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A New Product Construction for the Diagnosability
of Patterns in Time Petri Net

Éric Lubat1 and Silvano Dal Zilio1 and Didier Le Botlan1 and Yannick Pencolé1 and Audine Subias1

Abstract— We propose a method to decide the diagnosability
of patterns in labeled Time Petri nets (TPN) that gracefully
extends a classic approach for the diagnosability of single faults.
Our approach is based on a new technique for computing the
language intersection of TPN and on an associated extension
of the State Class Graph construction. Our approach has been
implemented and we report on some experimental results.

I. INTRODUCTION

Diagnosability is a basic property of Discrete Event Sys-
tems that relates to the “observability” of concealed events.
Basically, it means that every failure (a distinct instance of
unobservable event) can be eventually detected after a finite
number of observations. In this work, we are interested in
the diagnosability of systems modeled using labeled Time
Petri nets (TPN); an extension of Petri nets in which we can
associate timing constraints to transitions [1]. This means
that we take into account the date at which events are
observed and that we want to detect failures in a bounded
time. We are also interested in detecting patterns [2] in the
occurrence of unobservable events. Our motivation here is to
handle a broad class of diagnosis problems in a unified way,
such as dealing with permanent or intermittent faults; fault
sequences; etc.

We tackle the diagnosability problem using model-
checking techniques; which means that we reduce diagnos-
ability to the problem of checking the validity of a temporal
logic formula on a finite-state model. This approach relies on
a new class of TPN, called Product Time Petri Net (PTPN),
that extends a model introduced in [3]. The idea is to enrich
Petri nets with a composition operator (×), semantically
equivalent to synchronous product, that can be used between
transitions with incompatible timing constraints. Basically,
given two TPN N and N ′, the product N×N ′ is a net where
every “observable event” from N fires synchronously with
a similar event from N ′; meaning together and at the same
date. We show in [3] that it is possible to extend the classical
State Class Graph construction to this model. This gives an
efficient method for building a finite-state representation of
the traces in the intersection of (the timed language of) two
or more TPN.

This paper makes several contributions. First, we describe
how to use PTPN to decide the diagnosability of a system.
Our approach extends the classical techniques based on
the twin-plant construction and relies on an LTL model-
checker. We also describe a direct, on-the-fly algorithm for
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diagnosability. Next, we show that we can define a notion of
pattern diagnosability as a straightforward extension of the
single fault problem. Our approach has been implemented in
a tool called Twina [3].

The rest of the paper is organized as follows. In Section II,
we discuss some previous works on diagnosability, with a
focus on methods that consider Petri nets and their exten-
sions. Section III gives technical details on TPN, Product
TPN and their semantics. We describe our method for
checking diagnosability in Sect. IV and briefly report on
some experimental results before concluding.

II. RELATED WORK

The problem of fault diagnosis was introduced by Sampath
et al [4] and is well studied in the context of discrete event
systems [5], [6]. The problem has also been studied on
timed models, see for instance the work of Tripakis [7]
with Time Automata. In these works, diagnosability is often
reduced to properties on the trace language of systems and
their composition. Several work address the problem of fault
diagnosis for labeled Petri nets (PN), without time [8]. There
are some reasons to justify using PN instead of finite state
automata in this context. For example, PN are well-suited for
modeling notions such as concurrency or causality in a very
compact way; they provide several notions of composition
that help compositional reasoning; there is a large choice of
tools for their analysis and verification; etc.

A. Diagnosability of Petri Nets

Diagnosability is a decision problem related to fault diag-
nosis. A system is diagnosable if we can always detect that
a fault has occurred using only the record of the observable
events (and in a finite number of steps) [8]. There are several
efficient methods for checking the diagnosability of single
faults in PN [9]. We can roughly divide existing techniques
in two groups: (1) those trying to find a critical pair; and
(2) “diagnoser-based” methods, trying to find executions with
uncertain states. We explain these terms below.

The idea with critical pair is to execute two copies of the
system, in lock step on their observable labels. A critical pair
is an infinite trace where one copy has a fault and not the
other; and a system is diagnosable if it has no critical pairs.
The twin-plant method of [10] is representative of this group.
The drawback of this approach is that we may have more
states in the twin-plant than in the system. An advantage is
that this method is conceptually simple.

