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Abstract—We present a robust control scheme for skid-steered
vehicles that enables high speeds path following on challenging
terrains. First, a kinematic model with experimentally identified
parameters is constructed, in order to describe the terrain-
dependent motion of skid-steered vehicles. Using the Lyapunov
theory, a nonlinear control law is defined, guaranteeing the
convergence of the vehicle to the path. To allow smooth and
accurate motion at higher speeds, an additional linear velocity
control scheme is proposed, which takes actuator saturation,
path following error, and reachable curvatures into account. The
combined solution is experimentally evaluated and compared
against two state-of-the-art algorithms, by using two different
robots on several different terrain types, at different speeds. A
Robotnik Summit XL robot is tested on three different terrain
types and two different paths at speeds up to ≈ 2.5m/s. A Segway
RMP 440 robot is tested on three different terrain types and two
different path types at speeds up to ≈ 6m/s.

Index Terms—path following, control, high speed, rough ter-
rain, skid steering

I. INTRODUCTION

Navigation of autonomous or automated vehicles should
be safe, accurate, and robust, which is especially challenging
at high speeds and on rough terrain. After a collision-free
path has been planned, the vehicle should be able to follow
the planned route as exactly as possible. This task of path
following can be defined as minimizing the distance and the
orientation error between the current vehicle configuration and
a desired configuration on the reference path. If the planned
path is only a geometric reference, with no timing law assigned
to it, the convergence of the vehicle to the path and the
vehicle’s speed can be controlled independently.

In the literature, a distinction between path follow-
ing and trajectory tracking is usually made, such as in
[Aguiar et al., 2004] or [De Luca et al., 1998]. As opposed
to the path following task, trajectory tracking is not a pure
geometric tracking, since for each reference point there is a
time point assigned to it. Nevertheless, since each set of points
can be parameterized in an arbitrary fashion, the difference
between a path and a trajectory lies in the parameterization,
whether it is done by using some timing law, or e.g. the arc
length.

The work presented in this paper deals with the problem of
path following, and the goal is to follow a geometric curve as
accurately as possible, while driving close to maximum speed
on different terrain types, especially outdoors. This ability can

benefit applications like agriculture and surveillance, as well
as exploration or search and rescue.

For driving at higher speeds and on varying terrain, both
indoors and outdoors, skid-steered vehicles are especially
suitable. They are relatively cheap to produce and very robust,
since there are no moving parts for the steering system.
Furthermore, they are highly manoeuvrable and have high
traction. However, skid-steered vehicles are difficult to model
and to control, since the motion is terrain-dependent and
always includes skidding, hence it violates the nonholonomic
constraint, which assumes pure rolling.

Path following at higher speeds on rough terrain is still
an ongoing and challenging research topic. Some work on
aggressive driving with car-like vehicles based on Model Pre-
dictive Control (MPC) is presented in [Williams et al., 2016]
and [Williams et al., 2017]. Off-road control of car-like ve-
hicles at high speeds using observer-based control can
be found in [Lenain et al., 2011], [Lenain et al., 2010] and
[Deremetz et al., 2017]. Similar work on double-steering
vehicles can be found in [Lucet et al., 2009]. Reactive
high speed navigation on rough terrain is tackled in
[Shimoda et al., 2007] and [Spenko et al., 2004]. A compre-
hensive study on mobile robots on rough terrain can be
found in [Iagnemma and Dubowsky, 2004]. High speed path
following based on pure pursuit and receding strategy is pro-
posed in [Elbanhawi et al., 2016], while backstepping steering
control can be found in [Xin and Minor, 2012]. All of these
approaches offer interesting solutions for driving at higher
speeds on rough terrain, but none of them deals with skid-
steered vehicles.

Trajectory tracking control of skid-steered
vehicles can be found in [Caracciolo et al., 1999],
[Kozłowski and Pazderski, 2004], or [Yi et al., 2007].
Similar work on this topic can be found in
[Kozłowski and Pazderski, 2006], [Yi et al., 2009], and
[Miller and Murphey, 2012]. However, these approaches
do not offer experimental evaluation at higher speeds. One
solution to path following using skid-steered vehicles is
proposed in [Pentzer et al., 2014b], where a unicycle control
strategy is used to control a skid-steered robot with the help of
a kinematic mapping. This mapping is based on the parameter
estimation proposed in [Pentzer et al., 2014a]. Their proposed
path following solution is experimentally evaluated at speeds
up to 1m/s. Path following which takes wheel slip into
account was proposed in [Rajagopalan et al., 2016], where
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the maximum speed of the robot in the experiments reaches
1m/s. In [Ostafew et al., 2016], tracking of manually defined
paths with constraints using a learning-based Nonlinear
Model Predictive Control (NMPC) is done with skid-steered
vehicles at speeds up to 2m/s. In [Indiveri et al., 2007]
a unicycle control strategy from [Soetanto et al., 2003] is
extended for higher speeds and experimentally evaluated on
a skid-steered vehicle.

In [Huskić et al., 2017c] a robust path following algo-
rithm for skid-steered vehicles is proposed, and exper-
imentally compared against the approaches proposed in
[Pentzer et al., 2014b] and [Indiveri et al., 2007] at speeds up
to 2.5m/s. This paper is based on the work proposed in
[Huskić et al., 2017c], providing the theoretical background in
more detail, as well as extending the experimental evaluation,
where the maximum speed reaches 6m/s. The proposed algo-
rithm is compared against the two already mentioned state-of-
the-art algorithms on two different robots: Robotnik Summit
XL and Segway RMP 440. With the Robotnik Summit XL, the
comparison is made on three different terrain types, and on two
different paths. Using the Segway RMP 440, the comparison
is made on three different terrain types and two different path
types.

This paper is organized as follows. In Section II the
properties of the skid steering kinematics are described, and
a model based on Instantaneous Centres of Rotations is
introduced. Then, the proposed path following algorithm is
introduced in Section III, and the proposed longitudinal control
in Section IV. The experiments are described in Section V, and
Section VI concludes the paper.

II. SKID STEERING

A skid steering mechanism is similar to the one of a
differential drive, but not identical. While a differential drive
has two non-steerable wheels on one axle, a skid steered
vehicle has 2 · k non-steerable wheels, where k is greater than
1. Instead of wheels, a skid-steered vehicle can also have
tracks, while the principle stays the same. In the rest of the
text, one track, or one side of the wheels, will be referred to
as a tread. Furthermore, it is assumed that differential drives
have only contact points between the wheels and the ground,
while skid-steered vehicles have contact patches between the
treads and the ground.

