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We present a novel acquisition scheme based on a dual disperser architecture, which can recon-
struct a hyperspectral data cube using many times fewer acquisitions than spectral bands. The
reconstruction algorithm follows a quadratic regularization approach, based on the assumption
that adjacent pixels in the scene share similar spectra, and if they do not, this corresponds to
an edge which is detectable on the panchromatic image. A digital micro-mirror device (DMD)
applies reconfigurable spectral-spatial filtering to the scene for each acquisition, and the filtering
code is optimized considering the physical properties of the system. The algorithm is tested on
simple multi-spectral scenes with 110 wavelength bands, and is able to accurately reconstruct
the hyperspectral datacube using only 10 acquisitions.

1. INTRODUCTION

Hyperspectral imagers measure high resolution spectra for every
pixel of a 2-D scene, generating a 3-D dataset with two spatial
and one spectral dimensions. These hyperspectral cubes are
useful for many applications, such as satellite imaging, remote
sensing, medicine and food industry. Despite the large variety
of scenes, hyperspectral cubes are often highly correlated and
sparse in structure [1, 2], and this sparsity can be exploited in
post processing to compress or de-noise the datacube [3–7].

With no prior information on the scene, hyperspectral im-
agers must measure the 3D data cube using multiple acquisitions
of 2D sensor, which limits the frame rate of the system and
generates a large volume of data, potentially problematic for
limited bandwidth applications. However, by making certain
assumptions on the sparse properties of the hyperspectral scene,
one can reduce the number of acquisitions, obtaining the min-
imum volume of data necessary to reconstruct the datacube.
Such assumptions on the spectral-spatial correlations of the
hyperspectral cube have recently fostered the development of a
variety of hyperspectral imaging systems that require few acqui-
sitions [8–18]. Other schemes have generated similar benefits
by assuming that the spectra must originate from a pre-defined
library of classes [19–22].

The approach presented here, implemented for a dual dis-
perser hyperspectral imager [14, 23, 24], also assumes a high
degree of spectral-spatial correlations, i.e. that adjacent pixels
are likely to share the same spectra. Moreover, as the dual dis-
perser system provides easy access to the panchromatic image,
it is possible to exploit an additional assumption: we consider

that two regions of differing spectra also have differing panchro-
matic intensities, and hence that the boundary between the
regions is visible as an edge on the panchromatic image. In
short, we assume that, 1) pixels in a given spatial region have
similar spectra, and 2) that the edges between these regions
are visible on the panchromatic image. These are reasonable
assumptions as the presence of spatially adjacent metamers is
relatively rare in nature.

The used reconstruction algorithm is based on an edge-
preserving regularization which smoothes spectral-spatial fea-
tures, which obliges nearby pixels to have similar spectra but
avoids smoothing of sharp spatial features, therefore preventing
mixing of the spectra between distinct regions [25]. This regu-
larization is related to edge-preserving regularization [26] and to
the well-known Total Variation [27] regularization which aims
to preserve the unknown edges, while smoothing the images to
regularize the solution. However, these methods are relevant
when the edges in the images are unknown. In our case, we
propose to detect the edges first using the panchromatic image,
then a simple quadratic regularization is modified to preserve
the edges.

This approach differs from typical compressed sensing meth-
ods [18], in that we do not assume sparsity of the scene in a
given basis/redundant dictionary. Whilst such methods use
L1 (absolute value) regularization, leading to non-smooth opti-
mization problems, the quadratic (L2) regularization applicable
here simply needs to solve a linear system of equations, which
can be solved iteratively using rapidly converging algorithms,
allowing the potential to close the loop between acquisitions and
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reconstruction of the datacube. An access to the panchromatic,
which is easy with a dual disperser system, is the cornerstone
of the proposed edge-preserving L2 regularizer. Note that such
an approach may be used with a single disperser system only
if an additional panchromatic imager is associated to the sys-
tem (as in [28]), accurately calibrated and registered with the
hyperspectral data acquisitions.

In addition to assumptions on the scene, we also exploit the
optical properties of the system to move beyond purely random
coded apertures, and design an optimized mask which considers
measurement correlations between horizontally adjacent pixels.

In section 2 we describe the dual disperser system, which
uses a digital micro-mirror device (DMD) to apply a reconfig-
urable coded spectral-spatial mask to the scene, and in section 3
we outline the regularization algorithm, which reconstructs the
hyperspectral cube from a small number of acquisitions. Sec-
tion 4 presents the experimental system used to implement the
scheme, and section 5 studies how the acquisition conditions
influence reconstruction accuracy, using a small spectrally uni-
form scene. Section 6 uses optimized experimental settings
to accurately reconstruct two multispectral scenes with 110
spectral bands, using only 10 acquisitions. Finally section 7
concludes the paper and suggests further improvements that
could be added to the system.