Methods that use uncertain states build a state graph (an
automaton) that is deterministic and only contains active



states and observable events. Each state is tagged with a
diagnosability information: Normal, Certain, or Uncertain;
where Uncertain means that we can reach the state both
through a fault or without. In this case, a system is diagnos-
able if every state eventually leads to a Normal or Certain
one, see e.g. [11]. A drawback is that we build a deterministic
automaton that may be much bigger than the original (non-
deterministic) state graph. Something we observe in practice.

B. Diagnosability of Time Petri Nets

Unfortunately, many of the techniques proposed for PN are
not suited when we consider time constraints. One problem
is that the state space of a TPN is typically infinite when
we use a dense time model; that is when time delays
can be arbitrarily small. Therefore we need to work on
an abstraction of the transition system. A solution to this
problem was proposed in [12], where the authors define a
state space abstraction based on State Class Graph (SCG).
Basically, a state class captures a convex set of constraints
on the time at which transitions can fire. This approach is
used in several model-checking tools, such as Tina [13].

Another problem with TPN is that we cannot build the
composition of two transitions that have non-trivial (meaning
different from [0,∞)) time constraints. Therefore, it is not
possible to syntactically define a “twin-plant” from a TPN.
To solve this problem, we propose to use Product TPN
(PTPN), a new model where we can define “groups of
transitions” that should fire synchronously.

Some works address the diagnosability of TPN [14], [15],
[16], but all rely on some kind of post-processing phase.
While they propose substantially different methods, they all
rely on a variation of the SCG construction of [12]. The
approach in [16] starts by building a Modified SCG that over-
approximate the possible (timed) executions. The system is
diagnosable if no critical pair is found at his point. Indeed,
time can only limit executions, not add new behavior. If a
candidate critical pair is found, it is necessary to solve a
Linear Programming problems (LPP) to check whether this
scenario is feasible. This approach has several limitations.
In particular, it may require to solve a large number of LPP.
The other approaches are diagnoser-based and suffers from
the drawbacks mentioned earlier. In [14], the authors define
a notion of Augmented State Class (ASC) graphs, which
are SCG with diagnosability information, and use a method
to split time intervals in order to only keep deterministic
paths in the ASC graph. The interval splitting phase may
create a large number of new active states that can lead to
a state explosion problem. The approach in [15] relies on
a combination of SCG and an enumeration of all the firing
sequences between active states.

We propose a direct extension of the twin-plant con-
struction to the case of TPN, without any post-processing
of traces. We use this method to decide the single fault
diagnosability problem on TPN and show that it can be
simply extended to decide the diagnosability of patterns. An
advantage of our approach is that we can adapt it easily

to several extensions of TPN: priorities between transitions;
inhibitor arcs; capacity arcs; etc.

III. TIME PETRI NETS, PRODUCT TPN AND OTHER
TECHNICAL BACKGROUND

A Time Petri Net (TPN) is a net where each transition, t,
is associated with a (static) time interval Is(t) that constrains
the time at which it can fire. A transition is enabled when
there are enough tokens in its input places. Once enabled,
transition t can fire if it stays enabled for a duration θ that
is in the interval Is(t). In this case, t is said time enabled.

A TPN is a tuple 〈P, T,Pre,Post,m0, Is〉 in which:
〈P, T,Pre,Post〉 is a net (with P and T the set of places
and transitions); Pre, Post : T → P → N are the
precondition and postcondition functions; m0 : P → N is
the initial marking; and Is : T → I is the static interval
function. We use I for the set of all possible time intervals.
To simplify our presentation, we only consider the case of
closed intervals of the form [l, h] or [l,∞[, but our results
can be extended to the general case.

We consider that transitions can be tagged using a count-
able set of labels, Σ = {a, b, . . . }. We also distinguish the
special constant ε (not in Σ) for internal, silent transitions.
In the following, we use a global labeling function L that
associates a unique label in Σ∪ {ε} to every transition. The
alphabet of a net is the collection of labels (in Σ) associated
to its transitions. To reason about diagnosability, we also
need to partition Σ into two sets: one for observable, the
other for unobservable events. We will often use L to refer
to the set of observable events.