In order for such a vehicle to steer, one tread has to move
faster than the other, which means the other one needs to
skid, hence the name of the mechanism. Since these vehi-
cles always skid, it means that the nonholonomic constraint,
which assumes pure rolling, is violated. Such a motion highly
depends on the contacts between the treads and the ground,
which involves complex interactions such as torsion of both
treads and the ground surface. This makes it difficult to
model such a behaviour without having a full dynamical
model which includes the friction between the treads and
the ground. This kind of models can be very complex and
their parameters difficult to estimate. Such models can be
found in [Wong, 2001] and [Yu et al., 2010]. Furthermore, the
majority of commercial robots only offer velocities as control

commands, while a real dynamical model would need torques
(which are usually assumed to be linearly proportional to the
motor currents). Controlling a dynamic model with velocity
inputs would then require transformations such as the one
proposed in [Martins et al., 2017].

Driven by these reasons, for the work presented in this paper
we have embraced a type of kinematic modelling which im-
plicitly takes dynamics into account, and can be easily config-
ured for different robots with different dynamic characteristics.
The idea for such a model comes from [Martı́nez et al., 2005],
and it was further developed in [Mandow et al., 2007].

A. ICR kinematics

If a skid-steered vehicle is observed as a rigid body with
planar motion, there is a point in the plane in which the
motion of the vehicle can be represented by pure rotation.
This point is the Instantaneous Center of Rotation (ICR). It
can be seen in Fig. 1, where the ICR is expressed in vehicle’s
local coordinates (x, y). The angular velocity is denoted with
ω, and the linear velocity vector is v = (vx, vy). Control inputs
for this system are the speeds of the left and the right tread,
Vl and Vr.

x

y

ICRICRrICRl

v

Vl Vr

ω

ω
ω

ω

Fig. 1. Skid steering kinematics based on Instantaneous Centres of Rotation.

The motion of a particle on the tread is composed of the in-
put speed of the tread and the component that comes from the
motion of the entire vehicle. This means that the treads have
their own ICRs, different from the ICR of the entire vehicle.
As opposed to differential drives, where the ICRs of the left
and the right wheel coincide with the ground contact points,
in the case of skid-steered vehicles, the tread ICRs usually
lie outside of the treads. This offset is a direct consequence
of the slippage between the treads and the ground, and it is
terrain-dependent. In Fig. 1, the ICRs of the left and the right
tread are denoted as ICRl and ICRr, respectively.

As stated in [Martı́nez et al., 2005], because of
Kennedy’s ICR theorem (details can be found in
[Shigley and Uicker, 1991]), all the three ICRs lie on
the same line, and have the same x-coordinate xICR. The
ICR y-coordinates of the vehicle, the left, and the right
tread, are denoted as yICR, yICRl, and yICRr, respectively.
Furthermore, all three ICRs have the same angular velocity.
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Now, the following expressions can be derived:

vx = yICRω,

vy = −xICRω,
(1)

which describe the motion of the entire body. The speeds of
the left and the right tread can be written as

Vl =
vx − yICRlω

αl
,

Vr =
vx − yICRrω

αr

(2)

where αl and αr are parameters which encompass mechanical
characteristics such as tire inflation or belt transmission, as
proposed in [Mandow et al., 2007].

Using Eq. 1 and Eq. 2, the kinematic equations of skid-
steered vehicles based on ICR parameters can be expressed
as:

vx =
αlVlyICRr − αrVryICRl

yICRr − yICRl
,

vy = xICR
αrVr − αlVl
yICRr − yICRl

,

ω =
αlVl − αrVr
yICRr − yICRl

.

(3)

If αl = αr = 1, xICR = 0, yICRl = −yICRr = w, where
2w is the distance between the right and the left tread, then Eq.
3 represents the kinematic model of a differential drive. The
ICR parameters (xICR, yICRl, yICRr, αl, αr) of skid-steered
vehicles can be seen as a deviation from an ideal differential
drive. This allows a control law developed for skid-steered
vehicles to be applied to differential drives, when the ICR
parameters are adjusted accordingly.

As proposed in [Caracciolo et al., 1999], skid-steered vehi-
cles have a nonholonomic constraint which can be expressed
as

xICRω + vy = 0. (4)

By taking this nonholonomic constraint into account while
describing the vehicle’s kinematics in global coordinates, the
following expression can be derived:Ẋw

Ẏw
θ̇

 =

cos θ xICR sin θ
sin θ −xICR cos θ
0 1

[vx
ω

]
, (5)

Here, Ẋ and Ẏ are the linear velocity components in global
coordinates, while θ̇ = ω, where θ is the global orientation
of the vehicle. The boundedness of xICR is discussed in
[Caracciolo et al., 1999], [Kozłowski and Pazderski, 2004]
and [Kozłowski and Pazderski, 2006]. In our work,
we experimentally identify the ICR parameters
(xICR, yICRl, yICRr, αl, αr) for different terrain
types, by using evolutionary algorithms, similar as in
[Mandow et al., 2007]. This kind of identification provides
realistic values for xICR which are always bounded.

III. PATH FOLLOWING

In order to define and solve the path following problem,
one practical approach is to transform the model of the
vehicle to path coordinates. The model transformation and
the control law derivation presented here are mostly based
on the work of [Soetanto et al., 2003], and the pioneering
work in this area made by [Kanayama et al., 1990] and
[Samson and Ait-Abderrahim, 1991].

A. Transformed kinematic model

If we observe Fig. 2, a skid-steered vehicle is depicted
similarly as in Fig. 1, having its centre Q and orientation θ in
the world frame. The geometric reference path is denoted with
P and parameterized by the path parameter s : [0,∞) −→
[0,∞), a free control parameter which can be arbitrarily
specified. For the path following problem, this parameter is
usually chosen as the arc length of the path. The world frame{
W
}

is defined by the coordinates (Xw, Yw) and zero O,
while there is a Serret-Frenet frame

{
F
}

moving along the
path, defined by its coordinates (xe, ye), and having its origin
in the point P . This moving reference frame is rotated in the
world frame by the angle θt, which is the angle of the path
tangent in the point P . The path following problem can now
be defined as making the (xe, ye) coordinates, as well as the
difference θe = θ − θt, converge to zero.

