B

12
−→ y

−10
−−→ A. Indeed, B does not “fit” in A anymore and the planner must find

another way to achieve either x or y to use those two actions.

Proposition 4.1. If a node (i.e. action or fluent) n is reachable in the relaxed problem, then ea(n) converges
to a finite value. If a node n′ is not reachable then ea(n′) either remains at ∞ or diverges towards ∞ until
it is removed from the graph.

Proof (Sketch). We sketch the proof that is fully given in Appendix A.2. An action or fluent n is
reachable if there is either a path from initial facts to n or if n is part of a self-supporting causal
loop (i.e. cycle of negative or zero length). Consequently and because the earliest appearance
can only increase, repeated propagations will eventually converge. On the other hand, an un-
reachable node either depends on an unreachable node or is involved only in causal cycles of
strictly positive length. If the node was ever assumed reachable, its earliest appearance will thus
be increased by Algorithm 2 until it is removed from the graph.

Proposition 4.2. If a node is put in the late set, then it is not reachable.

Proof (Sketch). We sketch the proof that is fully given in Appendix A.3. The intuition is that
the gap between non-late and late nodes appeared because late nodes are delaying each others
due to positive causal cycles. We first show that any late node was delayed to its current time
due to a dependency on another late node: because the temporal gap is bigger than all delays
in the model, a non-late node could not have influenced a late node. It follows that any late
node depends on at least one other late node. Furthermore a late node necessarily participates
in a positive cycle or depends on a late node that does. From there, one can show that at least
one node n in this group is involved only in positive cycles. Any other possibility (path from
initial timed literals or negative cycle) would have resulted in n being less than dmax away from a
non-late node.

31

It follows from propositions 4.1 and 4.2 that Algorithm 2 produces a reachability model (de-
noted as R∞) that contains a fluent or action n and its earliest appearance ea∗(n) iff n is reachable
in the relaxed problem. In the worst case, computing this model has a pseudo-polynomial com-
plexity since there may be as many as dmax iterations of the algorithm (dmax being the highest
delay in the relaxed model). As we will see in the experiments (Section 5.1.1), this worst case
doesn’t tend to occur in practice; typically, quiescence occurs after a relatively small number of
iterations. The cost of each iteration is dominated by the Dijkstra pass of O(|N| × log(|N|) + |E|),
where N is the number of fluents and actions and E is the number of conditions and effects
appearing in actions.

Discussion: One might consider computing various approximations of R∞ by limiting the
number of iterations to a fixed number K, making the algorithm polynomial in O(K × (|N| ×
log(|N|) + |E|)) for producing a reachability model RK. In the special case where K = 1, this
is equivalent to performing a single Dijkstra pass and removing all actions with an unreachable
after-condition. Increasing K would allow the algorithm to better estimate the earliest appear-
ances and detect additional late nodes.

Another simplification is to ignore all after-conditions, which can be done by stopping Al-
gorithm 1 after the first Dijkstra pass. In practice, this model has all the characteristics of the
temporal planning graph of popf: (i) the separation of durative actions into at-start and at-end in-
stantaneous actions is done by the transformation into elementary actions; (ii) the minimal delay
between matching at-start and at-end actions is enforced by the presence of start conditions in
the elementary actions representing the end effects; and (iii) any end condition appearing in the
elementary action of a start effect would be ignored because it would be an after-condition. This
model, that we call R+, is thus a direct adaptation of the techniques used in popf to our richer
action representation.

Note that R+ and R∞ are equivalent on all problems with no after-conditions. Classical
planning obviously falls in this category as well as any PDDL model with no at-start effect or no
at-end condition. In fact, on such problems R+ and R∞ are equivalent to building a temporal
planning graph, with no additional computational overhead.

4.2.4 Exploiting the results of a reachability analysis

For a given partial plan φ, a reachability analysis provides us with:

• Raφ, a set of actions reachable in the relaxed problem,
• R fφ, a set of fluents reachable in the relaxed problem,
• eaφ : (Raφ ∪ R fφ) → N a function associating each reachable action and fluent with an

optimistic earliest time at which it can be added or achieved in a solution plan.

These are computed for any partial plan that is extracted from the priority queue for ex-
pansion. Because all computed values are optimistic, Algorithm 2 can be run incrementally by
initializing the set of reachable nodes and earliest appearances with those computed for the pre-
vious partial plan. While the worst case complexity of the incremental version is unchanged, our
implementation suggests that it avoids a lot of redundant computation. The results of a reach-
ability analysis are used in many parts of the planner to prune parts of the search space and
derive additional constraints on the current partial plan:

32

• For any unsupported assertion α ∈ Fφ, if its condition cannot be instantiated to a reachable
fluent f ∈ R fφ, then the partial plan is marked as a dead-end and search proceeds with
the next best partial plan. Otherwise we temporally constrain α to be at least as late as its
earliest reachable instantiation. This is done by adding the following constraint to the STN:

distSTN(O, start(α)) ≥ min{ ea(f) | f ∈ R fφ ∩ dom(cond(α)) }

where O is the temporal origin and dom(cond(α)) denotes all possible instantiations of the
fluent that is required by α.

• We check that all unrefined tasks can be refined by a reachable action. This is done by
restricting the domain of any refinement variable (Section 4.1) to reachable actions:

dom(Rτ) ⊆ Raφ

If a task has no possible refinement (i.e. one refinement variable has an empty domain) then
the partial plan is declared a dead-end. Otherwise, the earliest start time of all unrefined
tasks is updated to be at least as late as the earliest reachable action that can refine it.

• When considering unsupported assertions or unrefined task flaws, we disregard any re-
solver involving an action with no reachable instances. For instance, if there is no instances
of the move action in Raφ, then the planner would not consider the insertion of move to
support an assertion on the location of a robot. In this case, the planner would need to rely
on assertions already in the partial plan.

• All domain transition graphs (to be introduced in Section 4.3) are updated by removing
any transition provided by an unreachable action. This update has indirect effects, since it
allows more reliable information when reasoning on causal networks.

• When creating the instantiation variables of Section 4.1, the domain of these variables is
constrained to be a subset of Raφ. This indirectly constrains the parameters of any newly
added action to respect reachability requirements.

4.3 Causal Network

We define the causal network of a partial plan φ as the graph Gφ = 〈N, E〉 where N is the set of
assertions in Fφ and E contains an edge x → y iff there is a causal link stating that x supports y.
This causal network is explicitly maintained by the planner by adding edges when new causal
links are inserted and adding nodes when new assertions are introduced by newly added actions.
For a partial plan to be a solution, the corresponding causal network must be such that:

• every assertion x ∈ N that is not a priori supported has an incoming edge (i.e. an incoming
causal link),

• any change assertion or a priori supported assertion x ∈ N has at most one outgoing edge
that targets a change assertion. In addition, x might support several persistence conditions.

In this section, we show how this graph Gφ can be exploited to infer additional constraints on
the partial plan and extract heuristic information.

Definition 4.2 (Causal Chain). A causal chain is a sequence of change assertions 〈β1, . . . , βn〉 such
that for any element βi there is a causal link to its direct successor βi+1.

33

d0

d1
d2

d3

d4

d5
d6

10

10

10

10

10

10

10

Figure 8: Example DTG of loc (r): where the location in which the robot r can navigate are
organized in a circular pattern. Moving from one place to the next takes 10 time units.

A causal chain spans over the temporal interval [start(β1), end(βn)] and is said to be about
the state variable sv common to all its composing assertions. Over its temporal interval, a causal
chain fully constraints the evolution of its state variable.

We say that two causal chains possibly overlap if their state variables can be unified by consis-
tent binding constraints and they span over two possibly overlapping temporal intervals. Two
causal chains necessarily overlap if every consistent instantiation overlaps. Two necessarily over-
lapping causal chains result in an unsolvable threat because at least one change assertion of the
first chain would temporally overlap a change assertion or a causal link of the second chain.

In order to facilitate the reasoning on the possible transitions that can be taken by a state
variable, we now introduce Domain Transition Graphs.

Definition 4.3 (DTG). The Domain Transition Graph (DTG) of a state variable sv is a directed
graph (V, T) where V is composed of the values that can be taken by sv and a special node any.

T is a set of allowed transitions from one value to the other. An edge in T is of the form v1
d
−→ v2

meaning that the value of sv can be changed from v1 to v2 in d time units. In the special case
where v1 = any, it means that sv can take the value v2 regardless of its previous value (even if
sv had no known previous value).

DTGs are used to reason on the changes that can be made to a state variable sv through the
addition of new actions in a partial plan. For any ground action a that is reachable (according to
reachability analysis):

• if the action contains a change assertion 〈[t1, t2] sv : v1 7→ v2〉, then the DTG of sv contains

an edge v1
min(t2−t1)
−−−−−−→ v2,

• if the action contains an a priori supported assertion 〈[t] sv :=v〉, then the DTG of sv con-

tains the edge any
1
−→ v.

We say that there is a feasible transition of a state variable sv from a value v1 to a value v2 if
there is a path in the DTG of sv from v1 to v2 or from any to v2. We denote as distDTG(v1, v2) the
length of the shortest such path. An example of a DTG is given in Figure 8.

4.3.1 Possible Supporters

In order to appear in a solution plan, any unsupported assertion must eventually be linked to a
supporting assertion. This link can take the form of a single causal link or of a chain of causal

34

β
d0

d1
dur: 10

α
d2

d3
dur: 10

γ
d4

d5
dur: 10

µ
d5

d6
dur: 10

ρ

dur: 2

d1

before

before

before

bef
ore

Figure 9: Partial view of a causal network of a state variable loc (r) with 4 change assertions
(β, α, γ, µ) and one persistence condition ρ, all on the same state variable loc(r). There is a causal
link from γ to µ, β is temporally constrained to be before α and γ, and ρ is temporally constrained
to be after α and µ. We further suppose β to be initially supported. This causal network is to be
considered together with the DTG of Figure 8.

links going through statements not yet in the plan. We refer to the candidates for such supporting
assertions as possible supporters.

Definition 4.4 (Possible supporter). Given the causal network Gφ of a partial plan φ, a change
assertion β is a possible supporter of an unsupported assertion α if there is a set of statements
{s1, . . . , sn} and a chain of causal links β→ s1 → . . .→ sn → α that can be added to Gφ.

For an unsupported assertion α, we consider a superset of the set of possible supporters,
noted Sα. This set is incrementally updated to contain any change assertion β ∈ N that satisfies
the following required conditions:

• the state variables of α and β are unifiable.
• there is a feasible transition in the DTG from the value produced by β to the value required

by α.
• adding a chain of causal links from β to α will not result in any unsolvable threat. We

consider that there is an unsolvable threat, if the causal chain obtained by concatenating
the current causal chains of α and β would necessarily overlap an existing causal chain on
the same state variable.

In the causal network example of Figure 9, the possible supporters of α would be β and µ

because β/µ can come before α and the DTG has a path from d1/d6 to d2. The possible supporters
of γ would be β and α because β/α can come before γ and the DTG has a path from d1/d3 to
d4. The possible supporters of ρ are α and µ; indeed any causal chain from β to ρ would be
threatened by α and by the causal chain of γ and µ.

In search, we restrict resolvers of an unsupported condition α to the assertions in Sα. This
removes infeasible resolvers and thus reduces the number of branches in the search tree.

4.3.2 Deriving Constraints from Potential Supporters

We now consider what temporal constraints can be inferred from the necessary evolution of a
causal network. In order to keep the explanations and notations concise, we first assume that

35

actions do not contain any a priori supported assertions.
Given this assumption, an unsupported assertion α must eventually be linked to a change

assertion β ∈ Sα by a chain of causal links β → · · · → α. The length of the causal chain depends
on the change assertions needed to go from the value produced by β (denoted eff (β)) to the value
needed by α (denoted cond(α)). Therefore, start(α) must be after end(β) with a delay depending
on the times of eff (β) and cond(α). More formally, this requirement is expressed by the following
inequality,

distSTN(O, start(α)) ≥ min
β∈Sα

distSTN(O, end(β)) + distDTG(eff (β), cond(α))

where distSTN(O, t) is the minimal delay in the STN between the origin of time O and the
time point t and distDTG(x, y) represents the length of the minimal path in the DTG to go from
any instantiation of x to any instantiation of y. If this inequality does not hold, it is enforced by
setting the earliest time of start(α) to be greater or equal to the right side of the inequality.

In the case where an assertion α has a single possible supporter β, one can devise a more
specific version that does not use a triangular inequality:

distSTN(end(β), start(α)) ≥ distDTG(eff (β), cond(α))

Again this inequality is enforced by adding in the STN a minimal delay constraint between
end(β) and start(α).

In the case where some actions contain an a priori supported assertion and that α can be
achieved using one such assertion (i.e. distDTG(any, cond(α)) 6= ∞), the above rules are general-
ized by considering a virtual possible supporter that could support it at time distDTG(any, cond(α)).

Example 4.1. Let us now consider what applying those rules on the causal network of Figure 9
would allow us to infer. Assuming that distSTN(O, stβ) = 0, we would infer the following tempo-
ral constraints:

distSTN(O, start(α)) ≥ min { distSTN(O, end(β)) + 10, distSTN(O, end(µ)) + 30 }

≥ 20

distSTN(O, start(γ)) ≥ min { distSTN(O, end(β)) + 30, distSTN(O, end(α)) + 10 }

≥ 40

distSTN(O, start(ρ)) ≥ min { distSTN(O, end(α)) + 50, distSTN(O, end(µ)) + 20 }

≥ 80

The important catch is the detection that the persistence condition ρ = 〈loc(r) = d1〉 cannot
be satisfied before time 80. This is because the planner has already made commitments to other
change assertions, between when the value d1 is first achieved by β and the moment it is required
by ρ. �

4.3.3 Estimating the number of additional assertions needed for a valid causal chain

We further use the causal network as part of heuristic evaluation in order to estimate how many
additional assertions are needed in order to support an unsupported assertion.

For each unsupported assertion α, the key idea is to find a chain of causal links going from an
a priori supported assertion to α. We seek a minimal chain: filling out the missing parts should

36

result in as few additional assertions as possible. Figure 10 gives an example of the minimal
causal chain needed to support the persistence condition ρ from Figure 9. Building such a causal
chain requires the addition of 4 change assertions, resulting in as many new open goals to be
solved.

β
d0

d1

d1
d2

α
d2

d3

d3
d4

γ
d4

d5

µ
d5

d6

d6
d0

d0
d1

ρ

d1

Figure 10: One possible causal chain to support the persistence condition ρ = 〈loc(r) = d1〉. In
blue are temporal assertions that would need to be added for the causal chain to be complete.