We propose an extension of TPN in which it is possible
to fire several transitions “synchronously”. A Product TPN
is the composition (N,R) of a net N , with transitions T ,
and a (product) relation, R, that is a collection of firing sets
r1, . . . , rn included in T (hence R ⊆ P(T ), the powerset of
T ). The idea is that all the transitions in an element r of R
should be fired at the exact same time. As a consequence,
two transitions in r should have the same labels (we should
use L(r) = a to say they have a common label a) and not
interfere with each other (they should not share a common
input place).

Definition 1 (PTPN). A Product TPN (N,R) is the pair of
a net N = 〈P, T,Pre,Post,m0, Is〉 and a product relation
R ⊆ P(T ) such that, for every firing set r in R, transitions
in r are independent and compatible: if both t1 and t2
are in r then L(t1) = L(t2) and for every place p in P ,
Pre(t1)(p) > 0⇒ Pre(t2)(p) = 0.

Next, we define the behavior of nets. Apart from the effect
of the firing sets, the following definitions are quite standard,
see for instance [17], [18].

A. A Semantics Based on Firing Domains

A marking m of a net 〈P, T,Pre,Post〉 is a mapping
m : P → N from places to natural numbers. A transition t
in T is enabled at m if and only if m >̇ Pre(t), where >̇
is the pointwise comparison between functions.



A state of a PTPN is a pair s = (m,ϕ) in which m is
a marking, and ϕ : T → I is a mapping from transitions
to time intervals, also called firing domains. Intuitively, if
t is enabled at m, then ϕ(t) contains the dates at which t
can possibly fire in the future. For instance, when t is newly
enabled, it is associated to its static time interval ϕ(t) =
Is(t). Likewise, a transition t can fire immediately only when
0 is in ϕ(t) and it cannot remain enabled for more than its
timespan, i.e. the maximal value in ϕ(t).

For a given delay θ in Q≥0 and ι = [l, h] in I, we denote
ι−θ the time interval ι shifted by θ. This operation is defined
only when θ ≤ h, in which case ι−θ = [max(0, l−θ), h−θ].
By extension, we use ϕ .− θ for the partial function that
associates the transition t to the value ϕ(t)−θ. This operation
is useful to model the effect of elapsed time on a state.

The semantics of a PTPN is a (labeled) Kripke structure,
or Time Transition System (TTS), 〈S, S0,→〉, with two
possible kinds of actions: either s a−→ s′, meaning that a set
of transitions t with label a is fired from s; or s θ−→ s′, with
θ ∈ Q≥0, meaning that we let a duration θ elapse from s. A
transition t can fire from state (m,ϕ) if t is enabled at m
and firable instantly. When we fire a set of transitions r =
{t1, . . . , tn} from state (m,ϕ), a transition k (with k 6= t)
is said to be persistent if k is also enabled in the marking
m −∑

t∈r Pre(t), that is if m −∑
t∈r Pre(t) >̇ Pre(k).

The other transitions enabled after firing r are called newly
enabled.

Definition 2 (Semantics of PTPN). The semantics of a PTPN
(N,R), with N = 〈P, T,Pre,Post,m0, Is〉, is the TTS
〈S, s0,−→〉, also denoted [[(N,R)]], where S is the smallest
set containing s0 and closed by −→ such that:
— the initial state is s0 = (m0, ϕ0) where ϕ0 is the firing
domain such that ϕ0(t) = Is(t) for every t enabled at m0;
— the state relation → ⊆ S × (Σ ∪ {ε} ∪Q≥0)× S is such
that for all state (m,ϕ) in S

(i) if r ∈ R with labels a and t is enabled at m and
0 ∈ ϕ(t) for all t ∈ r, then (m,ϕ)

a−→ (m′, ϕ′) where
m′ = m −∑

t∈r Pre(t) +
∑
t∈r Post(t) and ϕ′ is a

firing function such that ϕ′(k) = ϕ(k) for any persistent
transition and ϕ′(k) = Is(k) elsewhere.

(ii) if ϕ(t) − θ is defined for all t enabled at m then
(m,ϕ)

θ−→ (m,ϕ .− θ).