P

XwO

Yw

θt

xeye

x

y

ICR
ICRr

ICRl

v

θ

Vl
Vr

ω

ω

ω

ω
Q

P

p
q

r

Fig. 2. Path following geometry with a skid-steered vehicle.

Let us now define a vector q, which is the robot’s position
vector in world coordinates, pointing from the point O to the
point Q, and a vector p, pointing from O to P , which is the
position vector of the Serret-Frenet frame. If we now define
a vector r in the Serret-Frenet frame, pointing from P to Q,
the following relation holds

q̇ = Ṙ(θt)r + R(θt)ṙ + ṗ, (6)

where R(θt) is the rotation matrix from
{
F
}

to
{
W
}

, around
the angle θt.

If we consider that

r =

[
xe
ye

]
,R(θt)ṗ =

ṡ0
0

 ,q =

Xw

Yw
0

 , (7)

we can derive the dynamics of the error coordinates:
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ẋe =
[
cos θt sin θt

] [Ẋw

Ẏw

]
− ṡ(1− c(s)ye),

ẏe =
[
− sin θt cos θt

] [Ẋw

Ẏw

]
− c(s)ṡxe.

(8)

Using the global velocities from Eq. 5, we derive the skid
steering model in path coordinates:

ẋe = vx cos θe + xICRω sin θe − ṡ(1− c(s)ye),
ẏe = vx sin θe − xICRω cos θe − c(s)ṡxe,
θ̇e = ω − c(s)ṡ, θ̇t = c(s)ṡ.

(9)

B. Kinematic control
The kinematic model of skid-steered vehicles in path co-

ordinates from Eq. 9 can now be used to develop a path
following control law. Since the derived kinematic model
is consisting of error coordinates, it is convenient to use
the Lyapunov stability theory (some basics can be found in
[Khalil and Grizzle, 1996] and [Slotine et al., 1991]), and to
propose the Lyapunov function candidate

V =
1

2

(
x2e + y2e +

1

σ

∣∣ sin (θe − ψ(ye, vx)) ∣∣), (10)

where σ is a positive parameter. The function

ψ(ye, vx) = −sign(v)θa tanh ye (11)

is chosen as in [Micaelli and Samson, 1993] and
[Soetanto et al., 2003], in order to ensure smooth transient
manoeuvres, having the property ψ(0, vx) = 0, and being
bounded, together with its first time derivative. Here, θa is a
positive parameter chosen as π/4.

The function ψ(ye, vx) makes sure that the manoeuvres of
the vehicle approaching the path remain smooth, tending to a
maximum heading of θa. By choosing a different function or a
different parameterization we change the controller sensitivity.
For instance, if θa would be chosen as π/2, the controller
would become more sensitive, i.e. aggressive. If no function
ψ(ye, vx) is defined, however, the controller becomes too
sensitive, and the controller performance drops.

The Lyapunov candidate function time derivative is now

V̇ =
1

σ

sin(θe − ψ(ye, vx)) cos(θe − ψ(ye, vx))
| sin(θe − ψ(ye, vx))|

·

(θ̇e − ψ̇(ye, vx))+
xe(vx cos θe + xICR cos θe + xICRω sin θe − ṡ)+
yevx sin θe − yexICRω cos θe.

(12)

In order for V̇ to be negative semi-definite, the following
expressions need to be defined:

ṡ = vx cos θe + xICRω sin θe + γxe,

θ̇e = ψ̇(ye, vx) +
| sin(θe − ψ(ye, vx))|

sin(θe − ψ(ye, vx)) cos(θe − ψ(ye, vx))
·(

− σyevx sin θe + σyexICRω cos θe−

ζ(θe − ψ(ye, vx))2
)
,

(13)

where γ and ζ are positive parameters, and θe − ψ(ye, vx) 6=
±(2k + 1)π2 , k ∈ N. The latter expression is important to be
considered when defining initial conditions. This condition is
violated if:
• |θe| ≥ θa(=

π
4 ) and ye needs to be large (giving

|ψ(ye, vx)| ≈ θa in the extreme case), which means that
the robot is diverging from the path, or

• θe ≈ ±(2k + 1)π2 and ψ(ye, vx) ≈ 0, which means that
the robot is on the path, but with a wrong heading.

Because of the controller’s convergence, this shouldn’t hap-
pen if the initial conditions are defined correctly. However,
to account for unpredictable problems, such as numerical
instabilities or communication errors, which could lead to
divergence, it is important to consider these effects in the
controller implementation. In our open-source implementation
of this controller (https://github.com/cogsys-tuebingen/gerona)
we limit all the angles and angle differences, as well as the
commanded rotational velocity. In this way, even unpredictable
errors in a real system are caught.

Keeping in mind that θ = θe + θt, it is now possible
to control the dynamics of the moving reference frame on
the path, and the rotation of the vehicle in path coordinates,
i.e. Eq. 13 presents the path following control for skid-
steered vehicles, based on the ICR kinematic model in path
coordinates.

C. Stability Analysis

In this section we analyse the convergence properties of the
closed loop system, when Eq. 13 is applied to Eq. 9.

Proposition 1. Let us assume that the linear velocity follows
the desired profile, does not tend to zero, as time t tends to
infinity, and is bounded, together with its first derivative. The
path curvature is also bounded, where c(s) ∈ [cmin, cmax],
with cmax being the maximum, and cmin the minimum al-
lowed curvature. By applying the control from Eq. 13 to the
model in Eq. 9, the error coordinates xe(t), ye(t), and θe(t)
asymptotically tend to zero, as t goes to infinity. This means
that the vehicle will converge to the geometric reference path.