We now describe how we compute the heuristic value, hc(α), an estimation of the number of
additional assertions that are needed to build a complete causal chain to the open goal α. We
first remark that our lifted representation means that there are multiple candidates for the instan-
tiation of the condition of α. We thus introduce hc(f , α) as the cost of building the causal chain
to α if its condition is the ground fluent f . Since the planner has the choice in the instantiation
of variables, we consider the cost of building the causal chain to α to be the minimum of the cost
of building it with any possible instantiation of its condition:

hc(α) = min
〈sv=v〉∈dom(cond(α))

hc(〈sv=v〉, α) (1)

where hc(f , α) is the cost of achieving α if its condition is f and dom(cond(α)) is the set of
possible instantiations of the condition of α.

We define hc(f , α), the cost of achieving the ground condition f = 〈sv=v〉 of an assertion α.
The cost of building a causal chain is expressed recursively as the cost of having its rightmost
link plus the cost of building a chain up to this rightmost link.

hc(〈sv=v〉, α) =

0 if α is a priori supported

min
〈sv=v′ 7→v)〉∈dom(β)

hc(〈sv=v′〉, β) if ∃ a causal link β→ α

min

min
γ∈Sα, 〈sv=v′ 7→v〉∈dom(γ)

hc(〈sv=v′〉, γ)

min
e=〈v′→v〉∈DTG(sv)

c(e) + hc(〈sv=v′〉, α)
otherwise

(2)

Intuitively, there is no additional cost if α is a priori supported because there is no need for
any causal support (i.e. hc(·, α) = 0).

If α is supported by an incoming causal link β → α, this causal link is necessarily the last
link of the causal chain to α (for instance in Figure 9, the last link of any causal chain to µ is
the existing causal link γ → µ). Thus, the cost of achieving the condition f of α is the cost of
achieving the condition f ′ of β, where f ′ is an instantiation of the condition of β such that β

produces f .

37

If α is in neither of these cases, we are left with two possibilities for the last link of its causal
chain. First, if α has a possible supporter γ ∈ Sα and γ can be instantiated to provide f , then
a possibility is to have a causal link γ → α. In this case, the cost is that of achieving γ with
such an instantiation. Second, there might be a possible action producing f = 〈sv=v〉 by adding
a change assertion [t, t′] sv : v′ 7→ v. Such a change would appear as an edge e in the DTG of
sv. Since adding this link in the causal chain requires inserting a new action in the plan, we
associate a cost c(e) to this operation. This cost is set to the number of unsupported assertions in
the introduced action, e.g., for the action move of Figure 1 this cost would be 3 since its insertion
would result in 3 new assertions. Furthermore, we still need to build the causal chain to achieve
the value 〈sv=v′〉 for α.

Example 4.2. Considering the causal network of Figure 9, the equation below gives the estimated
cost of building a causal chain to α (i.e. hc(α)). Since all variables in α are already bound, there
is a single possibility for instantiating its condition (first line). From there, the only possibility
to provide the value d2 is to insert an additional move(r, d1, d2) action, resulting in an additional
cost of 3 (second line). To provide the value d1, we can either have a causal link from β or add
another action move(r, d0, d1) again with an additional cost of 3 (third line). Since β is initially
supported, it induces no extra cost and we can conclude that hc(α) = 3: building a complete
causal chain to support α would require the insertion of three new assertions into the partial
plan.

hc(α) = hc(〈loc(r)=d2〉, α)

= 3 + hc(〈loc(r)=d1〉, α)

= 3 + min { hc(〈loc(r)=d0〉, β), 3 + hc(〈loc(r)=d0〉, α) }

= 3 + min { 0, . . . }

= 3

In practice for computing hc(α), we use a distance computation in an equivalent graph where
each node is a pair 〈 f , α〉, f being a fluent and α an assertion in the causal network. An example
of such a graph for the causal network of Figure 9 is given in Figure 11. Edges in the graph
represent the different possible transitions defined in equation (2). We distinguish a causal link
from an existing assertion (green with a cost of 0) from a causal link from an additional assertion
(dashed red with a non-zero cost). We consider two special kinds of nodes: nodes representing a
priori supported conditions (empty circles) and nodes representing unsupported conditions (full
circles). Finding a minimal causal chain to an unsupported assertion α is equivalent to finding
the shortest path in the graph from any a priori supported node to any node representing an
instantiation of α.

In the example of Figure 11, we can easily find the causal chain of Figure 10 by looking for
the shortest path from 〈d0, β〉 to 〈d1, ρ〉. This shortest path takes 4 red edges for a final cost of
12, allowing us to conclude that hc(ρ) = 12. This corresponds to the causal chains shown in
Figure 10.

In practice, the computation of hc(α) is done by a backward Dijkstra search: initializing the
priority queue with nodes {〈 f , α〉| f ∈ dom(cond(α))}. Search progresses by selecting the node
with the least cost in the priority queue and adding its direct ancestors to the queue with an
updated cost. Search continues until a node 〈 f ′, β〉, where β is a priori supported, is extracted
from the queue. The cost of this node gives the cost of the minimal causal chain to α (i.e. hc(α)).

38

d0 d1 d2 d3 d4 d5 d6

β

α

γ

µ

ρ

0

0 0

0 0 0

0

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

Figure 11: Virtual graph used for computing the minimal causal chain of the assertions of
Figure 9.

4.4 Search Strategies

The search algorithm is responsible for choosing which node of the search tree to expand in order
to quickly find a solution of good quality. The quality of the solution and the time spent finding
it are often conflicting objectives. By default in FAPE, the priority is given to the latter and plan
quality is left as a secondary objective, used as a tie breaking criteria.

As is usually the case in plan-space planning, our search procedure (Algorithm 1) requires
two choices to be made at each search iteration. The first one is the nondeterministic choice
of which partial plan to consider next that will define the order in which the search space is
explored. The second one is the choice of a flaw to be fixed in the selected partial plan. As
all flaws must eventually be fixed for a partial plan to become a solution, this choice is not a
backtracking point but will have an impact on the shape of the search tree. A search strategy is
composed of two schemes that dictate the choices made in those two cases.

As can be expected, a good strategy is not universal as it must take into account many
specifics of the problem at hand. Because we support such a wide range of planning prob-
lems, from generative to HTN problems, we define two strategies. The first one aims at being
very general and having good performance on a wide range of problems while the second is
specifically tailored for fully hierarchical problems.

4.4.1 General Search Strategy

Plan selection. Our plan selection strategy is conceptually based on Aǫ [GA83] in that it con-
tains two queues both sorted by the same priority function fn. The first one QAll contains all
partial plans that have been generated and not expanded. The second one QChi is a subset of
QAll that is limited to children of the last expanded node. Those two queues serve different
purposes that can be seen as diversification versus intensification: the planner chooses the partial
plan to consider next either as the globally most promising according to fn or commits to its
previous choice and tries to further advance the last chosen plan.

The choice of the queue to use is governed by a parameter ǫ and is done as follows: if
minφ∈QAll

fn(φ) < (1 + ǫ)×minφ∈QChi
fn(φ) then the next partial plan is the one with the lowest

fn value in QAll . Otherwise it is the one with the lowest fn value in QChi. In practice, it means the

39

search is restricted to the children of the last expanded node until they are significantly worse
than the globally best partial plan, where the threshold of “significantly” is given by ǫ. The
objective of this technique is to compensate for the inaccuracies in the definition of fn.

The priority function fn(φ) is defined as the sum of the following values:

1. the number of assertions in Fφ. This helps in estimating the search effort already done. It
can be seen as a normalized version of the number of actions in the plan as other parts of
fn depend on the number of assertions rather than the number of actions.

2. the number of unrefined task in πφ. This conservatively estimates the search effort left due
to unrefined tasks.

3. the number of unsupported assertions in Fφ.
4. the number of assertions involved in at least one threat. This is a conservative estimation

of the search effort left due to threats. We do not consider the number of threats itself as
it can be, in the worst case, quadratic in the number of assertions in the plan, resulting in
a very important impact on the value of fn. Furthermore the addition of a single temporal
constraint is likely to solve many threats at once.

5. the expected number of assertions that must be added to the partial plan. This is computed
as the sum, for every unsupported assertion α ∈ Fφ, of hc(α) where hc gives the number of
assertions needed to reach the minimal causal chain, as defined in Section 4.3.3.

This definition of the priority function fn can be seen as composed of the usual g + h parts
where g is given by the first item while h is given by the following 4. More specifically for h, the
items 2 to 4 give the search effort directly visible as flaws in the partial plan while the fifth item
provides a heuristic estimation of the search effort required.

Flaw Selection. The flaw selection strategy aims at sorting flaws in order to select the one
whose resolution would the more beneficial (or least detrimental) to search. Choosing which
flaw to select next is a tricky question as it mainly permits an organization of the search space.
A similar use case occurs in constraint satisfaction problems as the choice of the next variable to
be given a value. A very efficient heuristic for this choice is to choose the one with the smallest
domain because it results in the smallest branching factor for the early stages of search. As a
result, the search space of the constraint solver can be kept small. Things are more complex
in planning as a plan has more types of components whose interactions are hard to take into
account. Our strategy is given by the ordered list below. If the first rule favors one flaw over
another, then only this one is kept. Otherwise the next rule is used to break the tie.

1. Prefer a flaw that has a single resolver. A single resolver means that there is a single option
to choose from. Thus, no mistake can be made in applying it.

2. Prefer unrefined tasks over other types of flaws. This priority has the advantage of giving
the priority to task refinement, thus quickly reaching the point where the plan contains
most of its actions with no unrefined tasks. This is useful as unrefined tasks are weakly
accounted for in our plan selection strategy. Getting rid of those early means we will
quickly get to a point where our fn function is more informative.

3. Prefer unsupported assertions over other types of flaw. Given two unsupported assertions,
choose the one on the maximally abstract state variables as defined by Knoblock [Kno94].

4. Finally, prefer the flaw with the fewest resolvers.

40

Furthermore, it should be noted that if there is a flaw with no resolver, then this partial plan
is necessarily a dead-end and the planner can proceed with the next partial plan.

4.4.2 Forward Hierarchical Search Strategy

Our second search strategy is dedicated to HTN problems and is conceptually similar to the
forward search techniques of HTN planners like SHOP2 or SIADEX. The key idea is to hand
back some control to the domain designer about which plans will be explored first. For this
reason, the planner will try the different refinements in the order defined in the domain and
commit to them until they are proved unsound. The planner also follow an early commitment
strategy through its flaw selection strategy, which is meant to detect early any inconsistencies in
the current plan.

Plan selection. Plan selection is done in a depth-first manner with chronological backtracking.
When a node is expanded, the choice of the next partial plan to expand among its children is as
follows:

• if the last resolved flaw was an unrefined task, meaning that each possible partial plan
matches a possible action for refining it, then give priority to the action defined first in the
domain.

• otherwise sort the candidate children by the priority function of the general search strategy.

This prioritization allows the domain designer to force the planner to explore plans in a
predefined order. The rest of the search decisions, such as the choice of how to resolve a threat,
is left to our general search strategy.

Flaw selection. Similarly to the general search strategy, we define the flaw selection strategy as
a sequence of rules whose application is meant to choose the next flaw to resolve:

1. Prefer flaws with a single resolver.
2. Prefer the flaw that has the earliest interaction time. The interaction time of an unsupported

assertion (resp. an unrefined task) is defined as the earliest time of its start time point (e.g.
distSTN(O, ts) for an unsupported persistence 〈[ts, te] sv=v〉). The interaction time of a
threat is taken as the maximum of the interaction time of both assertions it involves.

3. Prefer threats over other types of flaws.
4. Prefer unrefined tasks over other types of flaws. When comparing two unrefined tasks,

prioritize the one that was introduced first.
5. Like for the general strategy, prefer unsupported assertions and give priority to the maxi-

mally abstract ones.
6. Prefer flaws with the fewest resolvers.

The general idea behind those rules is to bias the planner into a forward search by dealing
with unsupported assertions and unrefined tasks that appear early in the partial plan. Indeed,
solving them will typically result in the introduction of causal chains involving assertions from
the initial state. The construction of those causal chains forces the instantiation of object variables
involved in them and permits an easier verification of the conditions on actions.

While this is the general idea, it does not prevent the planner from inserting some of the later
actions of the plan early during search by solving a flaw with a single resolver.

41

5 Empirical Evaluation

We have presented an algorithm able to plan both in a generative and a hierarchical fashion. Our
approach is complemented with a number of techniques intended to improve the efficiency of
the planner by (i) inferring constraints to cut branches of the search tree, and (ii) guiding the
planner to efficiently explore its search space.

In this section, we first study how each of the techniques we have described contribute to
the overall efficiency of the system. We then compare FAPE with state-of-the-art temporal plan-
ners from the International Planning Competition (IPC). We show FAPE to be competitive in a
fully generative and domain-independent setting and that the addition of hierarchical knowledge
further improves its performance.

5.1 Evaluation of the Different Components of the Planner

5.1.1 Evaluation of reachability analysis

We start by evaluating our proposed reachability analysis independently of other techniques. The
motivation to do so comes from the fact that (i) it generalizes the delete-free analysis done by
classical planners to a temporal setting and (ii) the other adaptation of this technique by Coles
et al. [Col+08] is easily represented in our framework by considering an additional relaxation.
We can hence make a direct comparison between them.

Tested Configurations. We distinguish 5 configurations of the planner depending on how far it
pushes the reachability analysis:

• R∞ is the configuration where no limitation is put on the number of iterations for reacha-
bility analysis.

• Rk, with k = 5 and k = 1, denotes the configuration where the number of iterations is
limited to k. This makes the algorithm strongly polynomial and reduces the overhead when
many iterations are needed to converge. On the other hand, the algorithm might incorrectly
label unreachable actions as reachable and fluents/actions will typically be found to have
more optimistic earliest appearance times.

• R+ denotes the configuration where all after-conditions are ignored. In practice, it means
that the propagation will stop right after the first Dijkstra propagation (in the middle of the
first iteration). This configuration is equivalent, for our more expressive temporal model, to
the reachability analysis performed by popf and related planners [Col+10; Col+08; BCC12;
Col+12]

• ∅ denotes the configuration where no reachability analysis is performed. In this case, the
planner does not ground the problem, which reduces its overhead.

To allow for an unbiased comparison, the reasoning on causal networks (Section 4.3) is deacti-
vated in all configurations as it requires reasoning on the ground problem (which is inaccessible
for the last configuration).