2. IDEAL MODEL OF DUAL DISPERSER SYSTEM

Fig. 1. Principle of dual-disperser hyperspectral imager.

The basic principle of the dual disperser hyperspectral imag-
ing system is represented in Figure 1. A scene is spectrally
dispersed, then imaged on a binary coded spatial filter, in this
case a DMD, where each mirror can be individually turned
on/off. The DMD is used to spatially filter the spectrally dis-
persed scene, so each wavelength band is filtered by a laterally
shifted copy of the DMD mask. All wavelengths are then re-
combined using an inverse dispersive operation, so that after
subsequent re-imaging on the camera there is no spectral-spatial
coupling in the measured image.

Fig. 2. Spectral-spatial filtering of the hyperspectral dat-
acube by the DMD, and subsequent measurement at the
camera, using the DMD mask shown in Figure 1.

Figure 2 illustrates how the hyperspectral data cube o is
filtered by the DMD and measured at the camera. The hy-
perspectral data cube o has spatial dimensions R rows by C
columns, with W wavelength bands. The DMD spectral-spatial
filtering is implemented by element-wise multiplication of o
with the filtering cube H, which also has dimensions R×C×W .
The wavelength bands are summed, and the measured camera
image m has R rows by C columns.

By vectorization of the matrices, the measurement at the
camera can be given by

m = Ho (1)

Where m is now a vector of length RC containing the
measurements of every pixel (r, c) on the camera, o is the
vectorized hyperspectral datacube, of length RCW . The matrix
H describes the spectral-spatial filter applied by the DMD mask,
and is a 2D matrix of size RC ×RCW .

For N acquisitions, each with a different DMD mask, we
can concatenate equation (1), giving

m =


m1

...

mN

 = m =


H1

...

HN

o = Ho (2)

In which case, m is now a vector of length RCN and H a
matrix of size RCN ×RCW .

Whilst these equations describe an ideal model of the dual
disperser scheme, the following reconstruction algorithm is also
applicable to the experimental system, accounting for certain
complexities discussed further in section 4.

3. RECONSTRUCTION OF THE HYPERSPECTRAL
DATACUBE VIA EDGE PRESERVING REGULAR-
IZATION

The reconstruction algorithm seeks to retrieve the object o
from the series of measurements m. This is a linear inverse
problem, and is under-determined when the number of mea-
surements N is less than the number of wavelength bands W ,
independent of the DMD mask and its corresponding filtering
cube H. Therefore, to retrieve o when N �W , we must make
some assumptions on the hyperspectral data.

Extensive analyses of real world hyperspectral cubes has
shown that regions of homogenous panchromatic intensity are
likely to be spectrally similar [1, 2], and thus we infer that the
edges between spectrally dissimilar regions are typically visible
on the panchromatic image [29]. We can utilize this knowledge
to assist in our retrieval of o by assuming that neighboring
pixels have similar spectra, unless they are separated by an edge,
which we assume is visible on the panchromatic image. In other
words, we assume the probability of two or more metamers
being spatially adjacent is negligible. The panchromatic image
is easily obtainable using the dual-disperser architecture, simply
by turning all DMD mirrors to the ‘on’ position - the mirror
position when light is reflected to the sensor.

By assuming a high degree of spectral-spatial correlation,
it may be possible to reconstruct o even when N �W , using
a regularization process, defined in our case using a penalized
cost function of the form [30]

ô = argmino ‖m−Ho‖2Γ−1 + Ω(o) (3)
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This function aims to find a solution ô which is compatible
with the measured data m. The noise on the measurements
m is mitigated using a Gaussian noise model with covariance
matrix Γ, given by Γ = diag {m}, valid for sufficiently high
signal.

The term Ω(o) is key to the regularization process, and
in this case enforces a user-defined level of similarity between
adjacent pixels, given by [31]

Ω(o) = µx ‖Dxo‖2 + µy ‖Dyo‖2 + µλ ‖Dλo‖2 (4)

The matrices D represent the finite differences along the
two spatial and one spectral dimensions. Matrix Dx has di-
mension RCW by R(C − 1)W , Dy has dimension RCW by
(R− 1)CW and Dλ has dimension RCW by RC(W − 1). The
regularization parameters µ(x,y) control the smoothing of the
data spatially between adjacent pixels. The parameter µλ
controls the smoothing in the spectral dimension, and must
be small to preserve sharp spectral features, but non-zero to
reduce noise in the reconstructed spectrum.

To prevent smoothing across an edge, the components of
the matrices Dx and Dy corresponding to an edge pixel are
set to zero [25]. The edges are detected on the panchromatic
image using a state-of-the-art edge finding procedure.