Proof. The first derivative of the proposed Lyapunov function
candidate defined in Eq. 12 will become negative semi-definite
when the control from Eq. 13 is applied, which yields

V̇ = −γx2e −
ζ

σ
(θe − ψ(ye, vx))2 6 0. (14)

This means that the Lyapunov function candidate defined in
Eq. 10 is monotonically decreasing, hence its reaches a finite
limit as the time tends to infinity. This means that xe, ye
and θe − ψ(ye, vx) are also bounded. Since θe − ψ(ye, vx)
is bounded, and ψ(ye, vx) is defined as bounded, then θe is
bounded as well. By experimentally identifying a bounded
xICR, the lateral velocity vy is also bounded. Since vx and
ψ(ye, vx) are also chosen to be bounded, and θe is bounded,
ṡ and θ̇e are also bounded. This implies that ẋe and ẏe are
bounded as well. It can be seen that

V̈ = −2γxeẋe − 2
ζ

σ
(θe − ψ(ye, vx))(θ̇e − ψ̇(ye, vx)) (15)

https://github.com/cogsys-tuebingen/gerona
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is bounded, since ψ̇(ye, vx) is bounded as well. Because
of V̈ being bounded, V̇ is uniformly continuous. Now,
by using Barbalat’s lemma (see [Slotine et al., 1991] or
[Khalil and Grizzle, 1996] for details), V̇ converges to zero,
as t goes to infinity, hence θe−ψ(ye, vx) and xe tend to zero as
well. Since the boundedness of θ̈e− ψ̈(ye, vx) can be derived,
θ̇e− ψ̇(ye, vx) is uniformly continuous and converges to zero.
This means that the right hand side of equation

θ̇e − ψ̇(ye, vx) =
| sin(θe − ψ(ye, vx))|

sin(θe − ψ(ye, vx)) cos(θe − ψ(ye, vx))
·(

− σyevx sin θe + σyexICRω cos θe−

ζ(θe − ψ(ye, vx))2
)
,

(16)

needs to tend to zero as well. The two-sided limit

lim
θe−ψ(ye,vx)→0

| sin(θe − ψ(ye, vx))|
sin(θe − ψ(ye, vx)) cos(θe − ψ(ye, vx))

(17)

does not exist, in this case the convergence needs to be
analysed from the left and from the right. To simplify the
notation, if we replace θe − ψ(ye, vx) with u, we will have

lim
u→0−

| sinu|
sinu cosu

= lim
u→0−

1

cosu
lim
u→0−

| sinu|
sinu

= lim
u→0−

| sinu|
sinu

= −1,
(18)

and similarly

lim
u→0+

| sinu|
sinu cosu

= 1. (19)

Since θe − ψ(ye, vx) tends to zero, the expression ζ(θe −
ψ(ye, vx))

2 tends to zero as well. Now the expressions E1 =
σyexICRω cos θe and E2 = −σyevx sin θe need to tend to
zero. Since we assume that the velocity profile follows the
desired one and does not tend to zero, in order for E2 to tend
to zero, ye or θe needs to tend to zero, or both.

If we assume that only θe tends to zero, the only way for
E1 to tend to zero is that ω tends to zero, which then means
that θ̇e and ṡ tend to zero, as well. Now it can be seen that ṡ
cannot tend to zero, since its first term vx cos θe needs to be
nonzero, because of the nonzero velocity profile. Hence, the
assumption that ye does not tend to zero is invalid.

If we now assume that only ye tends to zero, both E1 and
E2 tend to zero. Furthermore, by recalling Eq. 11, we can see
that ψ tends to zero as well. This also implies that θe tends to
zero. Now it becomes clear that both ye and θe need to tend
to zero. Since all the error coordinates (xe, ye, θe) converge
to zero, as t tends to infinity, the vehicle will asymptotically
converge to the reference path.

IV. SPEED CONTROL

Recalling Eq. 3 and the expression for curvature using linear
and angular velocity c = ω/v, the reachable curvature for a
skid-steered vehicle can be expressed as

c = αrVr−αlVl√
(αryICRlV r−αlyICRrVl)2+(−αrxICRVr+αlxICRVl)2

.

(20)

If we want to forbid turning on the spot while driving, similarly
as in [Indiveri et al., 2007], we need to restrict the wheel
speeds to be of the same sign, limited with a maximum value
Vm, i.e. Vl, Vr ∈ [0, Vm].

To find the curvature extrema, we need to observe two cases.
In the first case we have Vl = 0, and Vr = Vm, and the
maximum curvature can be derived as

cmax =
1√

y2ICRl + x2ICR
. (21)

In this case, the vehicle’s speed can be computed as

vx =
αryICRlVm

yICRl − yICRr
. (22)

In the second case, we have Vr = 0, and Vl = Vm, and the
minimum curvature is expressed as

cmin = − 1√
y2ICRr + x2ICR

, (23)

while the vehicle’s speed is

vx = − αlyICRrVm
yICRl − yICRr

. (24)

When planning the reference path, it should be ensured that
c(s) ∈ [cmin, cmax].

If we now consider the maximum linear velocity of vmax =
2.5m/s, and the maximum curvature for a skid-steered robot
of cmax = 1√

y2ICRl+x
2
ICR

= 1√
0.392+0.282

= 2.083m−1,

the maximum rotational velocity is ωmax = 5.2075rad/s.
Similarly, for the maximum velocity speed of vmax = 2.5m/s,
and the minimum curvature of cmin = 1√

y2ICRr+x
2
ICR

=

1√
(−0.49)2+0.282

= −1.77m−1, the minimum rotational ve-

locity is ωmin = −4.425rad/s. Given the computed cur-
vature limits, as well as the maximum linear velocity that
the actuators can exhibit, ωmin and ωmax represent the ab-
solute physical limitations. More details on the parameters are
found in Section V. Further work on considering physical
limitations in derivation of kinematic controllers and paths
can be found in [Kim and Minor, 2007], [Boucher, 2016] and
[Belkhouche, 2009].

If the loop is closed with the control law from Eq. 13, the
curvature in the closed loop can be expressed as

ccl =
θ̇e + cṡ√

v2x + [xICR(θ̇e + cṡ)]2
. (25)

The speeds of the left and right tread in the closed loop are
then

Vl =
vx − yICRl(θ̇e + cṡ)

αl

=
vx − yICRl · ccl ·

√
v2x +

[
xICR(θ̇e + cṡ)

]2
αl

,

Vr =
vx − yICRr(θ̇e + cṡ)

αr

=
vx − yICRr · ccl ·

√
v2x +

[
xICR(θ̇e + cṡ)

]2
αr

.

(26)
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The maximum speeds of the left and the right tread can now
be expressed as

max
{
Vl
}
=
vx + |yICRlccl|

√
v2x + [xICR(θ̇e + cṡ)]2

αl
,

max
{
Vr
}
=
vx + |yICRrccl|

√
v2x + [xICR(θ̇e + cṡ)]2

αr
.