Test Domains. We evaluate our reachability analysis technique on several temporal domains
with and without hierarchical features, the former involving many interdependencies between
high-level actions and their subactions. The satellite, rovers, logistics, blocks, driverlog and hiking

42

domains are the eponymous domains from the International Planning Competition and are all
temporally simple (i.e. they have no after-conditions). The domain definitions of those problems
have been manually translated into ANML and their problems were automatically translated by
domain dependent parsers.

The handover domain is a robotics problem presented by Dvorák et al. [Dvo+14], the dock-
worker domain is the dock worker domain of Ghallab, Nau, and Traverso [GNT04]. race is a
robotics domain adapted from CHIMP [Sto+15], where a waiter-robot must serve clients. It
notably features navigation constraints expressed using hierarchical features and deadlines spec-
ifying when a client must be served. springdoor is another robotics problem where the robots
must move objects between several places with closed doors. Opening a door requires complex
interactions between several actions (turning the knob, pushing the door and releasing the knob)
which can be performed by the robot that must pass through the door if it carries nothing, or by
another robot if its hands are full. baking is a domain presented by Cushing et al. [Cus+07b] of
baking pottery in kilns where the action of baking must be concurrent with an action showing
that the kiln is switched on.

Hierarchical versions of the domains have their names appended with ‘-FullHier’ or ’-PartHier’
if they are fully or partly hierarchical respectively.

Results and Discussion. Table 2 and Figure 12 present the number of problems solved using
different reachability models. On generative problems (first half of the table), only a few do-
mains benefit from reachability analysis: handover, logistics and satellite-tw. On other generative
domains, the cost of grounding the problem is slightly higher or on-par with the benefits of
using reachability analysis. As expected, all configurations using reachability analysis perform
identically on temporally simple problems.

This state of affairs changes on hierarchical problems as they contain many interdependen-
cies. In those domains, R∞ outperforms the other configurations: solving the highest number of
problems on all but one domain. R5 and R1 are respectively second and third best performers
while R+ does not provide significant pruning of the search space; the computational overhead
makes it perform slightly worse than no reachability checks (denoted by ∅).

Table 3 presents the percentage of actions detected as unreachable by different configurations.
As expected, R∞, R5, R1 and R+ perform identically on temporally simple problems. However,
R+ is largely outperformed on all but one hierarchical domain. The good performance of R1

with respect to R+ shows that a single complete iteration is often sufficient to capture most of the
problematic after-conditions. However, on more complex problems such as dock-worker, hiking-
FullHier, handover-FullHier, more iterations are beneficial either in terms of detected unreachable
actions or in terms of solved problems. The initial propagation can take as much as 58 iterations
for R∞. The subsequent propagations are typically faster as they are made incrementally. As
expected, a single iteration was sufficient to converge on all temporally simple problems.

5.1.2 Evaluation of other components

We next evaluate how each of the techniques presented contributes to the overall efficiency of the
system. For this purpose, we consider 6 configurations of the planner each one having a specific
technique deactivated. We compare this against the full configuration of FAPE.

• Cfull is the full configuration with all the techniques previously discussed enabled. It uses

43

R∞ R5 R1 R+
∅

(ipc4) airport-Gen 5 5 5 5 5

(ipc4) airport-tw-Gen 6 6 6 6 6

(ipc2) blocks-Gen 24 24 24 24 26

(laas) dock-worker-Gen 9 9 9 9 9

(ipc8) driverlog-Gen 1 1 1 1 1

(laas) handover-Gen 4 3 3 3 3
(ipc2) logistics-Gen 7 7 7 7 4
(ipc4) pipesworld-dl-Gen 5 5 5 5 6

(ipc5) rovers-Gen 34 34 34 34 38

(ipc4) satellite-tw-Gen 9 9 9 9 8
(ipc8) satellite-Gen 16 16 16 16 17

Total Generative 120 119 119 119 123

(ipc2) blocks-FullHier 10 10 9 4 9
(ipc2) blocks-PartHier 28 28 28 30 32

(laas) dock-worker-FullHier 22 22 22 20 20
(laas) dock-worker-PartHier 12 12 12 12 12

(laas) handover-FullHier 10 1 1 1 1
(ipc8) hiking-FullHier 20 13 12 12 12
(ipc2) logistics-PartHier 28 28 28 27 27
(laas) race-FullHier 13 13 13 13 13

(ipc8) satellite-PartHier 18 18 18 18 18

(laas) baking-PartHier 6 6 6 6 6

(ipc8) turnandopen-FullHier 8 8 8 0 0
Total Hierarchical 175 159 157 143 150
Total 295 278 276 262 273

Table 2: Number of solved problems for various domains with a 30 minutes timeout. The best
results are shown in bold.

44

0

100

200

300

1 10 100 1000 1800
Runtime (s)

N
u

m
b

er
o

f
so

lv
ed

p
ro

b
le

m
s

R5

R∞

∅

R1

R+

Figure 12: Number of solved tasks by each configuration within a given time amount.

the general search strategy (Section 4.4.1) by default and switches to the forward hierarchical
strategy (Section 4.4.2) when facing a fully hierarchical domain.

• Cgen is the configuration where FAPE always uses the general search strategy. It differs from
Cfull on fully hierarchical domains where the forward hierarchical search strategy would
have been preferred.

• Clift is a fully lifted version of FAPE. More specifically it does not use reachability analysis
and thus all features that require grounding are deactivated (i.e. causal networks and
instantiation/refinement variables). This configuration is essential to measure the benefits
and penalties for grounding the problem.

• CA∗ use A∗ in place of our variant of Aǫ (Section 4.4.1).
• C¬DelCk does not check that there is a sufficient delay from the start of a task to the moment

its possible effect is required to support an unsupported assertion. Hence it can result in ad-
ditional resolvers being considered for supporting an unsupported assertion (Section 3.2.1).

• C¬DecVars does not use refinement variables to disregard the resolvers of unrefined tasks that
involve unreachable actions (Section 4.1).

• C¬CN does not use the causal network to (i) infer constraints, (ii) prune impossible resolvers
and (iii) improve the heuristic with needed assertions (Section 4.3).

It should be noted that our test configurations do not consider variations for the flaw ordering
strategies. We have tested other such strategies but they resulted in poor performance of the
planner. While in general other strategies can be efficient (e.g. many ground state-space planners
use a “threat first” strategy), their efficiency is strongly coupled with the rest of the strategies
used in the planner. This factor can explain the dominance of the current strategy as it has
evolved with the rest of the system.

Overview of results. We start by giving a broad overview of the results given in Table 4. The
table contains the number of problems solved by each configuration with a 30 minutes timeout

45

R∞ R5 R1 R+ # iter R∞

(ipc4) airport-Gen 13.6 13.6 13.6 13.6 1
(ipc4) airport-tw-Gen 53.4 53.4 53.4 53.4 1
(ipc2) blocks-Gen 0 0 0 0 1
(laas) dock-worker-Gen 55.3 55.3 55.3 0 6.0
(ipc8) driverlog-Gen 41.8 41.8 41.8 41.8 1
(laas) handover-Gen 88.8 87.0 87.0 55.6 29.0
(ipc2) logistics-Gen 39.4 39.4 39.4 39.4 1
(ipc4) pipesworld-dl-Gen 0 0 0 0 1
(ipc5) rovers-Gen 45.7 45.7 45.7 45.7 1
(ipc4) satellite-tw-Gen 1.3 1.3 1.3 1.3 1
(ipc8) satellite-Gen 0 0 0 0 1

(ipc2) blocks-FullHier 83.1 83.1 83.1 0 7.4
(ipc2) blocks-PartHier 79.9 79.9 79.9 0 2.0
(laas) dock-worker-FullHier 80.8 48.8 48.8 0 36.7
(laas) dock-worker-PartHier 76.3 58.8 58.8 0 57.7
(laas) handover-FullHier 99.0 87.4 87.4 0 47.2
(ipc8) hiking-FullHier 74.1 74.1 74.1 0 24.7
(ipc2) logistics-PartHier 95.7 95.7 95.7 10.4 2.8
(laas) race-FullHier 94.3 94.3 94.3 0 22.5
(ipc8) satellite-PartHier 15.3 15.3 15.3 15.3 2.0
(laas) baking-PartHier 87.6 87.6 87.6 0 5.8

Table 3: Percentage of ground actions detected as unreachable from the initial state. For each
problem instance, the percentage is obtained by comparing the number of ground actions de-
tected as unreachable from the initial state to the original number of ground actions. Those
values are then averaged over all instances of a domain. The last column gives the average
number of iterations needed by R∞ to converge on its initial propagation.

and a memory limit of 3GB.
The first important point is to see that while all features contribute to the efficiency of the

planner, none is critical to its overall performance. Indeed, the absence of a feature resulted in 11
to 53 less problems being solved which is only a small subset of the overall 318 problems solved
by the full configuration. However, the difficulty of a planning problem is typically exponential in
the number of goals in the problem, so solving a few additional problems for a domain therefore
has more significance than it might seem.

As expected the Cgen, C¬DelCk and C¬DecVars variants behave exactly as Cfull on generative prob-
lems. The use of our forward hierarchical strategy is however critical in some hierarchical domains,
as it can be seen by the poor performance of Cgen on the hiking and turnandopen domains. The use
of delay checks (absent in C¬DelCk) and of refinement variables (absent in C¬DecVars) is less critical
but contributes to the scaling up of the planners on some hierarchical domains. The gain of using
causal networks (absent in C¬CN) and Aǫ (absent in CA∗) is also globally noticeable and benefits
many domains while not being critical to any of them.

The most important results are the ones related to Clift as this configuration does not ground
the problem. Thus it can be expected to scale up better on problems that would feature many

46

Cfull Cgen Clift CA∗ C¬DelCk C¬DecVars C¬CN

(ipc4) airport-Gen 6 6 5 6 6 6 5
(ipc4) airport-tw-Gen 7 7 6 7 7 7 6
(ipc2) blocks-Gen 25 25 26 23 25 25 24
(laas) dock-worker-Gen 9 9 9 9 9 9 9

(ipc8) driverlog-Gen 4 4 1 0 4 4 1
(laas) handover-Gen 4 4 3 4 4 4 4

(ipc2) logistics-Gen 23 23 4 12 23 23 7
(ipc4) pipesworld-dl-Gen 6 6 6 6 6 6 5
(ipc5) rovers-Gen 34 34 38 32 34 34 33
(ipc4) satellite-tw-Gen 10 10 10 7 10 10 8
(ipc8) satellite-Gen 16 16 17 12 16 16 14
Total Generative 144 144 125 118 144 144 116

(ipc2) blocks-FullHier 10 7 15 10 10 4 10
(ipc2) blocks-PartHier 27 27 32 26 27 29 28
(laas) dock-worker-FullHier 22 22 22 22 14 20 22

(laas) dock-worker-PartHier 12 9 12 12 12 7 12

(laas) handover-FullHier 10 10 1 10 10 10 10
(ipc8) hiking-FullHier 20 2 2 20 17 12 20

(ipc2) logistics-PartHier 28 28 27 27 28 28 28

(laas) race-FullHier 13 10 5 13 13 13 13

(ipc8) satellite-PartHier 18 18 18 14 18 18 14
(laas) baking-PartHier 6 6 6 6 6 6 5
(ipc8) turnandopen-FullHier 8 0 0 8 8 0 8

Total Hierarchical 174 139 140 168 163 147 170
Total 318 283 265 286 307 291 286

Table 4: Number of problems solved by each configuration with a 30 minutes timeout.

47

ground actions. The gains of non-grounding are noticeable on the blocks, rovers and satellite whose
most difficult problems contain many objects. A limitation of our test set (and of problems from
the IPC in general) is that the difficulty of the problem (e.g. length of the plan) is directly
correlated to the number of objects in the problem. Thus we have no instances in our test set
where Clift would find a trivial solution plan while Cfull would fail because it could not ground the
problem. On the rest of the test set, we can see the gain, in terms of search control, of applying
reachability analysis. This is most noticeable with the hierarchical versions of handover, hiking
and turnandopen. Nevertheless, we believe it is important to keep the ability to perform a fully
lifted search even if it means not using some of the heuristics we have developed. A view of the
overhead required for grounding can be witnessed in Figure 13, where we can see that the lifted
version tends to solve simple problems faster because it does not need to ground the problem.

0

100

200

300

1 10 100 1000 1800
Runtime (s)

N
u

m
b

er
o

f
so

lv
ed

p
ro

b
le

m
s

Cfull

Clift

Figure 13: Time needed to solve problems with Cfull and Clift. The Java Virtual Machine takes an
important share of time to load and perform optimization during the first seconds of the run.
This overhead is however comparable for both configurations.

Table 5 gives the average number of nodes expanded by each configuration on problems
solved by all configurations. On those problems, it should be apparent that the full configu-
ration of FAPE actually requires very little search to find solutions. Other configurations, and
Clift especially, tend to explore a larger part of the search space. On all these problems, the av-
erage branching factor is between 2 and 3.5, with only small variations between the different
configurations.