These functions allow the analytical expression

ô = (HtΓ−1H+µxDt
xDx+µyDt

yDy+µλDt
λDλ)

−1HtΓ−1m
(5)

For a typical hyperspectral datacube, the matrices are too
large for equation Eq. (5) to be solved directly. However, as
the matrices H, Dx, Dy, Dλ and Γ are all highly sparse, the
solution ô may be found iteratively using a Conjugate Gradient
method (CGNR) algorithm [32] with a low computation cost.

The ideal regularization parameters µ(x,y,λ), depend on the
spatial resolution, number of bands and the data itself. Fixed
parameters can be chosen to give a correct reconstruction
for a large variety of hyperspectral scenes. In our case we
empirically determined the optimum values for our system to
be µx = µy = 10−2, and µλ = 10−5.

A. Properties of the DMD Mask
Depending on the regularization approach, it is also important
to consider how the filtering cube H can influence the recon-
struction process. It has been shown for compressed sensing
schemes (for example in [18, 33, 34]), that certain properties
of the coded aperture can be highly influential to the quality
of the results. Similarly for our case, it should be apparent
that not all mask configurations can be used to reconstruct
ô accurately and efficiently, and the filtering mask should be
optimized for best results. Luckily the simplicity of the spatial-
spectral coupling allows us to intuitively optimize the mask,
following similar requirements to compressed sensing - such
as uniformity and variability of the resulting mask, but also
fulfilling additional requirements specific to our regularization
scheme. The properties of the mask which should be considered
to maximize the likelihood of a successful reconstruction, for
any given scene or spectra, are discussed below.

A.1. Randomness
Firstly, the filtering cubes must be sufficiently random. When
N � W , each measurement needs to provide as much new
information as possible, to allow efficient reconstruction. Con-
sequently, each camera acquisition should avoid excessively

redundant measurements by measuring a different combination
of wavelength bands at every pixel. Utilizing a random DMD
mask ensures that the spectral bands measured by a given pixel
are uncorrelated to the bands measured by any other pixel, as
much as is possible within the confines of the system. This
will increase the chance that there is sufficient information to
reconstruct ô accurately. Moreover, using random patterns
can avoid sampling artifacts such as aliasing, randomness is
commonly used in image processing as well as occurring in
nature (for example the arrangement of cone cells in eyes [35]).

A.2. Orthonormality
In addition to utilizing a random pattern on the DMD, we can
further maximize the information provided by each acquisition
by using orthonormal masks on the DMD. A set of N orthonor-
mal DMD masks are defined such that each mirror is opened
exactly once over the entire set of N acquisitions.

Figure 3 illustrates the difference between non-orthonormal
and orthonormal random mask types, by observing the spectral
filter applied to a single pixel over N = 3 acquisitions. The
DMD masks implemented for Figure 3a are non-orthonormal,
employing an independent random pattern of on/off mirrors
for each acquisition. In this case some bands (2, 7 and 10) are
measured more than once, whilst others (6 and 12) are not mea-
sured at all, and therefore some information is lost. Conversely,
the spectral filters employed in Figure 3b are orthonormal, and
therefore each wavelength band is measured once and only once.
The property of orthonormality minimizes redundant data and
loss of information; by using orthonormal DMD masks, no voxel
from the hyperspectral datacube is measured more than once,
and all voxels are measured at least once.

For the considered regularization method, the quality of
the reconstruction, as well as the convergence of the CGNR
algorithm, are related to the condition number of the matrix to
invert in eq. (5). It can be shown [29] that using orthonormal
masks, with the additional requirement that each acquisition
has the same number of open mirrors, ensures a smaller con-
dition number for this matrix compared to random masks.
Therefore an orthonormal configuration will both improve the
reconstruction accuracy and take less time.

An additional advantage of orthonormal masks is that, as-
suming a constant exposure time, summing the camera ac-
quisitions gives the panchromatic image, requiring one less
acquisition in total.

  1    2    3    4    5    6    7    8   9   10  11  12  13  14  15 

1

2

3

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4/15

6/15

5/15

4/15

(b)

Fig. 3. Example of spectral filter where N = 3, and W = 15.
DMD mask type is a) random b) random orthonormal.

A.3. Length-N Random Pattern
For a set of N acquisitions, the amount of light reaching the
camera is directly influenced by the ratio of open mirrors (ROM)
of each acquisition. To avoid repeated optimization of camera
exposure time, it is intuitive to use the same ROM for every
acquisition. For orthonormal masks, this leads to ROM=
1/N and, as we have mentioned, such a choice improves the
conditioning of the problem.
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However, consider also that the light reaching each camera
pixel is spectrally filtered by a sub-section of the DMD mask,
only W mirrors long, corresponding to the length of the dis-
persed spectrum on the DMD. Whilst the entire DMD may
have ROM = 1/N , the local ROM seen by a given pixel can
still vary significantly from pixel to pixel, due to spatial non-
uniformity in the DMD mask. The local variation in the ROM
may cause under- or over-exposure, depending on the pixel
location and acquisition number n. A simple example is shown
in Figure 4a, which illustrates the spectral filter for a single
pixel over N = 3 acquisitions, with W = 15 wavelength bands,
and an orthonormal random mask applied to the entire DMD.
Whilst the average ROM is 1/N = 1/3, the first acquisition
has a higher local ROM, and may be over-exposed, whilst the
subsequent two acquisitions have locally a lower ROM, and
could have low signal. Thus in both cases, loss of information
can occur, and the reconstruction process will be degraded.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