(27)

Since the convergence of the closed system variables has
been proven, the following properties can be used:

lim
t→∞

ccl =
c√

1 + (xICRc)2
,

lim
t→∞

θ̇e = 0,

lim
t→∞

ṡ = vx,

(28)

in order to compute Eq. 27 when t → ∞. The maximum
speeds of the left and the right tread are now

max
{
Vl
}
=
vx(1 + |yICRlc|)

αl
,

max
{
Vr
}
=
vx(1 + |yICRrc|)

αr
.

(29)

Assuming that the vehicle’s motors exhibit the same maxi-
mum speed, we can write max

{
Vl
}
= max

{
Vr
}
= Vm. The

speed of the entire vehicle can then be expressed as

vx =
αlVm

1 + |yICRlc|
,

vx =
αrVm

1 + |yICRrc|
,

(30)

depending whether we use the left or the right tread to compute
it.

Now, the following speed control scheme can be introduced:

ω > 0 : vx =

{
−αryICRlVm

yICRr−yICRl
, V > ε.

αrVm

1+|yICRrc| , V < ε.

ω < 0 : vx =

{
αlyICRrVm

yICRr−yICRl
, V > ε.

αlVm

1+|yICRlc| , V < ε,

(31)

where ε is a positive parameter chosen empirically as 0.5. If ε
is chosen too small, switching between different computations
of vx could often occur, and the motion would become jerky.
On the other hand, if ε is too large, the switching could perhaps
never happen. Therefore it is necessary to choose ε in a way
that the switch is only active if there is a larger deviation from
the path, so that the robot can slow down and steer back to
the path. As soon as it approaches the path again, the speed
should be increased according to the switch.

As stated in [Huskić et al., 2017c], since skid-steered ve-
hicles behave asymmetrically, depending on the mechanical
construction and on the terrain structure, the speed should be
adjusted accordingly. This is the reason why a distinction is
made whether the vehicle is turning right or left.

If the vehicle is turning left, the right tread speed Vr is
dominant, and Vm can be applied, in order to maximize the
speed, and to take the actuator saturation into account. The

exhibited speed should never be greater than Vm. Furthermore,
the Lyapunov function candidate from Eq. 10 is used here as
a path following error measure. If the error is greater than a
positive threshold ε, the expression from Eq. 22 is used. On
the other side, if the error is smaller than ε, the speed of the
entire vehicle is computed using Eq. 30. Similar analysis can
be made if the left tread speed Vl is dominant.

By using this speed control scheme, asymmetric behaviour
of the vehicle is taken into account, together with the path
following error, and the actuator saturation. The vehicle will
not turn on the spot while driving, and the speed is maximized.

The path following control law defined in Eq. 13, combined
with the speed control defined in Eq. 31, presents an integral
solution for path following of skid-steered vehicles at higher
speeds on different terrain types.

V. EXPERIMENTAL EVALUATION

The proposed algorithm is implemented in C++/ROS
(detailed in [Quigley et al., 2009]), and integrated into the
GeRoNa framework, a generic and modular navigation frame-
work for any wheeled mobile robot. Details about GeRoNa
can be found in [Huskić et al., 2017b]. The whole frame-
work, together with the algorithm proposed in this pa-
per, is open-source available at: https://github.com/cogsys-
tuebingen/gerona.

The experimental evaluation of the proposed algorithm
consists of two parts. First, the algorithm is evaluated on a
Robotnik Summit XL robot, up to its maximum speed of
≈ 2.5m/s, on three different terrain types. The proposed
approach is experimentally compared against two state-of-the-
art algorithms. The first state-of-art-algorithm is the one orig-
inally proposed in [Soetanto et al., 2003], and then extended
in [Indiveri et al., 2007]. We refer to it as SLPINL, which is
an acronym of the authors’ surnames. The second algorithm is
the one proposed in [Pentzer et al., 2014b], which is based on
the work proposed in [Pentzer et al., 2014a]. This algorithm
we refer to as PBR, using the same naming scheme. Finally,
the algorithm proposed in this paper, based on the work in
[Huskić et al., 2017c], is referred to as HBZ.

The second part of the evaluation is done on a Segway RMP
440 robot, up to the speeds of 6m/s. Similar as with Robotnik
Summit XL, an experimental comparison between SLPINL,
PBR and HBZ is made on three different terrain types.

For both experimental evaluations, an offline estimation
of the ICR parameters is made for different terrain types,
similar as in [Mandow et al., 2007], by using evolutionary
algorithms. For the implementation, two software tools were
used: CS::APEX, detailed in [Buck et al., 2016], and EvA2,
detailed in [Kronfeld et al., 2010].

A. Experiments with Robotnik Summit XL

With a maximum speed of ≈ 2.5m/s, and a weight of
≈ 50kg, Robotnik Summit XL is a medium-sized skid-
steered robot with good performance. The robot used in the
experiments presented in this paper is shown in Fig. 3.

The experiments with this robot were conducted on the
following terrain types, shown in Figure 4:

https://github.com/cogsys-tuebingen/gerona
https://github.com/cogsys-tuebingen/gerona
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Fig. 3. The Robotnik Summit XL robot used in the experiments.

(i) relatively flat, grassy terrain;
(ii) very smooth vinyl floor;

(iii) macadam - crushed stones mixed with dust and sand.

For each experiment, PBR and SLPINL were commanded
with the same desired speed, in order to achieve similar
mean speeds. The proposed approach was commanded with
even higher speeds, in order to emphasize its advantages.
A video demonstrating the experiments can be found at:
https://youtu.be/plaoHHEfM3o.

Grass terrain: On the grassy terrain, a 159.83m long
path was used, having long segments, and abrupt curves. The
path was covering a small football field behind our institute
building, hence the rectangular-like shape. For the ground
truth, a fusion was made using an internal gyroscope and the
odometry coming from Hall effect sensors. The localization
error was measured while following a planned path at different
speeds, by using CS::APEX, proposed in [Buck et al., 2016].
The resulting error at the average speed of 0.89m/s was
(xerr, yerr, θerr) = (0.015m, 0.69m, 2.9 deg). At the aver-
age speed of 2.15m/s, the error was (xerr, yerr, θerr) =
(0.62m,−0.65m, 3.85 deg).

Path following performance of SLPINL, PBR and HBZ at
some representative speeds on grass can be seen in Fig. 5 and
Fig. 6. A direct comparison between the three algorithms at
different speeds can be observed in Fig. 7.