Partial vs Full Hierarchy. A fair number of domains use partial hierarchies. A simple and rel-
evant example of the benefits of using partial hierarchies is the blocks-PartHier domain, given in
Appendix B.2. In this domain, the single task-dependent primitive action is stack. When com-
pared to a flat version of the problem it features an additional high-level action DoStack(a, b) that
either does nothing if b is on a or decomposes to stack(a, b) if it is not. In the resulting problem,
the planner is only allowed to perform one stack action per DoStack task in the problem. On

48

Cfull Cgen Clift CA∗ C¬DelCk C¬DecVars C¬CN

(ipc4) airport-Gen 164 164 226 154 164 164 314
(ipc4) airport-tw-Gen 204 204 284 195 204 204 450
(ipc2) blocks-Gen 162 162 201 139 162 162 182
(laas) dock-worker-Gen 90 90 85 152 90 90 90
(laas) handover-Gen 17 17 15 931 25 17 17 73
(ipc2) logistics-Gen 26 26 24 016 36 26 26 3 440
(ipc4) pipesworld-dl-Gen 230 230 898 612 230 230 1 436
(ipc5) rovers-Gen 105 105 98 153 105 105 104
(ipc4) satellite-tw-Gen 50 50 46 1 824 50 50 676
(ipc8) satellite-Gen 125 125 292 230 125 125 184
Total Generative 1 174 1 174 42 076 3 520 1 174 1 174 6 949

(ipc2) blocks-FullHier 62 263 39 62 88 72 70
(ipc2) blocks-PartHier 84 84 76 121 84 89 566
(laas) dock-worker-FullHier 38 33 631 38 41 121 39
(laas) dock-worker-PartHier 90 498 101 90 93 75 088 90
(laas) handover-FullHier 12 12 163 12 12 16 12
(ipc8) hiking-FullHier 34 36 61 34 236 55 34
(ipc2) logistics-PartHier 50 50 56 50 50 84 516
(laas) race-FullHier 17 17 376 17 32 29 17
(ipc8) satellite-PartHier 87 87 112 403 87 110 105
(laas) baking-PartHier 58 847 58 58 58 58 243
Total Hierarchical 531 1 925 1 675 885 781 75 723 1 691
Total 1 705 3 099 43 751 4 405 1 955 76 897 8 640

Table 5: Average number of expanded partial plans on problems solved by all configurations.
This number does not integrate flaws with a single resolver as FAPE would resolve any such flaw
immediately, before adding the node to the search tree.

the other hand, it can use as many pickup, putdown and unstack actions as necessary to establish
the conditions of the stack actions. This formulation puts a constraint on the plan: do not use
more stack actions than necessary. As result, the planner solves more instances of the partially
hierarchical domain and does it on average 3.7 times faster than for the generative version. When
compared to the fully hierarchical version of the domain (Appendix B.3), the partially hierarchi-
cal one is obviously simpler and requires less domain engineering. Furthermore the partially
hierarchical version is more easily solved by FAPE. This should not be too surprising: FAPE
already does a decent job of solving the flat version of the problem and this simple extension
simply provides some additional help. On the other hand the hierarchical version is a very differ-
ent problem. While extending the fully hierarchical version with more domain knowledge could
probably make it competitive with the partially hierarchical one, there is no need to do it because
the simpler partially hierarchical version already performs well.

A similar approach is taken in the handover-PartHier and logistics-PartHier. In handover, the
only task-dependent actions are the ones involving manipulation of an object (pick, place and han-

dover) while the movements of the robots are left free. Similarly, in logistics the only hierarchical
parts are the load and unload actions. The movements of the fleet of planes and trucks are left
free. If the planner was to entirely decompose the original task network, it would have a set of
load and unload actions and would simply need to plan the fleet movements between those.

49

5.2 Empirical Comparison with IPC Planners

Experimental setup. For comparison with state of the art PDDL temporal planners, we consider
the 11 temporal domains from the International Planning Competition (IPC) all of which have
PDDL2.1 versions. We have manually written ANML versions of the domains that closely mirror
the original PDDL model: domains have the same actions and a direct mapping from predicates
to corresponding state variables. For each domain, we wrote a domain-dependent automated
translator that parsed the original PDDL problems and output ANML problem files.

We use hierarchical versions of a subset of those domains (blocks, hiking, logistics, turnandopen).
Those domains were chosen either because they have a natural expression with partial hierarchies
(blocks and logistics) or because FAPE had difficulties in solving the generative versions of the
problem (hiking and turnandopen).

Three of the selected domains have “advanced” temporal features. Namely, airport-tw and
satellite-tw have temporal windows that respectively restrict the instants at which a plane can
take off and at which a satellite can transmit data. In addition, the goals of pipesworld-dl are
associated with deadlines that must be met by the solution plan. All domains, in their ANML
and PDDL versions, are available online in FAPE’s public repository.5

Planners. We compare FAPE to POPF [Col+10], OPTIC [BCC12] and Temporal
Fast-Downward (TFD [EMR12]). POPF is a complete PDDL2.1 planner based on
temporally-lifted progression planning [Cus+07a]. As such, it can be seen as a forward-search
planner taking a late-commitment approach in the ordering of actions and uses the hFF heuristic
adapted for temporal planning. OPTIC is a recent extension to POPF that supports more
advanced PDDL features, including PDDL2.2 timed initial literals and PDDL3 preferences.

Temporal Fast-Downward (TFD [EMR12]) is a temporal extension of the successful Fast-
Downward classical planner using a decision-epoch mechanism [Cus+07a]. It performs heuristic
search in the space of time-stamped states, using an adapted version of the context-enhanced ad-
ditive heuristic [HG08]. TFD supports PDDL2.1 syntax but is not complete as it only supports a
limited class of problems with required concurrency. More specifically it cannot handle problems
with interdependent actions.

POPF and TFD were runner-up in the temporal satisficing track of IPC-2011 and IPC-2014
respectively. We did not consider YAHSP, the winner of those two tracks, in our comparison as it
only supports temporally simple problems and is therefore strictly less expressive than the other
planners considered here.

We distinguish two versions of FAPE. FAPE-Gen denotes the purely generative version of
FAPE that only considered generative domain encodings with no hierarchical information. It
uses the general search strategy and has no domain-dependent knowledge. FAPE-Hier uses the
hierarchical versions of the blocks, hiking, logistics and turnandopen domains together with the
forward hierarchical search strategy. For generative domains, it uses the general search strategy
and is equivalent to FAPE-Gen.

Results. All tests were performed on an Intel Core i7 with 3GB of RAM and allowed to run for
30 minutes. The results are given in Table 6 in terms of the number of problems solved by each
planner within the time limit.

5Available at https://github.com/laas/fape

50

https://github.com/laas/fape

The performance of the purely generative version of FAPE is comparable with that of POPF
and OPTIC. TFD is ahead in terms of number of problems solved. The addition of hierarchical
knowledge in 4 of the domains allows FAPE to solve 36 more instances. As a result, it outper-
forms POPF and OPTIC, but still lags behind TFD in number of solved problems. However it
should be noted that the advantage of TFD can be entirely reduced to its excellent performance
on the airport domain. This domain is particularly problematic for FAPE because it contains
conditional effects that are not natively supported by FAPE and that were worked around by par-
tially grounding the problem during the translation to ANML. This forced grounding however
interacts badly with FAPE’ search strategy that relies on lifted exploration and very negatively
impacts its performance on this particular domain.

FAPE-Gen FAPE-Hier POPF OPTIC TFD

(ipc4) airport 6 6 7 7 37

(ipc4) airport-tw 7 7 17 7 1
(ipc2) blocks* 25 27 32 32 35

(ipc8) driverlog 4 4 0 0 0
(ipc2) logistics* 22 27 27 27 27

(ipc4) pipesworld-dl 6 6 6 13 2
(ipc5) rovers 34 34 26 26 29
(ipc4) satellite-tw 10 10 6 4 0
(ipc8) satellite 16 16 3 4 17

(ipc8) turnandopen* 0 8 8 9 18

(ipc8) hiking* 0 20 10 9 19
Total 130 165 142 138 185

Table 6: Number of problems solved in 30 minutes for various temporal IPC domains. The best
performance in given in bold. FAPE-Hier uses hierarchical versions of the starred domains and
generative versions of the others.

A focused subset of the results is given in Table 7 for problems with deadlines and timewin-
dows. Those are the only domains of the test set where time is strictly needed, i.e., on all other
domains every solution plan has a valid totally ordered counterpart. While being the overall best
performer, TFD exhibits poor performance on those domains, solving only 3 problems.

FAPE (Gen/Hier) POPF OPTIC TFD

(ipc4) airport-tw-Gen 17 7 7 1
(ipc4) pipesworld-dl-Gen 6 6 13 2
(ipc4) satellite-tw-Gen 10 6 4 0
Total 23 19 24 3

Table 7: Results limited to domains featuring deadlines or timewindows. FAPE-Hier does not
appear separately as we only considered generative versions of those domains.

51

6 Related work and discussion

6.1 PDDL Temporal Planners

STRIPS and PDDL. The original PDDL language [McD+98] and its ancestors STRIPS and ADL,
define actions as state-transition functions with a uniform duration. This was extended with the
introduction of PDDL2.1 for the purpose of the third International Planning Competition (IPC)
[FL03]. The philosophy behind PDDL2.1 is to see a durative action as two instantaneous at-start
and at-end actions that both produce instantaneous state-transitions. Those “snap” actions are
linked together by duration constraints that restrict the possible delays between the start and the
end times of the action as well as durative conditions that require some condition to hold in all
states traversed while performing the action. While this seems like a minor extension, it allows
the expression of temporal planning problems with required concurrency [Cus+07a] and with
interdependent actions [CMR13].

As pointed out by Smith [Smi03], a strong limitation of the language is that conditions and
effects can only be placed at the start and end of the action. While this limitation can be avoided
by splitting a complex temporal action with intermediate time points into multiple subactions
[FLH04], encoding such durative actions by hand is difficult and error prone. A possible ap-
proach is to compile a more expressive language into PDDL2.1 to benefit from its large ecosystem
(as done for PDDL-TE [CMR10] or for ANML [SFC08]).

The PDDL2.1 language has been further extended with timed initial literals that allow truth as-
signments on predicates at arbitrary times (in PDDL2.2 [EH04]) and temporally extended goals
expressed as constraints on the state trajectory (in PDDL3.0 [GL05]). Even though those ex-
tensions are essential in representing real world problems, they have not been much used in
temporal planning, e.g., none of the participants of the temporal track in the IPC-14 supported
them natively.6

Forward-chaining planners. Not surprisingly, most temporal planners participating in plan-
ning competitions evolved from classical planners. Similarly to the classical planning tracks , the
temporal satisficing tracks have been dominated by forward-chaining temporal planners. We can
partition forward-search planners into three categories depending on their search space:

First-fit temporal planners are essentially classical planners that temporally schedule a sequen-
tial solution. The most surprising example is the baseline planner that (unofficially) won the tem-
poral track of IPC-2008 by greedily rescheduling the sequential solution provided by MetricFF
[Hof03]. A more advanced implementation of this approach is YAHSP [Vid04; Vid11; Vid14]
whose second and third versions respectively won the temporal tracks of IPC-2011 and IPC-2014.
While such planners have the advantage of being simple, they are incomplete as they can only
solve temporally simple problems that do not require concurrency between actions [Cus+07a].

Decision-epoch planners maintain a timestamp (called the decision epoch) at which they can
schedule the actions. Successors of search nodes are generated by either starting a new action
at the timestamp or advancing the timestamp (typically to be just after the next effect). This
technique has been the base of many influential temporal planners such as SAPA [DK03], Tem-
poral Fast-Downward (TFD) [EMR12], and others [HG01; Has06; BK00]. These planners support

6See https://helios.hud.ac.uk/scommv/IPC-14/planners_actual.html for the supported features of temporal
planners.

52

https://helios.hud.ac.uk/scommv/IPC-14/planners_actual.html

some cases of required concurrency but are still not complete for temporally expressive problems
[Cus+07a].

Temporally lifted planners separate the problems of what actions to add to the plan and when
to schedule them by using an STN to keep track of temporal constraints. These ideas have
been first introduced by CRIKEY [HLF04] and have been developed in its successors: CRIKEY3
[Col+08], POPF [Col+10], COLIN [Col+12] and OPTIC [BCC12]. Unlike First-Fit and Decision
Epoch planners, those temporally lifted planners are complete for the semantics of PDDL2.1 and
can solve problems with required concurrency or interdependent actions [Cus+07a].

Regardless of their search space, all forward-chaining planners rely on heuristics. Most of
the heuristics are based on a temporal relaxed planning graph (TRPG) built by ignoring the delete
effects of actions. These heuristics are generally adapted from the one that have been successful
in classical planning such as hadd [BG01], hcea [HG08] or hFF [HN01].

Other notable approaches. The GraphPlan framework [BF97] has seen many extensions to han-
dle temporal planning, as first demonstrated by Smith and Weld [SW99] whose planner finds a
solution by extracting it from a planning graph with temporally annotated nodes. In the same
line, LPGP [LF03] and TLP-GP [MR08] both decouple the causal parts of the problem, dealt with
in a GraphPlan framework, and the temporal parts that are addressed by a linear programming
solver or a disjunctive temporal network.

LPG [GSS03; GSS06] builds an action graph (with similarities to planning graphs) through
stochastic local search. Its latest version is able to handle problems with required concurrency by
splitting durative actions into instantaneous ones while considering temporal constraints in an
STN [GSS10].

Temporal plan-space planning has been represented by VHPOP [YS03], a ground plan-space
planner that uses an adaptation of the hadd heuristic to guide itself in the set of ground partial
plans. CPT by Vidal and Geffner [VG06] is a more involved ground plan-space planner that seeks
minimal makespan plans. This is done by placing an upper bound on the makespan of the plan
and trying to prove through inference and search whether such a plan exists. The inference in
CPT relies on dedicated pruning rules, handled as a constraint satisfaction problem.

ITSAT [RGS15] is the first satisfiability-based planner to support PDDL2.1 problems with re-
quired concurrency. This is achieved by first solving, with a SAT solver, an atemporal problem
where all durative actions have been split into instantaneous ones. The planner then tries to find
a schedule for this plan by considering the temporal constraints in an STN. If no such sched-
ule exists, the problem is extended with additional clauses forbiding the cause of the temporal
inconsistency and the procedure is restarted.

6.2 Hierarchical planners

HTN planning has initially been developed around a plan-space approach with planners such
as NOAH [Sac75], Nonlin [MR91], SIPE [Wil90; WM95], O-Plan [TDK94] and UMCP [EHN94].
For totally ordered HTNs, it is possible to plan tasks in order they will be executed, and thus, to
knows the current world state at each step of the planning process. This was proposed in SHOP
[Nau+00], and extended in SHOP2 [Nau+03] for partially ordered tasks and durative actions. A
Multi-Timeline Preprocessing technique is proposed to translate PDDL2.1 operators such as to
keep track of temporal information in the current state. Each operator is augmented with start

53

time, duration and read-time and write-time primitives for time bookkeeping upon instantiation.
A more general procedure to transform durative actions in HTN methods is proposed in [Gol06]:
it maps an action into a task network with two or three operators, one for the start of the durative
action, one for its end, and an epsilon length “spacer” pseudo action. It also adds a time fluent
and proposes a modification of the planner heuristic to handle these extensions. [YS05] proposes
to extend HTN planning with temporal propagation on associated ‘local’ STNs; these are limited
to adjacent nodes in the task network, and thus much smaller than a global STN.