Transitions in the case (i) above are called discrete; those
labelled with delays (case (ii)) are the continuous, or time
elapsing, transitions.

A Product TPN (N,R) allows to fire multiple transitions
simultaneously, constrained by the relation R. Therefore
TPN form a natural subset of PTPN, the one where every
firing set has only one transition. More precisely, we can
always interpret a TPN N with transitions {t1, . . . , tn} as
the PTPN (N,RN ), where RN is the collection of singleton
{{t1}, . . . , {tn}}. In the following, we often omit the product
relation in a PTPN when it is not needed, or obvious from
the context. We should also simply use the term net, or the
symbol N , to refer to a Product TPN.

B. Executions, Observations and Traces

An execution of a net N is a sequence of actions in
its semantics, [[N ]], that starts from the initial state. It is
a time-event word α1 . . . αn over the alphabet containing
both labels (a, b, · · · ∈ Σ) and delays (θ ∈ Q≥0), where
we do not record silent transitions. In the following, we
simplify executions in order to avoid the occurrence of
two successive delays; this can be achieved by defining a
structural congruence relation between sequences, ≡, such
that θ θ′ ≡ (θ+θ′). This means that we can always consider
executions of the form θ0 a0 θ1 a1 . . . , that alternate between
delays and labels. In this case, we say that the date of the
event ak in σ is θ0 + · · ·+ θk.

Given a set of observable labels L ⊆ Σ, the L-
observation for an execution σ = α1 . . . αk is the sequence
obsL(α1) . . . obsL(αk) such that obsL(α) = α when α ∈
Q≥0 ∪ L and obsL(α) = 0 otherwise. Hence obsL(σ) is an
execution that contains only the observable events in σ, in
the same order and at the same date than in σ.

By contrast, a trace is the untimed word obtained from
an execution when we keep only the discrete actions. Then
the language of a TPN is the set of all its (finite) traces.
By definition, the language of a TPN is prefix-closed; and
it is regular when the net is bounded. The State Class
Graph construction of [12] provides an effective method for
computing a finite representation of the traces in a bounded
TPN. We can do the same with Product TPN using the SCG
construction defined in a previous work [3].

We can illustrate our definitions with a simple example
(see Fig. 1). Executions for the net N1 (left) are sequences
of the form θ0 a θ1 b (and their prefix), provided that θ1 ≥ 1;
the {b}-observations are of the form θ b, with θ ≥ 1; and the
only maximal trace in N1 is a b.

We can define the set of observations that are common
to two nets, N1 and N2, using a classic product operation
between transition systems. Assume K1 = 〈S1, s

0
1,→1〉

and K2 = 〈S2, s
0
2,→2〉 are two TTS and L is a set of

(observable) labels. The product of two TTS over L, denoted
K1‖LK2, is the TTS 〈(S1 × S2), (s0

1, s
0
2),−→〉 such that −→

is the smallest relation obeying the following rules:

s1
α−→1 s

′
1

α ∈ (Σ \ L) ∪ {ε}
(s1, s2)

α−→ (s′1, s2)

s2
α−→2 s

′
2

α ∈ (Σ \ L) ∪ {ε}
(s1, s2)

α−→ (s1, s
′
2)

s1
α−→1 s

′
1 s2

α−→2 s
′
2 α ∈ Q≥0 ∪ L

(s1, s2)
α−→ (s′1, s

′
2)

It is the case that the “common observations” in N1 and
N2 (relative to L) are exactly the observations in the TTS
product [[N1]] ‖L [[N2]]. This has a direct application when
we try to find a critical pair in a TPN N , since it amounts
to finding an observation in [[N ]] ‖L [[N ]] where the first
component had an occurrence of a fault and not the second.

Theorem 1. There is an execution σ in K1‖LK2 if and only
if there are two executions, σ1 in K1 and σ2 in K2, with the
same observations: obsL(σ) ≡ obsL(σ1) ≡ obsL(σ2).



p0

t0

a[0,∞[

p1t1

b[1,∞[

(a) (N1, {{to}, {t1}})

q0

t2

a[0,∞[

t3

b[0, 1]q1

(b) (N2, {{t2}, {t3}})

Fig. 1: two examples of TPN

Proof (sketch). Given an execution σ from K1‖LK2 we can
define its projection over each component; which gives σ1

and σ2. Reciprocally, we can always synchronize (over L)
pairs of executions that have the same L-observations.