7/15

4/15

4/15

6/15

5/15

4/15

(a)
  1    2    3    4    5    6    7    8    9   10  11  12  13  14  15 

1

2

3

1/3

1/3

1/3

(b)

Fig. 4. Example of spectral filter and measured ROM, with
N = 3 acquisitions and W = 15 wavelength bands. DMD
mask type is a) orthonormal random b) length-N orthonor-
mal random.

A preferable DMD mask maintains the ROM measured
over small length scales. One method to build such a mask
is to apply a random pattern with ROM = 1/N to a small
subsection of the DMD, and build the entire DMD mask section
by section. The DMD mask is divided horizontally into sections
of length N mirrors, and for each acquisition and for each
section, only one of these mirrors is opened, which gives a
ROM of exactly 1/N for that subsection. We term this mask
a length-N random mask. Since W � N , the ROM measured
over W mirrors is maintained close to 1/N , and the mask
is still sufficiently random to give a well conditioned problem.
Figure 4b illustrates how a length-N orthonormal random mask
spectrally filters a single pixel, and has the same ROM for all
acquisitions. The length-N random mask favours high spatial
frequency variation in the DMD mask, and reduces low spatial
frequency components which are responsible for long sections
of ‘on’ mirrors.

Modeling a system with W=110, N=10 and a scene with
400 by 400 pixels, Figure 5 gives the probability of measuring
a local ROM, comparing the random and length-N random
masks. The variation in the measured ROM for the random
mask is large, whilst the length-N random has a highly spatially
uniform ROM and will therefore avoid loss of data due to under-
or over-exposure.

The second benefit of the length-N random mask is that
there are no long horizontal sections of ‘on’ mirrors, as the
division of the DMD into length-N subsections ensures we can
never have more than 2 adjacent mirrors turned to the ‘on’
position. This is important because the key component of the
reconstruction algorithm is the process of regularization in the
spatial dimension. This regularization compares information
from neighboring pixels, and assumes that they have similar
spectra. Due to the dispersion properties of the system, the
spectral filters for horizontally adjacent pixels are very close,
but laterally shifted by one band. Figure 6 shows a subsection of

0 2 4 6 8 10 12 14 16 18 20
Local ROM (%)

0

0.5

1

1.5

2

2.5

3 104

Random
length-N Random

Fig. 5. Probability of measuring a local ROM for random
mask (blue) and length-N random mask (red). Calculated
with N=10, W =110 for a scene of 400× 400 pixels.

the spectral filters given in Figure 4, measured for horizontally
adjacent pixels A,B,C. With the orthonormal random mask,
these three pixels measure exactly the same information for
wavelength bands 9 and 10, due to the long row of ‘on’ mirrors
in the filter. Using the set of measurements from these pix-
els, it is impossible to differentiate between light coming from
wavelength band 9 or 10, which could lead to a poor reconstruc-
tion. Conversely, for the length-N orthonormal random mask,
each pixel provides new information, in the form of a different
combination of the wavelength bands, and a successful recon-
struction is more likely. The transition between ‘on’ and ‘off’
mirrors allows horizontally adjacent pixels to measure different
information, which is vital to the regularization process.

1

2

3

1

2

3

1

2

3
 8    9   10  11   8    9   10  11   8    9   10  11  

1

2

3

1

2

3

1

2

3
 8    9   10  11   8    9   10  11   8    9   10  11  

Fig. 6. Subsection of the spectral filters for wavelength bands
8-11, over three acquisitions, for horizontally adjacent pixels
A,B and C. The full spectral filter for pixel B is given in
Figure 4a for the orthonormal random pattern, and Figure
4b for the length-N orthonormal random pattern. Pixels A
and C measure the same spectral filter as B, but shifted by
one band to the left and right respectively.

Note that the resulting length-N orthonormal random masks
share similar properties to the blue noise coded apertures devel-
oped for compressed sensing schemes [33, 34], in particular in
terms of low correlation and the attempt to avoid large clusters
of ‘on’ pixels in the coded aperture. However, these properties
have been derived with a different aim than ours. In the CS
framework, the mask optimization targets the satisfaction of
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the restricted isometry property and the minimization of the
mutual coherence of the sensing matrix, related to the sparsity
of the solution in a given dictionary [33].