SIADEX [Cas+06; FO+06] is an elaborate temporal state-based HTN planner. It allows the
placement of effects at arbitrary timepoints within durative actions. Conditions are restricted
to be placed at the action’s start. Like SHOP2, SIADEX builds an inherently sequential solu-
tion through action chaining. However, it also performs an online scheduling of the plan by
constraining an action to start after all its preconditions are true (using an STN to keep track
of temporal constraints). XEPlanner [Tan+12] is an HTN planner designed specifically for ad-
dressing emergencies in dynamic situations. It supports durative actions, temporally-enhanced
methods and axioms. Planning is done with an anytime heuristic algorithm handling the task
network together with an STN. GSCCB-SHOP2 [Qi+17] extends SHOP2 for handling time and re-
sources. Specific state-updating rules are used for resource reasoning, together with a backtrack
consistency checking for managing simple temporal constraints.

HTN Planning with task insertion extends the traditional HTN formalism by allowing the use
of primitive actions at arbitrary places in the solution plan [GB11]. It was first explored with
PANDA, a lifted hierarchical planner reasoning in plan space [Sch09]. PANDA allows the use of
high-level actions that can be decomposed into lower-level ones. Both high-level and primitive
actions can be freely inserted by the planner to resolve open goals, outside of any decomposition
tree. Parameters of the partial plan are kept lifted and handled in a binding constraint network.
PANDA only supports limited qualitative time with its plan-space representation allowing it to
represent partially ordered plans. Many heuristics have been studied to be used with PANDA to
account for causal and hierarchical features in a best first search setting [Sch09; Elk+12; BKB14].
Their effect on the scalability of PANDA is however unconvincing and does not allow the planner
to handle complex plans.7 HTN planning with task insertion is also supported by HiPOP, a
ground hierarchical planner reasoning in plan-space [Bec+14; Bec16]. HiPOP considers primitive
actions in the form of PDDL2.1 operators and abstract actions that can be transformed into a
partially ordered set of primitive or abstract actions through the application of methods.

The HTN planning approach of [SBM09] handles qualitative preferences on actions together
with temporally extended state preferences and constraints (as in PDDL3), expressed in a subset
of LTL. Time per se is not explicit in the representation. The modal operators are compiled out
at preprocessing time into additional predicates. A Branch&Bound algorithm, benefitting from
HTN methods and pruning heuristics, is used to find a most preferable plan. The approach is
used in [Soh+13] for the automated composition of software components, as in the composition
of web services and stream processing systems.

Most HTN planners do not rely on heuristic guidance or reachability analysis but instead
perform a depth search guided by on the domain-specific control knowledge provided by their
hierarchical methods. Interest in using the delete-relaxation for hierarchical planning has been
studied theoretically [Alf+14] and in particular with temporal domains in a preliminary version

7On the provided test data, Breadth-First Search is slightly slower but overall competitive with a Best-First search
guided by the proposed heuristics.

54

of our work [BM16]. Heuristics for non-temporal HTN have have been explored in the context of
the plan-space hierarchical planner PANDA where no state-information is available for method
selection [Sch09; BKB14] as well as in forward progression search [Höl+20; HBB20].

6.3 Timeline based Representations and Planners

Timeline-based representations focus on scheduling various temporal intervals representing val-
ues taken by state variables. In these approaches, actions are typically composed of a set of
temporally qualified assertions representing the action conditions and effects over various state
variables (or timelines). Coordination between the different timelines is made by temporal con-
straints that relate the various assertions of an action. An early proposal was the one by Allen
and Koomen [AK83] based on Allen’s temporal algebra [All83]. A timepoint centered view was
proposed by Ghallab and Laruelle [GL94] for the IxTeT planner. While many generative and
hierarchical planners have since chosen this paradigm (e.g. [Chi+00b; TDK94; DU11; Ces+09;
EkR96; FJ03; Bar+12; Mus+02]), no dominating language has emerged for the encoding of such
planning problems.

While much work on temporal planning can be seen an incremental evolution from classical
planning, research on temporal planning largely predates the introduction of durative actions in
PDDL2.1. Indeed the observation by Vere, that the Partial-Order Causal Link technique can be
generalized to rich temporal models, led to numerous planners with advanced temporal represen-
tation capabilities [Ver83; GL94; Mus94; PW94; FJ03]. IxTeT [GL94] is a notable least-commitment
planner that allows reasoning on time and resources in a plan-space approach. A large part of the
internal representation and reasoning is handled by specific constraints satisfaction problems rep-
resenting constraints on timepoints and parameters of actions. IxTeT has a domain-independent
search strategy based on an extended notion of least-commitment.

Another line of work emerged with HSTS [Mus94] from the objective of tightly integrating
planning and scheduling. Instead of actions, HSTS relied on the notion of compatibilities to
describe the possible interactions between various timelines. The planner’s objective is to find
fully defined timelines that respect all compatibilities. HSTS was notably used for the Remote
Agent Planner (RAX-PS) that was demonstrated on board for controlling the operations of the
Deep Space One spacecraft [Nay+99]. HSTS matured into EUROPA [FJ03; Bar+12], and its lan-
guage NDDL, whose central paradigm is to see planning as a dynamic constraint satisfaction
problem where choices of the planner simply results in the addition of constraints to underlying
constraints networks. EUROPA relies on domain-dependent knowledge to guide a depth-first
search. Efforts to transpose domain-independent heuristics into EUROPA but have seen limited
results [BS07; BS08].

The European Space Agency launched the Advanced Planning and Scheduling Initiative
(APSI) that resulted in the definition of the Timeline-based Representation Framework (APSI-
TRF) [Ces+09]. While not a planner per se, APSI-TRF aims at being a timeline-based deliberation
layer to provide facilities for the implementation of timeline-based planners. It has been used as
a building block for the OMPS [CFP08] and GOAC-APSI [Fra+11] planners. Both use a search
algorithm similar to EUROPA. APSI has also been used for MrSPOCK [Ces+09], a long term plan-
ner for the Mars Express mission that works by greedily constructing a long term plan optimized
with a genetic algorithm.

A similar approach is taken in the meta-CSP framework which addresses a planning and
scheduling problem as a higher-level constraint satisfaction problem that requires cross reason-

55

ing on several lower level CSPs (referred to as ground CSPs). Meta-constraints enforce high-level
requirements on the solution plan, playing the role of the flaw detection functions of other time-
line based planners. The detected flaws are handled by posting additional constraints on the
ground CSPs. The key idea is to permit an easy integration of application specific components
by the addition of supplementary ground CSPs and meta-constraints. The meta-CSP framework
has recently been used in CHIMP, a planner with a timeline based representation [Sto+15]. Like
other HTN planners, CHIMP uses a notion of task that can be decomposed into partially ordered
task through the application of methods.

ASPEN is another timeline based planner [Fuk+97; Smi+98; Chi+00a; Chi+00b], which uses
the AML language [Fuk+97; Chi+00b]. Its timelines parameters are handled in a dedicated
constraint network. It uses an iterative repair technique [Zwe+93] to perform local search in
place of the depth-first search adopted by other timeline based planners. Efficiency is sought
by the definition of a hierarchical structure where activities can be refined into sub-activities,
allowing the planner to quickly bootstrap its search with a minimal (possibly flawed) plan.

The Action Notation Modeling Language (ANML [SFC08]) is a proposal to overcome the
absence of apparent causal structure of NDDL, the limited support for generative planning of
AML and the lack of hierarchy in IxTeT. ANML has a strong emphasize on generative planning
with the direct inheritance of earlier timeline-based planning models. It comes with a clear
notion of action with conditions and effects taking the form of temporally qualified assertions at
arbitrary timepoints. In addition, ANML provides some facilities for hierarchical planning: each
action instance is associated with its own predicate that is set to true on the action start and to
false on the action end and can be used to express subtasks. This definition departs from the
traditional definition of HTN problems as it allows for task-sharing: a single action can support
multiple tasks just like a single effect can support multiple conditions. The original language
definition can be characterized as HTN with task-insertion [Alf+16]: additional actions can be
placed at arbitrary places in the solution plan. The latest version of ANML proposes to restrict
the possible placement of actions relatively to higher-level actions by marking them as motivated
[Sch+13]. Conceptually, the presence of such an action must be “motivated” by the presence of
an higher level action that requires its presence and temporally envelops it and is closely related
to our task-dependency concept. To the best of our knowledge no planner exists that support all
ANML features and in particular, none that supports any of its hierarchical features. TAMER
[VMC20] is a forward-chaining planner that supports a form of intermediate conditions and
effects of the ANML language. More specifically, it supports conditions and effects constrained
to be a fixed time-amount after the start or before the end of an action. LCP [Bit18] supports
a more complete set of temporal features, equivalent to the ones in FAPE, by constructing a
sequence of scheduling problems that are solved with an SMT solver. While we are aware of
other prototypes of ANML planners (at NASA Ames, Adventium Lab and Fundazione Bruno
Kessler) none of them have been the subject of a publication nor go as far as FAPE in the support
of temporal and hierarchical features. FAPE is thus the first planner to support most of the
expressive temporal and hierarchical features of the ANML modeling language.

7 Conclusion

We reported here on FAPE, a Flexible Acting and Planning Environment based on timelines.
To our knowledge, FAPE is the first planner supporting both the temporal and hierarchical fea-

56

tures of the expressive ANML modeling language. ANML has significant advantages because
it consistently blends flexible timelines with hierarchical refinement methods, when available.
We presented a planning algorithm for the proposed representation, discussed the specifics of
its search space, and proved its soundness and completeness. A significant contribution of the
presented work is the development of well informed heuristics and inference methods for this
algorithm. The approach takes into account an original reachability analysis supporting causal
networks that are explicitly maintained by the planner and used to focus the search. A com-
prehensive experimental evaluation, using the standard benchmarks of the field, allowed us to
assess several search strategies for FAPE and to compare its performance to other planners, with
or without hierarchical decomposition knowledge. Our evaluation reflects that the proposed
techniques for this expressive representation are competitive.

Furthermore, there is certainly room for a number of improvements of our techniques and
implementation, and a large opportunity for optimizing planning domain knowledge, which we
have not yet explored. Since the source code of the planner and all the domains presented here
are openly available, we do hope that this article will generate interest in the temporal planning
community and trigger efforts to address these topics and extensions. An important extension
that deserves to be further investigated is the support for resources, for which many techniques
have been devised by the constraint-based planning and scheduling community [Vil07].

A strong motivation for the development of FAPE is to support the integration of planning
and acting. The latter involves opportunistically instantiating the unbound variables remaining
in a synthesized plan, in particular for temporal variables through a dispatching algorithm, and
refining planned actions into executable commands. The integration also requires plan repair
techniques, and the assessment of when replanning is preferable to repairing. These develop-
ments, not presented here, have been addressed and integrated within the design of an activity
manager interleaving planning and acting [BM16, Chap. 5]. Experiments with a PR2 robot
and in simulation indicates that the proposed representation is very convenient for handling a
temporally rich domain at the planning as well as the acting levels.

In a temporally rich domain, an actor has to relate its actions to exogenous events, which is
feasible with known techniques when the occurrence of these events is fully observable [Mor14].
In many application areas, and in service robotics in particular, full observability is not a realistic
assumption. One has to check whether a plan is dynamically controllable despite partial observ-
ability, and if not, to decide what needs to be observed to make it controllable, and determine
how to consistently integrate the required sensing actions with other planned activities. The
proposed approach turned out to be quite convenient for supporting the corresponding develop-
ments within FAPE [BMGI16].

For the sake of space, this paper does not cover the two issues of acting and partial observ-
ability. However, they need to be mentioned as they open several promising avenues for future
investigations and developments using the ANML representation.

57

References

[AK83] J. Allen and J. A. Koomen. “Planning Using a Temporal World Model”. In: International Joint
Conference on Artificial Intelligence (IJCAI). 1983.

[Alf+14] R. Alford, V. Shivashankar, U. Kuter, and D. S. Nau. “On the Feasibility of Planning Graph
Style Heuristics for HTN Planning”. In: International Conference on Automated Planning and
Scheduling (ICAPS). 2014.

[Alf+16] R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. Aha. “Hierarchical Planning:
Relating Task and Goal Decomposition with Task Sharing”. In: International Joint Conference
on Artificial Intelligence (IJCAI). AAAI Press. 2016.

[All83] J. Allen. “Maintaining Knowledge About Temporal Intervals”. In: Communications of the ACM
26.11 (1983).

[Bar+12] J. Barreiro, M. Boyce, M. B. Do, J. Frank, M. Iatauro, T. Kichkaylo, P. H. Morris, J. Ong, E.
Remolina, T. Smith, and D. E. Smith. “EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization”. In: International Competition on Knowledge Engi-
neering for Planning and Scheduling (ICKEPS). 2012.

[BCC12] J. Benton, A. Coles, and A. Coles. “Temporal Planning with Preferences and Time-Dependent
Continuous Costs”. In: International Conference on Automated Planning and Scheduling (ICAPS).
2012.

[Bec+14] P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal. “HiPOP: Hierarchical Partial-Order
Planning”. In: European Starting AI Researcher Symposium (STAIRS). 2014.

[Bec16] P. Bechon. “Planification multirobot pour des missions de surveillance avec contraintes de
communication”. PhD thesis. Université de Toulouse, 2016.

[BF97] A. L. Blum and M. L. Furst. “Fast Planning through Planning Graph Analysis”. In: Artificial
Intelligence 90.1–2 (1997).

[BG01] B. Bonet and H. Geffner. “Planning as Heuristic Search”. In: Artificial Intelligence 129.1-2
(2001).

[Bit18] A. Bit-Monnot. “A Constraint-Based Encoding for Domain-Independent Temporal Planning”.
In: International Conference on Principles and Practice of Constraint Programming (CP). 2018.

[BK00] F. Bacchus and F. Kabanza. “Using Temporal Logics to Express Search Control Knowledge
for Planning”. In: Artificial Intelligence 116.1-2 (2000).

[BKB14] P. Bercher, S. Keen, and S. Biundo. “Hybrid Planning Heuristics Based on Task Decomposition
Graphs”. In: International Symposium on Combinatorial Search (SoCS). 2014.

[BM16] A. Bit-Monnot. “Temporal and Hierarchical Models for Planning and Acting in Robotics”.
PhD thesis. Université de Toulouse, 2016.

[BMGI16] A. Bit-Monnot, M. Ghallab, and F. Ingrand. “Which Contingent Events to Observe for the
Dynamic Controllability of a Plan”. In: International Joint Conference on Artificial Intelligence
(IJCAI). 2016.

[BS07] S. Bernardini and D. E. Smith. “Developing Domain-Independent Search Control for EU-
ROPA2”. In: ICAPS Workshop on Heuristics and Search for Domain-independent Planning (HSDIP).
2007.