The mean and maximum values of the speed and error,
when driving at higher speeds, can be seen in Table I. For
SLPINL, when the desired speed is set to 2m/s, the maximum
measured value is 2.25m/s, and the system reaches critical
oscillations, where the error reaches 1.83m. Because of the
inherent speed control of the algorithm, the overall mean
speed is then 1.55m/s. For the case of PBR, when the desired
speed is set to 2m/s, the mean speed is 1.94m/s, the error
reaches 3.61m, and the system is on the border of stability.
The mean error in this case is 83cm. When the HBZ controller
is commanded with 2.5m/s, the mean speed is 2.15m/s. The
maximum measured error is 22cm in this case, while the mean

Fig. 4. The three terrain types on which the Robotnik Summit XL was tested:
grass, vinyl floor, macadam.

error is 7cm.
The Robotnik Summit XL robot can theoretically reach a

velocity of 3m/s, if it moves on a perfect straight line. Since
there has to be always some correction control, i.e. the vehicle
needs to slightly turn, then the left or the right wheels need to
drive faster than the commanded speed, which is not feasible.
This is the reason why the practical maximum speed lies at
≈ 2.5m/s, so that the left and right wheels can drive at speeds
up to 3m/s, in order to steer.

Vinyl floor: On vinyl and macadam floors, a lemniscate
was used as a reference path, overlaid five times, so the robot
needed to follow the curve five times in a row in order to
finish one run. This way, the repeatability of the algorithms
was tested. Furthermore, the curvature of the lemniscate was
chosen to be very high, when compared to the dimensions
of the robot, in order to make the path following task more
challenging.

This floor type is typical for indoor environments, having a
very smooth surface, which makes the motion of the vehicle
prone to slipping. For the ground truth in this case, three
special pillars were used as landmarks for localization. The
pillars were easily recognized with a 3D laser scanner mounted
on top of the robot, and a Kalman filter was used to estimate
their positions, if some of them were not seen in the current

https://youtu.be/plaoHHEfM3o
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(f) HBZ at vmean = 1.73m/s

Fig. 5. Path following performance at representative speeds with Robotnik
Summit XL on grass, following a 159.83m long path.

time step. Otherwise, a simple triangulation was used to
determine the robot’s pose.

Some results at representative speeds can be seen in Fig. 8
and Fig. 9.

The results in Fig. 8 show the performance of SLPINL and
PBR, when commanded with a desired speed of 1m/s. In
both of the cases, the error reaches the value of ≈ 31cm. The
HBZ controller is commanded with 2m/s, having the average
speed of 1.34m/s, and the maximum error stays below 10cm.
In Fig. 9 the results are seen, when SLPINL and PBR are
commanded with 1.5m/s. In both cases, the error reaches
values above 1m. The experiments were conducted in a closed
room, and hence had to be stopped, in order to avoid colliding
with walls. The HBZ controller was commanded with 2.5m/s,
reaching speeds of 2.3m/s, and having an average speed of
1.64m/s. The maximum error in this case reaches 46.6cm,
while the average error is 8.5cm.

Macadam terrain: This terrain type was particularly
difficult, since the surface made of crushed stones and dust
move under the robot wheels, which increases the effect of
skidding. The ground truth was computed in the same way
as for the vinyl terrain type, and the reference path was the
same, as well. Path following results at representative speeds,
together with the error profiles, can be observed in Fig. 10
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(d) PBR at vmean = 1.94m/s
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(e) HBZ at vmean = 2.15m/s
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Fig. 6. Path following performance at higher speeds with Robotnik Summit
XL on grass, following a 159.83m long path.
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(b) SLPINL at vmean = 0.87m/s
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(e) HBZ at vmean = 1.34m/s
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(f) HBZ at vmean = 1.34m/s

Fig. 8. Path following performance at representative speeds with Robotnik
Summit XL on vinyl, following a 110.77m long path.

and Fig. 11.
In Fig. 10(e) a localization error as a sudden jump of 88cm

can be noticed, while driving with HBZ, but the robot does
not lose track. After the localization jump, the maximum path
following error remains below 14cm, and the mean error is
5.2cm. For the case of SLPINL and PBR in Fig. 10, there were
no localization jumps, but the path following error reaches
the value of 42.7cm with SLPINL, and 45.3cm with PBR.
SLPINL and PBR were commanded with 1m/s, and HBZ
with 1.5m/s.

While driving at higher speeds, which can be observed in
Fig. 11, SLPINL loses track when commanded with 1.5m/s,
where the mean speed is then 0.94m/s. The error reaches
1.86m in this case, and only one lap is performed, instead of
five. The PBR controller was also commanded with 1.5m/s,
having the mean speed of 1.48m/s. The maximum error is
2.12m, and the mean error 85.6cm. The HBZ controller was
commanded with 2.5m/s, and the mean speed was 1.68m/s.
The maximum error is 95.1cm, and the mean error 18.3cm.

Parameters: In all of the presented experiments con-
ducted with Robotnik Summit XL, the parameters for the
HBZ controller were as follows: γ = 8, ζ = 40, σ = 1.
The parameter γ determines the speed of the virtual vehicle
depending on the longitudinal error. This parameter was set to
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(d) PBR at vmean = 1.46m/s
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(e) HBZ at vmean = 1.64m/s
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(f) HBZ at vmean = 1.64m/s

Fig. 9. Path following performance at higher speeds with Robotnik Summit
XL on vinyl, following a 110.77m long path.

a high value, in order for the robot to move faster when there
is a larger longitudinal deviation. The parameter ζ influences
the rotation of the robot, depending on the angle difference
between the current robot orientation in path coordinates θe,
and the desired angle ψ. This parameter was also set to a high
value, since the angle difference is usually small, yet it is an
important control factor. Finally the parameter σ influences the
rotation of the robot depending on the lateral error. Both terms
directly influenced by this factor can contain larger values,
since they are multiplied by the current linear and angular
velocity of the robot. Therefore, this factor needs to be chosen
in the range of small numbers. We have chosen a high value in
this range for the control to be more sensitive to lateral error.