C. Synchronous Product of PTPN

Given two nets (N1, R1) and (N2, R2) with disjoint
sets of places P1, P2 and transitions T1, T2, their product
(N1, R1) ×L (N2, R2) is the PTPN (N,R) where N is
the concurrent composition (juxtaposition) of N1 with N2,
the net 〈P1 ∪ P2, T1 ∪ T2,Pre,Post,m1

0 ] m2
0, Is〉 with

Pre(t)(p) = Prei(t)(p) if and only if t ∈ Ti and p ∈ Pi
with i ∈ 1..2, and 0 otherwise (same with Post); and the
product relation R is such that:

R =
⋃
a∈L
{r1 ∪ r2 | ri ∈ Ri,L(ri) = a, i ∈ 1..2}

∪
⋃

a∈Σ\L∪{ε}

{r | r ∈ R1 ∪R2,L(r) = a}

Unlike the conventional synchronous composition operator
between Petri nets, we do not merge transitions with the
same labels but, instead, compose relations. But like with
synchronization, our goal is to define an operation that is
a congruence, meaning that [[N1 ×L N2]] is equivalent to
[[N1]] ‖L [[N2]].

Theorem 2. State graph [[(N1, R1)×L (N2, R2)]] is isomor-
phic to [[(N1, R1)]]‖L[[(N2, R2)]].

Proof (sketch). By induction on the shortest path
from the initial state, s0, to a reachable state s in
[[(N1, R1)×L (N2, R2)]], then a case analysis on the
possible transitions from s.

We can illustrate how the product can constrain the
behavior of nets using the examples of Fig. 1. Executions
for N2 (right) include sequences of the form θ0 a θ1 b and
θ1 b θ0 a, provided that θ1 ≤ 1. The product N1 ×a,b N2

is a PTPN with two firing sets, {t0, t2} and {t1, t3}. The
resulting net contains only the executions common to both
N1 and N2: we have θ0 a θ1 b only if θ0 = 0 (this is the only
possibility to fire {t1, t3} simultaneously); or we have θ0 a θ1

with θ0 +θ1 ≤ 1. In the latter case, we reach a time deadlock
at date 1 (a situation where time cannot progress and no
transitions can fire). Indeed, at this date t3 must urgently

fire (its firing domain is [0, 0]) but t1 is not firable yet (its
firing domain is [1− θ,∞[).

Time deadlocks are important in the context of our work.
They model the case of two executions that start with
the same observation but that cannot be reconciled after
some point; meaning that observable events are enough to
eventually discriminate them.

Theorem 2 provides an effective method for checking the
diagnosability of a TPN when it is bounded. We describe
this method in the next section.

IV. SINGLE FAULT AND PATTERN DIAGNOSABILITY

We can easily define the twin-plant construction of a net
N as the composition of two copies of N , say N.1×LN.2.
In the following, we consider that failures are transitions
on a common unobservable label, say f . We say that the
single fault f is diagnosable when we cannot find a (critical)
pair of executions such that: (1) they have the same L-
observations; and (2) only one of them eventually exhibits a
failure (contains a transition labeled with f ).

We use the general assumption that systems are ultimately
observable; meaning that they do not block and that, on every
execution, we always eventually find an observable event
after a bounded number of transitions and within a bounded
delay (which entails the absence of Zeno traces, like in [7]).
Hence the fault f is diagnosable when executions with the
same observations both fail, or if they block, meaning we
cannot extend them with a compatible event.

By Th. 1, a critical pair in N corresponds to an infinite
execution path in [[N.1]]‖L[[N.2]] where a fault occurs in
one copy of N but not the other. We can characterize
these executions using Linear temporal Logic (LTL) [19],
which will provide an effective method to check for diag-
nosability. An LTL formula φ expresses constraints on the
occurrences of events along an execution path. It is built
from propositions, logical connectives, and a modality, ♦φ,
meaning that “property φ will eventually hold”. We use
propositions f.i to denote an occurrence of f in component
i, and dead for deadlocks. Hence checking the absence
of critical pairs amounts to checking that, on every path,
formula ♦(f.1 ∨ dead) is valid only if ♦(f.2 ∨ dead) is
valid. We can simplify this statement by taking into account
the inherent symmetry of the problem.