[BS08] S. Bernardini and D. E. Smith. “Automatically Generated Heuristic Guidance for EUROPA2”.
In: International Symposium on AI, Robotics, and Automation in Space (iSAIRAS). 2008.

[Cas+06] L. A. Castillo, J. Fdez-Olivares, O. García-Pérez, and F. Palao. “Efficiently Handling Tempo-
ral Knowledge in an HTN Planner”. In: International Conference on Automated Planning and
Scheduling (ICAPS). 2006.

58

[Ces+09] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. “Developing an End-to-End Planning Ap-
plication from a Timeline Representation Framework.” In: Innovative Applications of Artificial
Intelligence Conference (IAAI). 2009.

[CFP08] A. Cesta, S. Fratini, and F. Pecora. “Unifying Planning and Scheduling as Timelines in a
Component-based Perspective”. In: Archives of Control Science 18.2 (2008).

[Chi+00a] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. “Using Iterative Repair
to Improve the Responsiveness of Planning and Scheduling”. In: International Conference on
Artificial Intelligence Planning and Scheduling (AIPS). 2000.

[Chi+00b] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F.
Fisher, T. Barrett, G. Stebbins, and D. Tran. “ASPEN: Automated Planning and Scheduling for
Space Mission Operations”. In: International Conference on Space Operations (SpaceOps). 2000.

[CMR10] M. C. Cooper, F. Maris, and P. Régnier. “Compilation of a High-Level Temporal Planning
Language into PDDL 2.1”. In: IEEE International Conference on Tools with Artificial Intelligence
(ICTAI). 2010.

[CMR13] M. C. Cooper, F. Maris, and P. Régnier. “Managing Temporal Cycles in Planning Problems
Requiring Concurrency”. In: Computational Intelligence 29.1 (2013).

[Col+08] A. Coles, M. Fox, D. Long, and A. Smith. “Planning with Problems Requiring Temporal
Coordination”. In: AAAI Conference on Artificial Intelligence. 2008.

[Col+10] A. Coles, A. Coles, M. Fox, and D. Long. “Forward-Chaining Partial-Order Planning”. In:
International Conference on Automated Planning and Scheduling (ICAPS). 2010.

[Col+12] A. Coles, A. Coles, M. Fox, and D. Long. “COLIN: Planning with Continuous Linear Numeric
Change”. In: Journal of Artificial Intelligence Research (JAIR) 44 (2012).

[Cus+07a] W. Cushing, S. Kambhampati, Mausam, and D. S. Weld. “When is Temporal Planning Really
Temporal?” In: International Joint Conference on Artificial Intelligence (IJCAI). 2007.

[Cus+07b] W. Cushing, S. Kambhampati, K. Talamadupula, D. S. Weld, and Mausam. “Evaluating Tem-
poral Planning Domains”. In: International Conference on Automated Planning and Scheduling
(ICAPS). 2007.

[DK03] M. B. Do and S. Kambhampati. “Sapa: A Scalable Multi-objective Heuristic Metric Temporal
Planner”. In: Journal of Artificial Intelligence Research (JAIR) 20 (2003).

[DMP91] R. Dechter, I. Meiri, and J. Pearl. “Temporal Constraint Networks”. In: Artificial Intelligence 49
(1991).

[DU11] M. B. Do and S. Uckun. “Timeline-based Planning System for Manufacturing Applications”.
In: IJCAI Workshop on Artificial Intelligence and Logistics (AILog). 2011.

[Dvo+14] F. Dvorák, A. Bit-Monnot, F. Ingrand, and M. Ghallab. “A Flexible ANML Actor and Planner
in Robotics”. In: ICAPS Workshop on Planning and Robotics (PlanRob). 2014.

[EH04] S. Edelkamp and J. Hoffmann. “PDDL2.2: The Language for the Classical Part of the 4th
International Planning Competition”. In: International Planning Competition (IPC-2004). 2004.

[EHN94] K. Erol, J. A. Hendler, and D. S. Nau. “UMCP: A Sound and Complete Procedure for Hier-
archical Task-network Planning”. In: International Conference on Artificial Intelligence Planning
and Scheduling (AIPS). 1994.

[EkR96] A. El-kholy and B. Richards. “Temporal and Resource Reasoning in Planning: the parcPLAN
approach”. In: European Conference on Artificial Intelligence (ECAI). 1996.

[Elk+12] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo. “Improving Hierarchical Planning
Performance by the Use of Landmarks.” In: AAAI Conference on Artificial Intelligence. 2012.

59

[EMR12] P. Eyerich, R. Mattmüller, and G. Röger. “Using the Context-Enhanced Additive Heuristic for
Temporal and Numeric Planning”. In: Springer Tracts in Advanced Robotics (STAR) 76 (2012).

[FJ03] J. Frank and A. Jónsson. “Constraint-Based Attribute and Interval Planning”. In: Constraints
8.4 (2003).

[FL03] M. Fox and D. Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains”. In: Journal of Artificial Intelligence Research (JAIR) 20 (2003).

[FLH04] M. Fox, D. Long, and K. Halsey. “An Investigation into the Expressive Power of PDDL2.1”.
In: European Conference on Artificial Intelligence (ECAI). 2004.

[Flo62] R. W. Floyd. “Algorithm 97: Shortest Path”. In: Communications of the ACM 5.6 (1962).

[FO+06] J. Fdez-Olivares, L. A. Castillo, O. García-Pérez, and F. Palao. “Bringing Users and Planning
Technology Together. Experiences in SIADEX”. In: International Conference on Automated Plan-
ning and Scheduling (ICAPS). 2006.

[Fra+11] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, and R. Rasconi. “APSI-based Deliberation
in Goal Oriented Autonomous Controllers”. In: Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA). 2011.

[Fuk+97] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. “ASPEN: A Framework for Automated
Planning and Scheduling of Spacecraft Control and Operations”. In: International Symposium
on AI, Robotics, and Automation in Space (iSAIRAS). 1997.

[GA83] M. Ghallab and D. G. Allard. “A-epsilon - An Efficient Near Admissible Heuristic Search
Algorithm”. In: International Joint Conference on Artificial Intelligence (IJCAI). 1983.

[GB11] T. Geier and P. Bercher. “On the Decidability of HTN Planning with Task Insertion”. In:
International Joint Conference on Artificial Intelligence (IJCAI). 2011.

[GL05] A. Gerevini and D. Long. Plan Constraints and Preferences in PDDL3. Tech. rep. Department of
Electronics for Automation, University of Brescia, 2005.

[GL94] M. Ghallab and H. Laruelle. “Representation and Control in IxTeT, a Temporal Planner”. In:
International Conference on Artificial Intelligence Planning and Scheduling (AIPS). 1994.

[GNT04] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning: Theory and Practice. 2004.

[GNT16] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning and Acting. Cambridge University
Press, 2016.

[Gol06] R. P. Goldman. “Durative Planning in HTNs”. In: International Conference on Automated Plan-
ning and Scheduling (ICAPS). 2006.

[GSS03] A. Gerevini, A. Saetti, and I. Serina. “Planning Through Stochastic Local Search and Temporal
Action Graphs in LPG.” In: Journal of Artificial Intelligence Research (JAIR) 20 (2003).

[GSS06] A. Gerevini, A. Saetti, and I. Serina. “An Approach to Temporal Planning and Sheduling
in Domains with Predictable Exogenous Events”. In: Journal of Artificial Intelligence Research
(JAIR) 25 (2006).

[GSS10] A. Gerevini, A. Saetti, and I. Serina. “Temporal Planning with Problems Requiring Concur-
rency through Action Graphs and Local Search”. In: International Conference on Automated
Planning and Scheduling (ICAPS). 2010.

[Has06] P. Haslum. “Improving Heuristics through Relaxed Search - An Analysis of TP4 and HSP*a
in the 2004 Planning Competition”. In: Journal of Artificial Intelligence Research (JAIR) 25 (2006).

[HBB20] D. Höller, P. Bercher, and G. Behnke. “Delete- and Ordering-Relaxation Heuristics for HTN
Planning”. In: Internation Joint Conference on Artificial Intelligence (IJCAI). Ed. by C. Bessiere.
ijcai.org, 2020, pp. 4076–4083. doi: 10.24963/ijcai.2020/564.

60

https://doi.org/10.24963/ijcai.2020/564

[HG01] P. Haslum and H. Geffner. “Heuristic Planning with Time and Resources”. In: European Con-
ference on Planning (ECP). 2001.

[HG08] M. Helmert and H. Geffner. “Unifying the Causal Graph and Additive Heuristics”. In: Inter-
national Conference on Automated Planning and Scheduling (ICAPS). 2008.

[HLF04] K. Halsey, D. Long, and M. Fox. “CRIKEY - A Temporal Planner Looking at the Integration of
Scheduling and Planning”. In: ICAPS Workshop on Integrating Planning into Scheduling. 2004.

[HN01] J. Hoffmann and B. Nebel. “The FF Planning System: Fast Plan Generation Through Heuristic
Search”. In: Journal of Artificial Intelligence Research (JAIR) 14 (2001).

[Hof01] J. Hoffmann. “FF: The Fast-Forward Planning System”. In: AI Magazine 22.3 (2001).

[Hof03] J. Hoffmann. “The Metric-FF Planning System: Translating "Ignoring Delete Lists" to Numeric
State Variables”. In: Journal of Artificial Intelligence Research (JAIR) 20 (2003).

[Höl+20] D. Höller, P. Bercher, G. Behnke, and S. Biundo. “HTN Planning as Heuristic Progression
Search”. In: Journal of Artificial Intelligence Research (JAIR) 67 (2020), pp. 835–880. doi:
10.1613/jair.1.11282.

[Jon+00] A. K. Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and B. Smith. “Planning in Interplanetary
Space: Theory and practice”. In: International Conference on Artificial Intelligence Planning and
Scheduling (AIPS). 2000.

[KKY95] S. Kambhampati, C. A. Knoblock, and Q. Yang. “Planning as Refinement Search: A Unified
Framework for Evaluating Design Tradeoffs in Partial Order Planning”. In: Artificial Intelli-
gence 76.1-2 (1995).

[Kno94] C. A. Knoblock. “Automatically Generating Abstractions for Planning”. In: Artificial Intelli-
gence 68.2 (1994).

[LF03] D. Long and M. Fox. “Exploiting a Graphplan Framework in Temporal Planning”. In: Interna-
tional Conference on Automated Planning and Scheduling (ICAPS). 2003.

[Mac77] A. K. Mackworth. “Consistency in Networks of Relations”. In: Artificial Intelligence 8.1 (1977).

[McD+98] D. McDermott, M. Ghallab, A. E. Howe, C. A. Knoblock, A. Ram, M. M. Veloso, D. Weld,
and D. E. Wilkins. PDDL: the Planning Domain Definition Language. Tech. rep. Yale Center for
Computational Vision and Control, 1998.

[Mor14] P. H. Morris. “Dynamic Controllability and Dispatchability Relationships”. In: Integration of
AI and OR Techniques in Constraint Programming (CPAIOR). 2014.

[MR08] F. Maris and P. Régnier. “TLP-GP: Solving Temporally-expressive Planning Problems”. In:
International Symposium on Temporal Representation and Reasoning (TIME). 2008.

[MR91] D. McAllester and D. Rosenblitt. “Systematic Nonlinear Planning”. In: AAAI Conference on
Artificial Intelligence. 1991.

[Mus+02] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt. “IDEA: Planning at the Core
of Autonomous Reactive Agents”. In: International NASA Workshop on Planning and Scheduling
for Space. 2002.

[Mus94] N. Muscettola. “HSTS: Integrating Planning and Scheduling”. In: Intelligent Scheduling (1994).

[Nau+00] D. S. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP and M-SHOP: Planning with Ordered
Task Decomposition. Tech. rep. CS TR 4157, University of Maryland, 2000.

[Nau+03] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. “SHOP2: An
HTN Planning System”. In: Journal of Artificial Intelligence Research (JAIR) 20 (2003).

61

https://doi.org/10.1613/jair.1.11282

[Nay+99] P. P. Nayak, J. Kurien, G. A. Dorais, W. Millar, K. Rajan, R. Kanefsky, E. D. Bernard, B. E.
Gamble Jr, N. Muscettola, N. Rouquette, and D. B. Smith. “Validating the DS-1 Remote Agent
Experiment”. In: International Symposium on AI, Robotics, and Automation in Space (iSAIRAS).
1999.

[Pla08] L. Planken. “New Algorithms for the Simple Temporal Problem”. Master Thesis. Delft Uni-
versity, 2008.

[PW92] J. S. Penberthy and D. S. Weld. “UCPOP: A Sound, Complete, Partial Order Planner for ADL”.
In: International Conference on Principles of Knowledge Representation and Reasoning (KR). 1992.

[PW94] J. S. Penberthy and D. S. Weld. “Temporal Planning with Continuous Change”. In: AAAI
Conference on Artificial Intelligence. 1994.

[Qi+17] C. Qi, D. Wang, H. Muñoz-Avila, P. Zhao, and H. Wang. “Hierarchical task network
planning with resources and temporal constraints”. English. In: Knowledge-Based
Systems 133 (Oct. 2017), pp. 17–32. doi: 10.1016/j.knosys.2017.06.036. url:
https://linkinghub.elsevier.com/retrieve/pii/S0950705117303167.

[Rab+99] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee. “Iterative Repair Planning
for Spacecraft operations using the ASPEN system”. In: International Symposium on AI, Robotics,
and Automation in Space (iSAIRAS). 1999.

[RGS15] M. F. Rankooh and G. Ghassem-Sani. “ITSAT: An Efficient SAT-Based Temporal Planner”. In:
Journal of Artificial Intelligence Research (JAIR) 53 (2015).

[Sac75] E. D. Sacerdoti. “The Nonlinear Nature of Plans”. In: International Joint Conference on Artificial
Intelligence (IJCAI). 1975.

[SBM09] S. Sohrabi, J. A. Baier, and S. A. McIlraith. “HTN Planning with Preferences.” In: IJCAI (2009).

[Sch09] B. Schattenberg. “Hybrid Planning & Scheduling”. PhD thesis. Ulm University, 2009.

[Sch+13] A. Schwerdfeger, M. Boddy, D. E. Smith, J. Frank, and C. Mcgann. The ANML Language,
Revised [DRAFT]. Tech. rep. Adventium Labs, 2013.

[SFC08] D. E. Smith, J. Frank, and W. Cushing. “The ANML Language”. In: International Conference on
Automated Planning and Scheduling (ICAPS). 2008.