The ICR parameters identified for grass are

(xICR, yICRl, yICRr, αl, αr)grass = (0.28, 0.39,−0.49, 0.9, 0.91).
(32)

The ICR parameters for vinyl are

(xICR, yICRl, yICRr, αl, αr)vinyl = (0.26, 0.49,−0.35, 0.8, 0.83).
(33)

The ICR parameters for macadam are identified as

(xICR, yICRl, yICRr, αl, αr)macadam = (0.22, 0.48,−0.47, 0.88, 0.9).
(34)
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TABLE I
EXPERIMENTS WITH THE ROBOTNIK SUMMIT XL ROBOT ON GRASS, AT THE MAXIMUM SPEED AT WHICH EACH ALGORITHM COULD PERFORM. FOR THE

CASE OF HBZ, THE MAXIMUM SPEED OF THE ROBOT IS REACHED.

Algorithm Mean Speed [m/s] Max Speed [m/s] Mean Error [m] Max Error [m]

SLPILN 1.55 2.25 0.56 1.83
PBR 1.94 2.29 0.83 3.61
HBZ 2.15 2.53 0.07 0.22
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(d) PBR at vmean = 1.0m/s
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(e) HBZ at vmean = 1.1m/s
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Fig. 10. Path following performance at representative speeds with Robotnik
Summit XL on macadam, following a 110.77m long path.

For every experiment, the appropriate parameter set was
used, depending on the terrain. However, it is worth to examine
the influence of the ICR parameters to the path following
performance. In order to do so, an additional experiment on
vinyl was made, where the HBZ controller was commanded
with 2m/s to follow the five time overlaid lemniscate, like
before. This time, three different runs were made, every time
with different ICR parameters. The results can be seen in
Table II.

By observing Table II it is obvious that the maximum error
is significantly smaller when vinyl parameters are used, but
the mean error in all three cases is less than 5cm. This leads
to the conclusion that the HBZ controller is robust to changes
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(b) SLPINL at vmean = 0.94m/s
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(d) PBR at vmean = 1.48m/s
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Fig. 11. Path following performance at higher speeds with Robotnik Summit
XL on macadam, following a 110.77m long path.

of the ICR parameters. The reason for this lies in the fact
that the ICR parameters, being estimated offline, are a good
approximate guess of the kinematics, and implicitly of the
dynamics. The fast feedback control then drives the system
in order to minimize the error, even if the ICR parameters
are not optimally chosen. Furthermore, the most influential
ICR parameter for the feedback control is xICR, which in this
example has similar values for all three runs, and the control
parameters γ, ζ, and σ are kept the same.

In [Huskić et al., 2017a], an extension of the HBZ con-
troller was evaluated using a Robotnik Summit XL robot
for person following. The feedback control, however, is the
same as the one presented in this paper. Many long-run tests
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TABLE II
EVALUATION OF THE HBZ CONTROLLER ON VINYL FLOOR WITH THREE DIFFERENT ICR PARAMETER SETS.

Parameters Mean Speed [m/s] Max Speed [m/s] Mean Error [cm] Max Error [cm]

grass 1.45 1.96 4.9 44.8
vinyl 1.34 1.74 4.5 15.6
macadam 1.41 1.92 4.6 34.2
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Fig. 12. An extension of the HBZ controller tested on a 1791.6m long path,
over various terrain types, using only one parameter set.

on various different terrain types and under many different
conditions, such as on ice and snow, were performed to
further evaluate the approach. In all of those experiments,
the grass parameters shown in Eq. 32 were used, together
with the previously mentioned controller parameters: γ = 8,
ζ = 40, σ = 1. This further emphasizes the robustness
of the approach. A video demonstrating the experiments in
various terrain conditions with the same parameter set can
be found at: https://youtu.be/4O7twdWFm4s. In Fig. 12 a
1791.6m long trajectory excerpt from the video can be seen,
using the same parameter set on many different terrain types,
including asphalt, grass, gravel, dirt, etc.

B. Experiments with Segway RMP 440

The Segway RMP 440 is a robust and relatively big skid-
steered robot, weighing around 150kg and reaching speeds of
≈ 8m/s. The robot used for the experiments presented in the
following text can be seen in Fig. 14.

The experiments were conducted on three different terrain
types, shown in Figure 13:

(i) relatively flat mixture of grass and dirt;
(ii) very uneven terrain with relatively high grass;

(iii) asphalt partially covered with crushed stones.

On the first terrain type, a detailed comparison between
SLPINL, PBR and HBZ is made at speeds up to 2m/s. On the
second terrain type, the HBZ controller is thoroughly tested
at speeds up to ≈ 6m/s. On the third terrain type, some
experiments with the HBZ controller were made at moderate

Fig. 13. The three terrain types on which the Segway RMP400 was tested:
grass, uneven ground, old asphalt

speeds. In all of the experiments conducted with the Segway
RMP 440 robot, the following parameter set was used:

(xICR, yICRl, yICRr, αl, αr)RMP440 = (0.6, 0.74,−0.7, 0.96, 0.94).
(35)

The controller parameters for the terrain (i) and (iii) were
chosen as γ = 10, ζ = 15, σ = 0.1, whereas for the terrain
type (ii) they were chosen as γ = 10, ζ = 5, σ = 0.1.
When comparing these parameters to the ones used for Summit
XL, it can be seen that γ is slightly higher, thus the linear
velocity of the virtual vehicle is now more sensitive to the

https://youtu.be/4O7twdWFm4s
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longitudinal error. In this way, RMP 440 is commanded to
drive faster, since it is a faster robot than Summit XL. On the
other hand, both ζ and σ are lower than the ones used for
Summit XL, since RMP 440 has a higher angular velocity,
and if ζ and σ would be higher, the control behaviour would
be too aggressive and might lead to instability. This is also
why these two parameters are even lower for the very uneven
terrain type (ii).

The ground truth for all the experiments with the Segway
RMP 440 robot was determined by fusing the odometry
measurements with a high grade fiber optic gyroscope. A
video demonstrating the conducted experiments can be found
at: https://youtu.be/SCv0bu-Zuq8.

Grass/Dirt terrain: On this terrain type, a comparison
between SLPINL, PBR and HBZ is made on two different
reference paths: a three times overlaid oval-like path, and a
three times overlaid lemniscate. The terrain was relatively flat,
with some parts covered with short grass, and some parts made
of dirt mixed with gravel. Some results obtained on an oval
reference path, including the desired and the actual path, as
well as the error profiles, can be observed in Fig. 15 and
Fig. 16. A direct comparison between the three algorithms at
different speeds can be seen in Fig. 17.