4. EXPERIMENTAL SYSTEM
A. Optical Setup
The experimental layout of the dual disperser hyperspectral
imager used to implement the regularization algorithm is shown
in Figure 7. Further details on the design and calibration of the
system can be found in [23]. In short, this architecture consists
of two back-to-back 4-f imaging systems, with a spectrally
dispersive element placed in the Fourier plane of each 4-f system.
The layout of our system utilizes a double pass system, with
a DMD placed in the intermediate image plane to reflect light
back along the optical path. This necessitates the use of a
beam-splitter to direct the light to the camera, resulting in
75% loss of the light. Whilst not optimal in terms of optical
efficiency, the simplicity of the system is ideal for development
and testing of novel acquisition schemes.

The DMD in our system has 1920 by 1080 square mirrors
of length 10.8µm. The mirror hinge is orientated along the
diagonal, and so the DMD is rotated by 45◦. The mirrors thus
have a diamond shape when viewed in the coordinate frame of
the camera, and the light is deflected in the horizontal plane.
The camera has 2048 by 2048 pixels of pitch 5.5µm, and bit
depth of 12 bits. Due to the orientation of the DMD we only
the use central 1200 by 1200 pixels of the scene.

Fig. 7. Schematic of system layout. Lens focal length F =
200mm, BS = beamsplitter. Prism is BK7 with apex angle
30◦.

The spectral bands are defined by the DMD; each spectral
band corresponds to the spectral width which covers a column
of mirrors on the DMD. According to the system properties,
there are a maximum of 220 bands in the range 425 to 675 nm.
Due to the resolution of the system it is preferable to bin the
spectral bands in groups of two - giving a total of 110 bands,
and a variable spectral resolution of 1-5 nm. The camera pixels
are similarly binned in groups of 3 by 3. An optical filter
with bandpass 450-650 nm is placed at the system entrance, to
eliminate background light, and provide some zero padding at
either end of the spectrum.

B. DMD Mask
As discussed in the previous sections, a fast and accurate recon-
struction requires adjacent pixels to simultaneously measure as
different a combination of wavelength bands as possible. For
an ideal system, and ideal mask would therefore be a fully 2-D
random pattern, constructed with length-N randomness in the
both directions.

However, in practice the system has several issues which
make using such a 2-D mask problematic. The 45◦ orientation
of the DMD causes each mirror to be viewed as a diamond
shape when compared to the camera pixel, and combined with
the pixel size difference and the PSF of the system, this means
that opening a single mirror (with a monochromatic source) on
the DMD does not illuminate a single pixel on the camera - but
several with varying intensity, blurring the spectral information
in two dimensions. Binning the camera pixels can partially
resolve this problem, but as there is a non-integer size mismatch
between the DMD mirror and the camera pixel, as well as the
difference in orientation [23], pixel binning is not sufficient to
allow a true one-to-one relationship between DMD mirror and
camera pixel. Therefore, if we use a fully 2D random mask for
the system, shown in Figure 8a, it is not possible to accurately
reconstruct the hyperspectral datacube.

Whilst the system is not perfectly row-independent at the
camera, it is still preferable for each camera row to measure a
different combination of wavelength bands, requiring some 2-D
variation in the mask. By experimenting with different mask
types, it was found that utilizing a 1D barcode-like pattern of
diagonal lines, shown in Figure 8b, gives a good compromise
between measurement variation and blurring in the vertical
direction. This mask ensures that vertically adjacent pixels
measure a different combination of wavelength bands, but as
there is only a small difference in the spectral filter between rows
the mixing of information in the vertical direction is negligible.
An example of a 1-D diagonal barcode mask is shown in Figure
8b, for N = 10, rotated to the plane of the camera.

To build the filtering cube H, first we compensate for the
45◦ rotation of the DMD by adapting the binary mask to the
coordinate frame of the camera and resampling the mask on a
2D grid with periodicity equal to 2/

√
2 times the DMD mirror

width. Then, using the calibration functions, the pre-defined
wavelength bands for each pixel are mapped onto the converted
mask, and the binary spectral filter is approximated from the
overlap between the bands and the mask. This method accounts
for optical distortion, and generates a binary filtering cube.

(a) (b)

Fig. 8. Typical DMD masks for N=10: a) a fully 2D random
pattern, b) a 1D diagonal length-N random pattern. DMD
mask is rotated to the orientation of the camera.

C. Ground Truth Comparison
To assess the performance of the reconstruction algorithm,
comparison of the reconstructed cube to the ground truth data
is necessary. We define the ground truth of the scene using the
hyperspectral datacube obtained via a slit-scanning acquisition
scheme, which has been characterized in [23]. In our case we
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scan using a diagonal slit one mirror wide, matching the 1D
barcode-like mask discussed in the previous section.