[Smi03] D. E. Smith. “The Case for Durative Actions: A Commentary on PDDL2.1.” In: Journal of
Artificial Intelligence Research (JAIR) 20 (2003).

[Smi+98] B. Smith, R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, and A. Fukunaga. “Repre-
senting Spacecraft Mission Planning Knowledge in ASPEN”. In: AIPS Workshop on Knowledge
Acquisition (1998).

[Soh+13] S. Sohrabi, O. Udrea, A. Ranganathan, and A. Riabov. “HTN Planning for the Composition
of Stream Processing Applications.” In: ICAPS (2013).

[Sto+15] S. Stock, M. Mansouri, F. Pecora, and J. Hertzberg. “Online Task Merging with a Hierarchi-
cal Hybrid Task Planner for Mobile Service Robots”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2015.

[SW99] D. E. Smith and D. S. Weld. “Temporal Planning with Mutual Exclusion Reasoning.” In:
International Joint Conference on Artificial Intelligence (IJCAI). 1999.

[Tan+12] P. Tang, H. Wang, C. Qi, and J. Wang. “Anytime heuristic search in temporal
HTN planning for developing incident action plans”. In: AI Communications
25.4 (Sept. 2012), pp. 321–342. doi: 10.3233/AIC-2012-0539. url:
https://twin.sci-hub.tw/6191/84c8746f47d76132b2bba4d6301867e3/10.3233@AIC-2012-0539.pdf.

[TDK94] A. Tate, B. Drabble, and R. Kirby. “O-Plan2: An Architecture for Command, Planning and
Control”. In: Intelligent Scheduling (1994).

62

https://doi.org/10.1016/j.knosys.2017.06.036
https://linkinghub.elsevier.com/retrieve/pii/S0950705117303167
https://doi.org/10.3233/AIC-2012-0539
https://twin.sci-hub.tw/6191/84c8746f47d76132b2bba4d6301867e3/10.3233@AIC-2012-0539.pdf

[Ver83] S. A. Vere. “Planning in Time: Windows and Durations for Activities and Goals.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 5.3 (1983).

[VG06] V. Vidal and H. Geffner. “Branching and Pruning: An Optimal Temporal POCL Planner based
on Constraint Programming”. In: Artificial Intelligence 170.3 (2006).

[Vid04] V. Vidal. “A Lookahead Strategy for Heuristic Search Planning”. In: International Conference
on Automated Planning and Scheduling (ICAPS). 2004.

[Vid11] V. Vidal. “YAHSP2: Keep It Simple, Stupid”. In: International Planning Competition (IPC). 2011.

[Vid14] V. Vidal. “YAHSP3 and YAHSP3-MT in the 8th International Planning Competition”. In: In-
ternational Planning Competition (IPC). 2014.

[Vil07] P. Vilím. “Global Constraints in Scheduling”. PhD thesis. Charles University in Prague, Fac-
ulty of Mathematics, Physics, Department of Theoretical Computer Science, and Mathemati-
cal Logic, 2007.

[VMC20] A. Valentini, A. Micheli, and A. Cimatti. “Temporal Planning with Intermediate Conditions
and Effects.” In: AAAI Conference on Artificial Intelligence. 2020.

[War62] S. Warshall. “A Theorem on Boolean Matrices”. In: Journal of the ACM 8.1 (1962).

[Wil+08] D. E. Wilkins, S. F. Smith, L. A. Kramer, T. J. Lee, and T. W. Rauenbusch. “Airlift mis-
sion monitoring and dynamic rescheduling”. English. In: Engineering Applications of Artifi-
cial Intelligence 21.2 (Mar. 2008), pp. 141–155. doi: 10.1016/j.engappai.2007.04.001. url:
https://linkinghub.elsevier.com/retrieve/pii/S0952197607000486.

[Wil90] D. E. Wilkins. “Can an AI Planner Solve Practical Problems?” In: Computational Intelligence 6.4
(1990).

[WM95] D. E. Wilkins and K. Myers. “A Common Knowledge Representation for Plan Generation and
Reactive Execution”. In: Journal of Logic and Computation 5.6 (1995).

[YS03] H. L. S. Younes and R. G. Simmons. “VHPOP: Versatile Heuristic Partial Order Planner”. In:
Journal of Artificial Intelligence Research (JAIR) 20 (2003).

[YS05] N. Yorke-Smith. “Exploiting the Structure of Hierarchical Plans in Temporal Constraint Prop-
agation.” In: AAAI Conference on Artificial Intelligence. 2005.

[Zwe+93] M. Zweben, E. Davis, B. Daun, and M. J. Deale. “Scheduling and Rescheduling with Iterative
Repair”. In: IEEE Transactions on Systems, Man and Cybernetics 23.6 (1993).

63

https://doi.org/10.1016/j.engappai.2007.04.001
https://linkinghub.elsevier.com/retrieve/pii/S0952197607000486

A Overlength Proofs

A.1 Proof of Soundness and Completeness (Proposition 3.2)

Proposition 3.2. Fape is sound and complete.

Proof.
Soundness. Soundness requires proving that any plan returned by FapePlan is indeed a solu-
tion, i.e., that it respects the four conditions of Definition 2.4.

The first one, reachability of φ∗ from φ0, can be shown since (i) any transformation made
to the plan is done by applying a resolver and (ii) all resolvers can be expressed in terms of
the allowed transformations (task refinement, free action insertion and restriction insertion). As
reachability admits any sequence of transformations, the application of any number of resolvers,
regardless of their order will result in a plan that is reachable from the original one.

Each of the last three conditions corresponds to a flaw type. Hence, if any of those conditions
is not met, the partial plan would have a flaw that the planner will need to resolve. The require-
ment that the plan be flaw free, together with the type of flaws considered is thus sufficient to
guarantee that the last three conditions are met.

Completeness. We rely on the study by Schattenberg [Sch09, Sec. 2.6 to 2.8] and Kambham-
pati, Knoblock, and Yang [KKY95] of the general refinement planning procedure where a set
of deficiency detection functions identify flaws in a partial plan and a set of modification generation
functions generate modifications of the plan that fix the flaws (i.e. resolvers). Our procedure is an
instantiation of this more general scheme with three detection functions (one for each flaw) and
their modification generation functions implicitly defined by the set of resolvers associated with
a flaw. Showing completeness of a particular refinement planning procedure requires us to show
that (i) no solution plan is rejected because it has flaws, (ii) for a given flaw, our resolvers cover
all the ways of addressing it [Sch09, Def 3.2].

We first show that no solution plan is ruled out because of the presence of a flaw. We assume
that a partial plan φ has a flaw of a given type and show that it cannot be a solution plan or that
it will be transformed into an equivalent plan.

• if φ has an unrefined task τ then it is not a solution plan according to Definition 2.4.
• if φ is detected with an unsupported assertion α, it means that we have not explicitly added

a causal link from a supporting assertion β. Assuming φ to be solution, it means that α

is supported by the presence of a chain of assertions that must eventually originate in a
change assertion or in an a priori supported assertion β. β is thus a causal support of α

and there is a chain of persistences preventing any change to their state variable during
[end(β), start(α)]. Even though this situation could trigger a flaw, the resolver would be a
causal link β→ α that would simply make the support explicit in an equivalent plan.

• Similarly, the planner could detect a conflict between two assertions that cannot be conflict-
ing due to implicit constraints. Indeed, the use of arc-consistency in place of full consistency
in the binding constraint network could make FAPE miss such implicit constraints. Here
again, the planner would simply provide a resolver making the constraint explicit and
resulting in an equivalent plan.

We now show that no solution plan is missed due to an incomplete set of resolvers:

64

• Unsupported Assertion. It is easy to see, by the requirement for causal support, that all
assertions in a solution plan must have an incoming causal link (or an equivalent set of
persistence assertions) from a supporting assertion. For completeness, we need to show
that all possible supporters are considered regardless of whether they are in the current
partial plan or will be inserted later. Our approach distinguishes the assertions already
present in the plan from those that will be inserted later. The direct supporter resolver
provides an option for the planner to select any assertion already in the plan.
Regarding the assertions not yet in the plan we distinguish two cases: the supporter can be
introduced by refining an existing task or it can be introduced by an action not derived from
an existing task. The former is handled by the task supporter resolvers that allow choosing
any of the future assertions derived from an existing task. For the latter, let us observe
that the containing action will be part of another refinement tree not yet in the plan, whose
root is necessarily a free action. Our free action resolvers allow the planner to consider the
addition of free actions as the source of new supporting assertion, regardless of whether
they appear in the free action it self or in a descendant action obtained by decomposing its
subtasks.
To summarize our resolvers allow consideration of all possible sources of supporting asser-
tions, namely: (i) those already in the plan, (ii) those introduced by the extension of existing
refinement trees, and (iii) those introduced by the extension of new refinement trees.

• Unrefined task. Assuming that no previous commitment was made to the support of
unsupported assertions, the set of resolvers is complete as it considers all possible task de-
composition transformations. Let us assume now that the planner made an earlier choice
regarding the support of an assertion α: it decided that α must be supported by a descen-
dant of an unrefined task τ (i.e. τ ∈ DTα). This can lead the planner to disregard an action
template A for the refinement of τ because A would not have any possible effect for sup-
porting α. This pruning is, however, sound because there cannot be an assertion supporting
α deriving from A, i.e., there is no solution plan involving the decomposition of τ with A,
given our previous commitment. Furthermore, the possibility of using A to refine τ will be
considered in other branches of the search space: those derived from another resolver for
α.

• Conflicting assertions. For two assertions α1 and α2 to be conflicting in a partial plan
(π,F , C), it is necessary that a conjunction of constraints be entailed by C: (i) they overlap
(i.e. end(α1) ≥ start(α2) ∧ end(α2) ≥ start(α1)), (ii) all the arguments to their state variables
are equal, and (iii) their values are different. The negation of this conjunction of constraints
thus forms a disjunction of constraints that must hold in any solution plan (otherwise, α1

and α2 would be conflicting). Each of the disjunct corresponds to a resolver of the threat.
Because at least one such disjunct must hold in a solution plan, the set of resolvers for
conflicting assertions is therefore complete.

A.2 Proof of the convergence of earliest appearances (Proposition 4.1)

Proposition 4.1. If a node (i.e. action or fluent) n is reachable in the relaxed problem, then ea(n) converges
to a finite value. If a node n′ is not reachable then ea(n′) either remains at ∞ or diverges towards ∞ until
it is removed from the graph.

65

Proof. We first suppose that all actions have a single condition. With this assumption, there are
two sets of trivially reachable elements: fluents in initial timed literals (i.e. in I) and actions
and fluents appearing in self-supporting causal loops. An action/fluent n is reachable if there
is a path (i.e. sequence of actions/fluents) from one of those trivially reachable elements to n.
Note that all fluents in timed initial literals are part of the assumed reachable set. Furthermore,
a self-supporting causal loop necessarily contains an action with an after-condition [CMR13].
Since after-conditions are ignored at first, it means that this action will be part of the assumed
reachable set. Furthermore, propagation will never remove those from the assumed reachable set
because we have an upper bound on their earliest appearance. We call the set of truly reachable
elements ETrulyReach which is a subset of the set of assumed reachable elements EAssReach. We
define as ENotTrulyReach the subset of EAssReach that is not reachable.

An element d is reachable if there exists an element s ∈ ETrulyReach, such that there is a path
from s to d. The true earliest appearance of d is given by mins∈ETrulyReach ea(s) + spp(s, d), where
spp(s, d) is the length of the shortest path from s to d.

At first, our algorithm is optimistic, which means that we consider as reachable all nodes with
a path from an element of ETrulyReach ∪ ENotTrulyReach. To show that earliest appearances of reach-
able nodes eventually converge to their true values, we first show that the earliest appearances
of nodes in ENotTrulyReach indefinitely increase until they are removed from the model.

A node n ∈ ENotTrulyReach is necessarily an action with an after-condition that was optimisti-
cally ignored. The fact that n is not reachable means that its after-condition p is not reachable,
meaning that there is no path from an element of ETrulyReach to p. If p is not assumed reachable,
then n will be removed. Otherwise we can distinguish two cases depending on which node in
ENotTrulyReach provides the earliest start time of p:

• ea(p) = ea(n) + spp(n, p). In this case, this is an infeasible causal loop involving n and the
earliest appearance of n will be increased at each iteration.

• there is another node n′ ∈ ENotTrulyReach such that ea(p) = ea(n′) + spp(n′, p). In this case,
we can recursively perform similar reasoning on n′: it is either part of an infeasible causal
loop or depends on a node n′′ ∈ ENotTrulyReach \ {n, p}. In both cases, it depends on a node
involved in a causal loop and its earliest appearance would be increased, meaning that the
earliest appearances of p and then n would increase as well.

We have shown that the earliest appearances of all nodes in ENotTrulyReach indefinitely increase
until they are removed. This is also the case for all unreachable nodes that were once assumed
reachable because the sources of all their shortest paths is a node in ENotTrulyReach.

On the other hand, we will eventually reach a point where:

min
s∈ETrulyReach

ea(s) + spp(s, d) = min
s′∈ETrulyReach∪ ENotTrulyReach

ea(s′) + spp(s′ , d)

because the earliest appearance of any s′ ∈ ENotTrulyReach diverges towards infinity. As a conse-
quence, the earliest appearances of reachable nodes will eventually converge to their true values.

This result can be extended to actions with more than one condition by observing that, in a
given iteration, the algorithm only uses a single condition of the action: the one that would make
it the latest.

A.3 Proof that late nodes are unreachable (Proposition 4.2)

Proposition 4.2. If a node is put in the late set, then it is not reachable.

66

The proof is split into several definitions and proposition to facilitate reading. We use a graph
formalism for the rest of this proof: a node is either a fluent or an elementary action. There is an
edge from x to y if x is an action with effect y or if y is an action with condition x. Each edge e
has a label lbl(e) that is the delay from the condition to the action’ start or from the action’ start
to the effect.

A.3.1 Self-dependent set

We first identify sufficient conditions to declare a set of nodes unreachable. A node X is the
predecessor of a node Y (noted pred(Y) = X) if the latest value of ea(Y) was updated by an edge
from X to Y. This is similar to the predecessor labels propagated in a Dijkstra algorithm. While
Algorithm 2 does not maintain this information explicitly, it would be easy to add a predecessor
field for each node that would be updated every time its earliest appearance is modified.

Definition A.1 (Predecessor cycle). A predecessor cycle is a sequence A1 → a1 → A2 → a2 . . . An →
an → A1 of edges where the source of an edge is the predecessor of its target (e.g. pred(a1) = A1).
Upper case nodes are action nodes and lower case nodes are fluents.