Theorem 3. a TPN N is diagnosable if and only if all the
maximal executions of the product N.1 ×L N.2 satisfy the
LTL formula ϕD

def
= (♦f.1)⇒ ♦ (f.2 ∨ dead).

Proof. Net N is diagnosable in the sense of [7] iff property
ϕD is valid on all maximal executions in [[N.1]]‖L[[N.2]]
(there is no infinite execution faulty in N.1 and not in N.2).
The result follows from Th. 2.

Therefore, to check if N is diagnosable, we can simply
generate the SCG for N.1×L N.2 then use an LTL model-
checker (like the tool Selt provided with Tina) to check
property ϕD from Th. 3.



p1 back1

f

p0 found

p2

back0 f

twob three b

oneb t0 b

back2

f

t1 f

Fig. 2: pattern for “three consecutive b without f”

A. On-the-Fly Algorithm for Diagnosability

We have improved on the indirect method of Th 3 by
defining a dedicated decision algorithm for diagnosability
that is on-the-fly (it avoids computing the whole state space
of the system when not necessary) and that has better
memory usage. When the system is not diagnosable, we
return a counter-example that is a trace in N.1 ×L N.2
corresponding to a critical pair.

We remark that it is not necessary to fire transition f.2 to
check property ϕD, since every execution that contains f.2
satisfies ♦(f.2∨ dead). Then, assuming we never fire f.2, a
counter example to property ♦(f.2 ∨ dead) corresponds to
a non-trivial Strongly Connected Component (SCC). Based
on this idea, we propose an adaptation of Tarjan’s SCC
Algorithm [20] to “mark” states leading to a cycle (avoiding
f.2) in the state class graph of N.1×L N.2.

Our algorithm generates new nodes (state classes) fol-
lowing a depth-first search order; computes SCC; and mark
nodes incrementally. We mark all the nodes in a cycle as
soon as we find one. We also mark nodes that can lead to a
marked one (either when we fire a transition or when we pop
the stack of visited nodes). We report a counter-example for
diagnosability as soon as we either: (1) reach a marked node
by firing f.1; or (2) when we find a SCC containing f.1.
The net is diagnosable if we finish exploring all the classes.
Like with Tarjan’s algorithm, the time complexity is linear
in the size of the SCG for N.1×L N.2.

B. Pattern Diagnosability

Our method can be naturally extended to check for the
diagnosability of “patterns of unobservable events” [2]. In
our case, a pattern M is a special instance of TPN. We
denote F the set of labels occurring in M and we distinguish
a place in M , say found , that is a witness for detection.

We say that pattern M detects the execution σ if obsF (σ),
the F -observation of σ, is an execution of M that “marks”
place found : we can run the execution obsF (σ) in [[M ]] and
it satisfies the linear property ♦found .

More generally, we say that pattern M is detected in N
when we reach a state where place found is marked in N×F

p0

p1

p2

found

b, f

b

f

bf

b

f

Fig. 3: marking graph for the pattern in Fig. 2

M . For instance, the pattern in Fig. 2 detects executions that
have three consecutive occurrence of b without any f in-
between. This can be inferred from the marking graph of
the pattern (see Fig. 3).

Instead of defining a pattern as a regular language [2],
or as a set of timed sequences [21], [22], we use a (prefix-
closed) set of executions in [[M ]]. Hence we restrict ourselves
to time regular languages, meaning sets of executions that
can be “realized” with a TPN. This is enough to model every
regular set of (untimed) traces.

We also want to make sure that a pattern does not interfere
with the system it interacts with. For example, it should
not prevent some executions of the system. To this end, we
impose three well-formedness conditions on patterns:

1) patterns are total; they should always allow transitions
on the labels in F , at any time (they never block or
delay a transition):

2) patterns are deterministic (the same observations
should lead to the same states)

3) labels in F are unobservable (F ∩ L = ∅)
Constraints (1) and (2) can be expressed as a property over
all states in [[M ]], namely ∀s ∈ [[M ]], a ∈ F, θ ∈ Q≥0.∃!t ∈
T, s′, s′′ ∈ [[M ]]. (L(t) = a ∧ s θ−→ s′

t−→ s′′)
By analogy with our previous definition of diagnosability,

we say that pattern M is diagnosable if it is not possible to
find a (critical) pair of executions such that M is found in
one but never in the other. We can again reduce this question
to a model-checking problem on a twin-plant; this time on
the product of the system with the pattern.