As less light falls on the sensor for the slit scanning acqui-
sition scheme than the regularization approach, the signal to
noise ratio is worse. To mitigate this effect, we take two data
sets for the ground truth, at two different exposure times, to
increase the dynamic range of the system. The first data-set
is taken with a higher exposure time (200ms) for which parts
of the acquisition may be saturated at the camera. A second
data set is taken at a lower exposure time (100ms), and is used
to find the values of the saturated pixels. Finally the data is
rescaled and the background level is subtracted for comparison
to the results of the reconstruction algorithm.

The success of the algorithm is quantified using the spectral
angle mapper (SAM), comparing the ground truth data o, mea-
sured via slit scanning, to the reconstructed cube ô. This metric
measures the similarity of two spectra, ignoring difference in
amplitude. As the most common applications of hyperspectral
cubes overwhelmingly require classification, the SAM is the
best metric, compared to a global reconstruction error on the
cube, such as the root mean squared error (RMSE) or a spatial
reconstruction similarity metric such as the structural similarity
(SSIM) index.

For a single pixel at the position (r, c) on the camera

SAM(r, c) =
∣∣∣∣arccos

(
o(r, c)T · ô(r, c)
‖o(r, c)‖ · ‖ô(r, c)‖

)∣∣∣∣ (6)

We have 0 ≤ SAM ≤ π, and when the spectra are identical
SAM=0.

5. TESTING RECONSTRUCTION PERFORMANCE
WITH SMALL HOMOGENOUS SCENE

A. Scene and Variables
To determine the optimum number of acquisitions N and exam-
ine how the camera signal influences the reconstruction speed
and accuracy, we study the response of the algorithm when
reconstructing a small, spectrally uniform scene.

The test scene has a roughly homogenous intensity and
spectrum, resulting from uniform illumination with a white
LED. From the scene of 400 by 400 pixels, sub-regions of 40
by 40 pixels across the image are selected, to efficiently test
multiple mask configurations. Each sub-region is small enough
to allow fast reconstruction, but large enough so that we have
sufficient information to obtain an accurate reconstruction.
The simplicity of the scene and spectrum should allow a good
reconstruction under suitable measurement conditions.

The camera exposure time is kept constant at 100ms, but
by varying the grayscale level of the ‘on’ mirrors of the DMD
between 1 and 255, we can observe how the measured pixel
value influences the results, independent of any non-linearity
present in the camera. The number of acquisitions N is also
varied between 5 and 40, (with ROM=1/N).

For each DMD gray level and N , we take four data sets
with the four different mask types; 1) a 1D completely random
pattern (RAND), 2) a 1D orthonormal random pattern (O-
RAND), 3) a 1D length-N random pattern (LN-RAND), and
4) a 1D length-N orthonormal random pattern (LNO-RAND).
This allows us to verify how the properties of the DMD mask
influence the reconstruction result, according to the principles
exposed in section 3.

The CGNR algorithm is run for a total of 1000 iterations,
which ensures convergence for all cases.

B. Results - SAM
The success of the reconstruction is strongly dependent on the
mean camera value µacq of the scene during the data acquisition,
as shown in Figure 9a, which compares the SAM for the four
mask types when N = 10. If the signal is too low, or if there
are too many saturated pixels, the reconstruction is poor. The
dashed lines on the plot show when the percentage of saturated
pixels is less than 10%, which occurs at a lower µacq for the
RAND and O-RAND masks, due to the larger variation in the
local ROM. For both mask types, the optimum performance
occurs between the limits µacq > 1500, and µsat% < 10%.
However, the length-N random masks generate more accurate
reconstructions, have smaller variation between results, and
are more tolerant to a variation in the signal at the camera,
indicated by the broad minimum with µacq. Essentially, the
dynamic range of the system is improved by using length-N
random masks.

Additionally, we see little difference between the orthonormal
and non-orthonormal mask types; the homogeneity of the scene
ensures that the regularization approach can accurately smooth
data between nearby pixels, provided the CGNR algorithm is
run for a sufficient number of iterations.
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Fig. 9. Comparison of the four mask types; a) SAM versus
mean acquisition value when N = 10. b) SAM versus N
within limits µacq > 1500 and µsat% < 10%, showing varia-
tion in results.

Figure 9b shows how the number of acquisitions N influences
the SAM for the different mask types. The data for this plot
has been selected when the signal at the camera falls within
the limits described by the previous plot (µacq > 1500 and
µsat% < 10%). Compared to the RAND type masks, the
length-N masks generate more accurate results (lower SAM),
with optimum N ≥ 10. This indicates that as long as N ≥ 10,
sufficient information is provided by the acquisition data to
accurately reconstruct the hyperspectral datacube.

Conversely, for the RAND type masks, the variation in the
local ROM leads to loss of data, and so for a given N the
reconstruction of the hyperspectral datacube is less accurate.
In this case, increasing N continues to improve the accuracy of
the result, by providing more information to the solver, which
outweighs the detrimental influence of noise. However, even
with a high number of acquisitions the reconstruction is still
less accurate than the length-N case, with a larger variation in
the results.