Proposition A.1. A predecessor cycle is of strictly positive length (i.e. the sum of the labels on the edges
is strictly greater than 0).

Proof. A cycle of predecessors means that an update of the first element (e.g. A1) triggered an
update of its direct successors (e.g. a1) and all its indirect successors (e.g. A2, a2, an) including
itself. Since the earliest appearance can only be increased as a result of an update, the cycle has
a strictly positive length (otherwise it would not have resulted in a greater value).

Proposition A.2. In a predecessor cycle, at least one effect edge Ai → ai can be removed without altering
the problem.

Proof. A predecessor cycle represents an invalid combination of first achievers of fluents in the
cycle. It means that having the action Ai as the first achiever for the fluent ai (for all i ∈ [1, n])
would result in the condition that starting A1 at a given time requires that A1 had started at an
earlier time. This is trivially not possible, hence at least one fluent ak in the cycle must be first
achieved by an action other than Ak. Since we are dealing with a delete-free model, the effect ak

can be removed from Ak without altering the problem.

Definition A.2 (Self-dependent set). We say that a set Ω of action and fluent nodes is a self-
dependent set if:

• All nodes in Ω have a predecessor in Ω.
• For any fluent f in Ω, all achievers of f are in Ω.

It should be noted that the first element of Definition A.2 implies that (i) all elements of a
self-dependent set have been updated at least once (ii) all actions in Ω depend on at least one
fluent in Ω.

Proposition A.3. If a node n is part of a self-dependent set Ω, then n is not reachable.

67

Proof. We first show that there is a predecessor cycle composed exclusively of nodes in Ω. All
nodes in Ω have a predecessor and this predecessor is in Ω. Since Ω is finite, there is at least one
node in Ω that is an indirect predecessor of itself.

Since we have a predecessor cycle, we can safely remove an edge in this cycle without altering
the problem. This means that one fluent f in Ω is deprived of one of its achievers. f gets a new
predecessor and its earliest appearance is updated. Note that the new pred(f) is still in Ω by
definition of a self-dependent set.

In this new model, Ω is still a self-dependent set. The above steps can thus be repeated until
one fluent of Ω has no achievers left. This fluent and all actions depending on it can be deleted.
The nodes that are left from Ω still form a self-dependent set. The above procedure can thus be
repeated until all fluents and actions of Ω have been proved infeasible.

Example A.1. The graph in Figure 14 shows a problem with no possible actions and fluents. We
display a possible combination of predecessor edges (in red) to highlight the presence of a self-
dependent set. One self-dependent set in this problem is {b, A1, A2, a, B}.

We have a cycle of predecessors b → A1 → a → B → b with an accumulated delay (sum of
the labels) of 1. This cycle can be read as “If A1 is the first achiever of a and B is the first achiever of
b then a can only be achieved at time t if it was achieved at time t− 1.” This is of course not possible:
either b or a needs another first achiever. The only possibility is to select A2 as first achiever for
a and a can be removed from the effects of A1.

In this equivalent model, A2 is the new predecessor of a which results in a predecessor cycle
b → A2 → a → B → b. Consequently, achieving a and b require selecting another first achiever
for one of them. Since we have no other options left, all nodes in this cycle are not possible.

X

A1

A2

B

x y

b a

1

1

1

1

1

1

1

1

-2

-5

Figure 14: Problem in graph representation. Edges in red represent a possible assignment of
predecessors at some point in the propagation.

A.3.2 From propagation to the identification of self-dependent set

We have identified sufficient conditions to declare a group of nodes unreachable. We now show
how the identification of such a set can be integrated into Algorithm 2.

We say that a set of nodes L is late if any node in L has an earliest appearance at least dmax

time units greater than any node not in L; dmax being the maximum delay of any edge of the
graph.

∀x /∈ L, y ∈ L, ea(x) + dmax < ea(y) (3)

68

The intuition behind the definition of a late set is that all late nodes are separated from non-
late nodes by a temporal gap. Furthermore, this temporal gap is big enough so that the earliest
appearances of late nodes could not have been influenced by a non-late node (i.e. the predecessor
of a late node is a late node).

Proposition A.4. If L is a set of late nodes, then L is a self-dependent set.

Proof. We prove the two conditions of a set to be self-dependent.
Let Y be the current predecessor of a node X ∈ L and eYX the edge from Y to X. At the last

update of X, ea(X) was set to ea(Y) + lbl(eYX). We know that ea(Y) can only increase and that
lbl(eYX) ≤ dmax. Consequently, we still have ea(Y) + dmax ≥ ea(X), meaning that Y is necessarily
in L. We have shown that if X is in L, pred(X) is in L.

Next let x be a fluent in L. Because a fluent takes the minimum earliest appearance of all its
achievers, no such achiever can be more than dmax time units before it. All achievers of a fluent
in L are therefore in L as well.

Corollary 1. Any node in a late set is not reachable.

Proposition A.5. Any non-reachable node will eventually be part of a late set.

Proof. All earliest appearances of reachable nodes converge towards a finite value. On the other
hand, earliest appearances of non-reachable nodes diverge towards +∞. At some point, the
earliest appearance of unreachable nodes will be greater by dmax than the latest reachable node.

A possible implementation for detecting unreachable nodes in Algorithm 2 is thus to check
whether some nodes are identifiable as late during propagation and delete all those nodes. Such
an implementation is guaranteed to finish and remove all unreachable nodes.

B Example of ANML domains

B.1 Dock Worker

Below is a partial view of the dock-worker do-
main that served as an illustration of the repre-
sentation in this paper.

/* * * Types , functions , s t a t e v a r i a b l e s * * */
type Truck with {

// l o c : Time x Truck => Dock
f lu en t Dock l o c ;

} ;
type Container with {

f lu en t (Dock or Truck or Ship) pos ;
} ;
. . .

// t r a v e l _ t i m e : Dock x Dock => I n t e g e r
constant i n t t r a v e l _ t i m e (Dock d1 , Dock

d2) ;

// connected : Dock x Dock => Boolean
constant bool connected (Dock d1 , Dock d2) ;

/* * * Actions * * */

// move action of Figure 1
act io n move(Truck r , Dock d1 , Dock d2) {

duration := t r a v e l _ t i m e (d1 , d2) ;
[a l l] r . l o c == d1 :−> d2 ;
[s t a r t , t] occupant (d1) == r :−> NIL ;
[t2 , end] occupant (d2) == NIL :−> r ;
t < t2 ;

} ;

// the two high− l e v e l actions achieving the
t r a n s p o r t task (Figure 2) .

act io n t r a n s p o r t (Container c , Dock d) {
motivated ; // task −dependant

69

// m1− t r a n s p o r t
: decomposition {

[a l l] c . pos == d ;
} ;

// m2− t r a n s p o r t
: decomposition {

constant Truck r ;
constant Dock ds ;
connected (ds , d) ;
ds != d ;
[s t a r t] r . l o c == ds ;
[s t a r t] c . pos == ds ;
// thr ee t o t a l l y ordered subtasks
[a l l] ordered (

load (r , c , ds) ,
move(r , ds , d) ,
unload (r , c , d)

) ;
} ;

} ;

/* * * I n s t a n c e s and Constants * * */
in stan ce Dock dock1 , dock2 , dock3 ;
in stan ce Truck r1 , r2 ;
in stan ce Ship ship1 ;

t r a v e l _ t i m e (dock1 , dock2) := 7 ;
t r a v e l _ t i m e (dock2 , dock3) := 9 ;

/* * * Problem Statement (Figure 3) * * */

// i n i t i a l s t a t e and expected evolut ion
[s t a r t] r1 . l o c := dock1 ;
[s t a r t] r2 . l o c := dock2 ;
[s t a r t] c1 . pos := ship1 ;
[s t a r t +10] ship1 . docked := pier 1 ;
[t_undock] ship1 . docked := NIL ;
s t a r t +20 <= t_undock ; t_undock <=

s t a r t +30;

// g oals and t a s k s
[end] r1 . l o c == dock1 ;
[end] r1 . l o c == dock2 ;
[s t a r t , end] conta ins t r a n s p o r t (c1 , dock3) ;

B.2 Blocks-PartHier

type Location ;
type Block < Location ;

p red icate c l e a r (Block b) ;
p red icate handempty () ;
function Location on (Block b) ;

in stan ce Location TABLE, HAND;

act io n pickup (Block b) {
duration := 5 ;
[a l l] c l e a r (b) == tr ue ;
[a l l] on (b) == TABLE :−> HAND;
[a l l] handempty == tr ue :−> f a l s e ;

} ;

act io n putdown (Block b) {
duration := 5 ;
[a l l] c l e a r (b) == tr ue ;
[a l l] on (b) == HAND :−> TABLE ;
[a l l] handempty == f a l s e :−> tr ue ;

} ;

act io n s tack (Block b , Block c) {
motivated ; // i . e . task −dependent
duration := 5 ;
[a l l] on (b) == HAND :−> c ;
[a l l] handempty == f a l s e :−> tr ue ;
[a l l] c l e a r (c) == tr ue :−> f a l s e ;
[a l l] c l e a r (b) == tr ue ;

} ;

act io n unstack (Block b , Block c) {
duration := 5 ;
[a l l] on (b) == c :−> HAND;
[a l l] handempty == tr ue :−> f a l s e ;
[a l l] c l e a r (b) == tr ue ;
[a l l] c l e a r (c) == f a l s e :−> tr ue ;

} ;

act io n DoStack (Block a , Block b) {
motivated ; // i . e . task −dependent
: decomposition {

[a l l] on (a) == b ;
} ;
: decomposition {

[a l l] s tack (a , b) ;
} ;

} ;

B.3 Blocks-FullHier

type Location ;
type Block < Location ;

70

p red icate c l e a r (Block b) ;
p red icate handempty () ;
function Location on (Block b) ;

in stan ce Location TABLE, HAND;

act io n pickup (Block b) {
motivated ; // i . e . task −dependent
duration := 5 ;
[a l l] c l e a r (b) == tr ue ;
[a l l] on (b) == TABLE :−> HAND;
[a l l] handempty == tr ue :−> f a l s e ;

} ;

act io n putdown (Block b) {
motivated ; // i . e . task −dependent
duration := 5 ;
[a l l] c l e a r (b) == tr ue ;
[a l l] on (b) == HAND :−> TABLE ;
[a l l] handempty == f a l s e :−> tr ue ;

} ;

act io n s tack (Block b , Block c) {
motivated ; // i . e . task −dependent
duration := 5 ;
[a l l] on (b) == HAND :−> c ;
[a l l] handempty == f a l s e :−> tr ue ;
[a l l] c l e a r (c) == tr ue :−> f a l s e ;
[a l l] c l e a r (b) == tr ue ;

} ;

act io n unstack (Block b , Block c) {
motivated ; // i . e . task −dependent
duration := 5 ;
[a l l] on (b) == c :−> HAND;
[a l l] handempty == tr ue :−> f a l s e ;
[a l l] c l e a r (b) == tr ue ;
[a l l] c l e a r (c) == f a l s e :−> tr ue ;

} ;

act io n uncover (Block a) {
motivated ; // i . e . task −dependent

: decomposition {
[a l l] c l e a r (a) == tr ue ;

} ;
: decomposition {

[s t a r t] c l e a r (a) == f a l s e ;
constant Block onA ;
[s t a r t] on (onA) == a ;
[a l l] ordered (

uncover (onA) ,
unstack (onA , a) ,
putdown (onA)) ;

} ;
} ;

act io n DoStack (Block a , Block b) {
motivated ; // i . e . task −dependent
: decomposition {

[a l l] on (a) == b ;
} ;
: decomposition {

[s t a r t] on (a) == TABLE ;
[a l l] ordered (

uncover (a) ,
uncover (b) ,
p : pickup (a) ,
s : s tack (a , b)) ;
end (p) = s t a r t (s) ;

} ;
: decomposition {

constant Block other ;
other != TABLE ;
[s t a r t] on (a) == other ;
[a l l] ordered (

uncover (a) ,
uncover (b) ,
u : unstack (a , other) ,
s : s tack (a , b)) ;

end (u) = s t a r t (s) ;

} ;
} ;

71

	1 Introduction
	2 A Hierarchical Time-oriented Representation
	2.1 Main Components
	2.2 Tasks and Action Templates
	2.3 Chronicles
	2.4 Plan: Transformations and Solutions
	2.4.1 Task Refinement
	2.4.2 Action Insertion
	2.4.3 Plan Restriction Insertion
	2.4.4 Reachable and Solution Plans

	2.5 Discussion

	3 A Plan-Space Planning Procedure
	3.1 Overview
	3.2 Flaws and Resolvers
	3.2.1 Unsupported Assertions
	3.2.2 Unrefined Tasks
	3.2.3 Possibly Conflicting Assertions

	3.3 Constraint Networks
	3.3.1 Temporal Constraint Network
	3.3.2 Binding Constraint Network
	3.3.3 Duration Constraints

	3.4 Search Space: Properties and Exploration

	4 Search Control
	4.1 Instantiation and Refinement Variables
	4.2 Reachability Analysis
	4.2.1 Relaxed Problem
	4.2.2 Reachability analysis with inter-dependent actions
	4.2.3 Analysis and Possible Variants
	4.2.4 Exploiting the results of a reachability analysis

	4.3 Causal Network
	4.3.1 Possible Supporters
	4.3.2 Deriving Constraints from Potential Supporters
	4.3.3 Estimating the number of additional assertions needed for a valid causal chain

	4.4 Search Strategies
	4.4.1 General Search Strategy
	4.4.2 Forward Hierarchical Search Strategy

	5 Empirical Evaluation
	5.1 Evaluation of the Different Components of the Planner
	5.1.1 Evaluation of reachability analysis
	5.1.2 Evaluation of other components

	5.2 Empirical Comparison with IPC Planners

	6 Related work and discussion
	6.1 PDDL Temporal Planners
	6.2 Hierarchical planners
	6.3 Timeline based Representations and Planners

	7 Conclusion
	References
	A Overlength Proofs
	A.1 Proof of Soundness and Completeness (Proposition 3.2)
	A.2 Proof of the convergence of earliest appearances (Proposition 4.1)
	A.3 Proof that late nodes are unreachable (Proposition 4.2)
	A.3.1 Self-dependent set
	A.3.2 From propagation to the identification of self-dependent set

	B Example of ANML domains
	B.1 Dock Worker
	B.2 Blocks-PartHier
	B.3 Blocks-FullHier