Theorem 4. Given a well-formed pattern M , with labels F ,
the net N is diagnosable for pattern M if and only if all
the maximal executions of the product (N.1 ×F M.1) ×L
(N.2×F M.2) satisfy (♦found .1)⇒ ♦ (found .2 ∨ dead).

Proof. By Th. 1, since M is total, the pattern is detected for
the execution σ of N iff there is an (equivalent) execution
σM in [[N ]]‖F [[M ]] and property ♦found is valid for σM .
Since M is deterministic, σM is unique, so it is not possible
to find another execution, compatible with σ, where found
is not marked. Hence we are left with checking the diagnos-
ability of the event found in the net N ×F M . The result
follows from Th. 3 and the fact that F ∩ L = ∅.

We can relax some of the well-formedness constraints
in the proof of Theorem 4. For instance, we can replace
“deterministic” with the weaker property that “detection is
unambiguous”: it is not possible to find an execution in M
that leads to two markings, one where found is marked, the



other not. Nonetheless, this presentation has some merits. For
instance each condition can be checked automatically on the
marking graph of M when the net is bounded and has no
timing constraints.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have extended our tool Twina with support for the
declaration of product relations and for the construction
of “twin machines”. See https://projects.laas.fr/twina/ for
installing the tool and for information necessary to reproduce
our experiments.

Twina provides an option, -twin, to build the state class
graph for the “twin-product” of a net given a fault label.
The result can be used as input of the Selt model-checker,
which is part of the Tina toolbox. We also provide an option,
-diag, for testing diagnosability of single faults using our
on-the-fly algorithm of Sect. IV-A. When the system is not
diagnosable, it is possible to print a counter-example using
the verbose output mode, option -v.

We provide several use cases on the tool website. We only
report some of our results here due to space limitations.

One of our biggest model is a version of the WODES
diagnosis benchmark of Giua [23], also used in [21], with the
addition of timing constraints. This instance is not diagnos-
able. Diagnosability with the (indirect) approach from Th 3
takes about one hour of computation and generates almost
40 million classes. We return a result in about 5 s with option
-diag (using the same computer) after computing less than
200 000 classes. The counter-example found is of length 63.
We are also able to check the diagnosability of the examples
taken from [15], [21] and obtain the same verdicts.

To check the diagnosability of a net, N , with respect to a
F -pattern M , it is enough to compute the SCG for a system
build from the “twin-plant” product of N ×F M and then
use a model-checker to check property φD of Th. 4. Among
other benchmarks, we have experimented this approach with
an instance of the pattern in Fig. 2, on a timed version of
the product transportation system found in [21]. The untimed
system is not diagnosable (and it state graph has 14 270
markings). By varying the timing constraints, we can switch
from a diagnosable behavior to an un-diagnosable one. The
size of the resulting SCG vary from about 2 000 classes to
almost 130 000 when the system is not diagnosable. In all
these examples, computation time is less than a few seconds.

VI. CONCLUSION

We propose a constructive and unified approach for decid-
ing the diagnosability of single failures and patterns in TPN.
Our presentation emphasizes the connections between these
two properties. For future work, we hope to benefit from this
relationship in order to study more elaborate observability
properties; for example a notion of opacity for patterns.

As such, our approach can be naturally extended to the
diagnosability of timed pattern. Unfortunately, it was not
possible to delve into this question due to space limita-
tions. In this context, proving that the pattern is total and
deterministic may be complex; and may require to consider

priorities between transitions. Our approach could also be
adapted to check for k-diagnosability (by limiting the number
of observable events after a fault) or for ∆-diagnosability,
by composing our twin-plant model with an “observer” that
triggers an alarm if it is possible to let a delay ∆ elapse
after the first occurrence of a fault. We plan to study these
questions in a future work.
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