C. Results - Number of Iterations
Another important metric is how many iterations the CGNR
algorithm requires to reach convergence. The evolution of
the SAM with CGNR iteration number is shown in Figure
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10a. The orthonormal masks start with a lower SAM, but
while the random type masks quickly converge to an inaccurate
solution, the length-N random masks converge slowly but to a
more accurate solution. Clearly, a fast reconstruction does not
necessarily mean an accurate reconstruction, as with insufficient
data the algorithm can converge quickly to a wrong solution.
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Fig. 10. a) Mean and variation in the SAM with iteration
number for N = 10, b) mean and variation in residual pa-
rameter η with iteration number and c) close-up on η for the
first 50 iterations. Data shown here has been selected so the
acquisition values fall within the limits µacq > 1500 and
µsat% < 10%.

Without access to the ground truth, the stopping point for
the algorithm can be determined by measuring the evolution
of the data using the first residual, given by the parameter η

η = log
(
‖ôi−1 − ôi‖2
‖ôi‖2

)
(7)

The η corresponding to the data in Figure 10a is shown
in Figure 10b. A suitable stopping condition for the CGNR
algorithm in this case is η < −3. It is confirmed that the
orthonormal mask types converge faster, especially for the first
few iterations, shown in Figure 10c.

Figure 11 demonstrates how the number of iterations re-
quired to reach the stopping condition is influenced by N . As
increasing the number of acquisitions N increases the amount
of information available to the algorithm, fewer iterations are re-
quired to reach convergence. Additionally, orthonormal masks
converge slightly faster as the condition number of the problem
is smaller.

These initial tests confirm that the LNO-RAND mask per-
forms the best, both in terms of reconstruction accuracy and
speed.

6. RECONSTRUCTION OF A LARGE MULTISPEC-
TRUM SCENE

We now test the reconstruction algorithm on two scenes with
simple multi-spectral structure, using a LNO-RAND mask. The
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Fig. 11. Number of iterations required to reach the stopping
condition η < −3, with number of acquisitions N .

number of acquisitions is chosen to be N = 10, the minimum
number of acquisitions possible as determined in section 4. As
the scene has 110 spectral bands, this gives over a ten-fold
reduction in the amount of information needed to reconstruct
the data cube, compared to standard acquisition schemes.

Both scenes have a large variation in panchromatic intensity,
so DMD grey level is set as high as possible to obtain maximum
signal, but without saturation on the acquisition image, for a
camera exposure time of 100ms. The scene is larger and more
complex than the test scenes in the previous section, and in
this case a suitable stopping condition was found to be when
η < −4. Using non-optimized Matlab code, each iteration of
the CGNR algorithm takes around 6 s, which can be reduced
to 0.6 s by implementing parallel computing techniques using a
mid-range graphics card (NVIDIA GeForce GTX 1060).

A. Scene A - Stacked Filters
Scene A consists of stacked red and green polyester filters,
backlit by a white LED, shown in Figure 12a, giving regions
with different spectra and intensity over the scene. The edges
shown in Figure 12b are found using the panchromatic image,
which is made by averaging the acquisition values for each pixel
- shown in Figure 12c. The panchromatic intensity also gives the
mean µacq for each pixel. A single acquisition image is shown in
Figure 12d. The scene has large regions with uniform, smooth
spectra, and well defined edges, so should be straightforward
to reconstruct.

The CGNR algorithm reached the stopping condition after
626 iterations. A comparison between two monochromatic
images for the ground truth and the reconstructed cube are
shown in Figure 13a and 13b. There is a good correspondence
to the ground truth, but in the dark regions where there is low
signal the reconstructed cube has some faint diagonal artifacts.
Figure 13c shows the resulting SAM map for the scene, where
the SAM value of each pixel is found by comparison to the
ground truth. A close-up of the region marked by the rectangle
is shown in Figure 13d, with the edges superimposed. Over
the scene, the mean and variation in the SAM is 0.16± 0.05,
with the highest values for the SAM in the darkest regions,
when µacq is below the optimum threshold, and at the edges
where there is no regularization. There is also some ‘leaking’
between spectrally distinct regions through small gaps in the
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Fig. 12. a) Photo of the experiment target, scene A cor-
responds to the black square, b) edges found on scene, c)
panchromatic image, and d) typical camera acquisition.

edges, but this could be mitigated by making adjustments to
the edge-finding code.

A direct comparison of the reconstructed spectra to the
ground truth, for the three pixels marked in Figure 13c, are
shown in Figure 14. Even when there is low signal, resulting in
a higher SAM, the shape of the spectrum corresponds well to
the ground truth.

B. Scene B - Checkerboard
Scene B consists of chrome on glass checkerboard mask back-
lit by a white LED, and illuminated from the front with a
fluorescent lamp, shown in Figure 15a. The spectrum of the
fluorescent lamp has two sharp spectral features at 500 nm and
611 nm, and reflects most strongly from the chrome regions
of the mask, with some weaker reflections from the surface of
the glass. The edges shown in Figure 15b are found using the
panchromatic image, which is made by averaging the acquisition
values for each pixel - shown in Figure 15c. The panchromatic
intensity also gives the mean µacq for each pixel. A single
acquisition image is shown in Figure 15d.

In this case the scene is more challenging to reconstruct
than scene A; the edges outline much smaller regions, and the
spectrum from the fluorescent lamp is not smoothly varying
but has sharp spectral peaks.

For scene B, the CGNR algorithm reached the stopping
condition after 462 iterations. A comparison between two
monochromatic images for the ground truth and the recon-
structed cube are shown in Figure 16a and 16b, at the wave-
length corresponding closely to one of the spectral peaks of the
lamp. Figure 16c shows the resulting SAM map for the scene,
where the SAM value of each pixel is found by comparison to the
ground truth. A close-up of the region marked by the rectangle
is shown in Figure 16d, with the edges superimposed. Over the
scene, the mean and variation in the SAM is 0.13± 0.014, again
with the reconstruction performing worse in the darker regions.
The checkerboard pattern is also well resolved, without much
leaking between regions.

A direct comparison of the reconstructed spectra to the
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Fig. 13. a) Monochromatic image at 547 nm for the ground
truth, b) corresponding monochromatic image for the recon-
structed cube, c) map of the SAM for the reconstructed data
for scene A, d) close up of scene A SAM map with edges
overlaid.
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Fig. 14. Comparison of reconstructed spectrum for the
ground truth for the three pixels selected in Figure 13c, a)
pixel 1, b) pixel 2, c) pixel 3. The SAM for each pixel is
shown in the legend.
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Fig. 15. a) Photo of the experiment target, scene B cor-
responds to the black square, b) edges found on scene, c)
panchromatic image, and d) typical camera acquisition.

Ground Truth, Wavelength = 614nm
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Reconstructed Cube, Wavelength = 614nm
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Fig. 16. a) Monochromatic image at 614 nm for the ground
truth, b) corresponding monochromatic image for the recon-
structed cube, c) map of the SAM for the reconstructed data
for scene B, d) close up the SAM map with edges overlaid.

ground truth, for the three pixels marked in Figure 16c, are
shown in Figure 17. Although the SAM for the pixel shown in
Figure 17a is quite high, the two main spectral peaks are still
clearly resolved and would be easily identified by a classification
algorithm.
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Fig. 17. Comparison of reconstructed spectrum to the
ground truth for the three pixels selected in Figure 16c,
a) pixel 1, b) pixel 2, c) pixel 3. The SAM for the pixel is
shown in the legend.

7. CONCLUSION
To conclude, this algorithm provides a method to reconstruct
a hyperspectral data cube accurately from only a few acquisi-
tions, using the key assumption of spatial-spectral correlations.
We have demonstrated the accurate reconstruction of a hy-
perspectral data-cube with 110 wavelength bands and 400 by
400 spatial pixels, using only 10 acquisitions, thus providing a
11-fold reduction in data.

The reconstruction algorithm uses quadratic regularization,
relying on the assumption of spectral-spatial correlations within
the scene, and on the assumption that the boundary between
two regions of different spectra is typically visible on the
panchromatic image, i.e. there are no adjacent metamers.

Additionally, we use prior knowledge of the optical system,
specifically the straightforward mapping between DMD mirror
and camera pixel, to optimize the coded aperture implemented
by the DMD. By utilizing a length-N mask we ensure there is
only a small variation in signal strength pixel-to-pixel, leading
to measurement data which is more likely to fall within the
dynamic range of the camera. Similarly, the use of orthonormal
masks reduces the convergence time, and ensures the panchro-
matic image is easily accessible by summing the acquisitions,
reducing the total number of acquisitions needed. In this case
we use a mask with 1-D variation along the diagonal direction,
but it is expected that with adaptations to the system (such as
changing the orientation of the DMD), the use of a fully 2-D
LNO-RAND mask would further decrease the reconstruction
times by providing more information in a single acquisition.
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We have found that the success of the reconstruction depends
on the signal at the camera for each acquisition, leading dark
or over-saturated regions to be less accurately reconstructed.
Information from the panchromatic image could be used to
simultaneously tune the exposure time and the local gray level
of the DMD mask, to enhance the signal in over or under-
exposed regions, leading to an improved signal-to-noise ratio
for the entire scene. This adaptive approach could increase the
dynamic range of the system by 8 bits and improve the overall
accuracy of the reconstruction. The CGNR algorithm then
needs to be adjusted to account for non-binary values in the
filtering cube, which must be weighted by the DMD gray level.
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