As it can be observed in Fig. 15, Fig. 16, and Fig. 17, the
SLPINL controller is very accurate at speeds lower than 1m/s,
while the accuracy decreases, as the speed increases above
1m/s. At 1.53m/s, the error reaches the maximum of 1.3m,
while the mean error is 38.4cm. The PBR controller is fairly
accurate at lower speeds, and the error increases relatively
slowly, as the speed increases. However, the error increases
faster, when the speed is higher than 1.5m/s. When driving
with a mean speed of 1.49m/s, the mean error is 17.6cm. At
1.98m/s, the error reaches its maximum of 1.29m, while the
mean error is 39.4cm. The HBZ controller has a mean error
of 7.3cm, when driving at 1.6m/s. When driving with a mean
speed of 2m/s, the mean error is 13.1cm, and the maximum
error 50cm.

Further experiments on the same terrain were conducted by
using a lemniscate reference path overlaid three times, such
that one run includes three laps around the path. Some results
are shown in Fig. 18 and Fig. 19. A direct comparison of
SLPINL, PBR and HBZ on a lemniscate at different speeds
can be observed in Fig. 20.

By observing Fig. 18, Fig. 19, and Fig. 20, similar conclu-
sions as in the case of the oval-shaped path can be made. At
speeds lower than 1m/s, the SLPINL controller has a higher
accuracy than the PBR controller. As the speed increases, the
error quickly increases as well. At 1.32m/s, the maximum
error is 81.7cm, and the mean error 28.4cm. When driving
with the mean speed of 1.36m/s, the maximum error reaches
1.1m, and the mean error is 42.1cm. The reason for such a
big error increase at similar mean speeds, is that the desired
speeds are different.

In the first case, the commanded speed is 1.5m/s, and in the
second case 1.75m/s. Because of the inherent speed control
of the SLPINL algorithm, the actual speed never reaches the
commanded input. Obviously, for this path, the speed of ≈
1.3m/s is the maximum at which this algorithm can perform,

Fig. 14. The Segway RMP 440 robot used in the experiments.

since the value is not exceeded, even if the commanded speed
increases. The PBR controller has a fair accuracy at lower
speeds, but when the speed is increased, the error increases
slower than in the case of the SLPINL controller. When driving
at 1.74m/s, the error reaches the maximum of 1.3m, where
the mean error is 45.9cm. The HBZ algorithm has a very high
accuracy through the whole spectrum of speeds. When driving
with a mean speed of 1.6m/s, the mean error is 7.9cm, while
at 2m/s, the mean error increases to 16.3cm.

In order to test the sensitivity to parameter changes, an ad-
ditional experiment was conducted on this terrain by following
the oval path, in a similar way as before. This time, all the
parameters were the same as for the Robotnik Summit XL
robot on grass, as described in Section V-A. The desired and
the actual path, together with the error profile, can be seen
in Fig. 21. When driving with a mean speed of 0.81m/s,
the maximum error is 19.3cm, and the mean error 5.9cm.
The results are similar to the ones obtained with HBZ at
1.6m/s, with the proper ICR parameter set. The fact that the
HBZ algorithm was in this case transferred from one vehicle
to another very different one, without any parameter tuning,
and having a relatively small tracking error, demonstrates the
robustness of the approach.

Uneven ground: Further experiments were conducted at
higher speeds on a very uneven ground with relatively high
grass. A lemniscate path was used as a reference again, this
time, however, having a larger scale. The path was partially
covering a shallow ditch in the ground, which made the
experiments even more challenging. In these experiments,
only the HBZ algorithm is evaluated, since all the previous
experiments showed that SLPINL and PBR become rather
unstable at ≈ 2m/s.

In Fig. 22 the desired and the actual paths at some repre-
sentative speeds are shown, together with the error profiles.
In Fig. 23 the performance of the HBZ algorithm at different

https://youtu.be/SCv0bu-Zuq8
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(b) SLPINL at vmean = 1.35m/s

-10 -5 0 5
x[m]

-1

0

1

2

3

4

5

6

7

8

9

y[
m

]

PBR: desired vs actual path

actual
desired

(c) PBR at vmean = 1.49m/s

0 200 400 600 800 1000 1200
waypoints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
e[

m
]

PBR: tracking error

(d) PBR at vmean = 1.49m/s
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(f) HBZ at vmean = 1.6m/s

Fig. 15. Path following performance at representative speeds with Segway
RMP 440 on grass/dirt, following a 98.65m long path.

speeds can be observed. When driving with a mean speed
of 2.25m/s, the maximum error is 38.96cm, while the mean
error is 9.8cm. If the mean speed increases to 3.86m/s, the
maximum error is 1m, and the mean error 25.4cm. The main
reason for the increased error at high speeds is the relatively
deep ditch, which was located in the lower right part of the
lemniscate. This can be observed in Fig. 22(e), since there are
some visible oscillations at this spot.

Since the terrain was very difficult to cope with, the speed
of 3.86m/s was the highest mean speed achieved. Driving
faster on a reference path of this scale, and on this kind of
a terrain, would probably lead to tipping over. In order to
drive faster while staying safe as well, the terrain should be
relatively flat, and the reference path should have a bigger
radius of curvature. However, the experiments described here
are more challenging, since the path is on the border of being
feasible, both because of the terrain, and the curvature of the
path, relative to the speed of the vehicle.

If the speed control from Eq. 31 is properly set, the robot
is limited by the maximum velocity, even if the commanded
speed is higher than being feasible. If the commanded speed
is 3.5m/s on the reference lemniscate on this uneven terrain,
the mean speed is 3.12m/s, since the speed control regulates
the motors so that the tracking error stays as small as possible.
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(b) SLPINL at vmean = 1.53m/s
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(c) PBR at vmean = 1.98m/s
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(d) PBR at vmean = 1.98m/s
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(e) HBZ at vmean = 2m/s
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Fig. 16. Path following performance at higher speeds with Segway RMP 440
on grass/dirt, following a 98.65m long path.
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Fig. 17. Performance comparison on an oval-shaped path on grass/dirt using
the Segway RMP 440 robot.

Furthermore, if the curvature of the path increases, the speed
decreases. If the commanded speed is 6m/s, the maximum
speed will reach 6.16m/s indeed, but Eq. 31 will reduce the
overall mean speed to 3.19m/s. This means that the vehicle
is allowed to accelerate up to the allowed maximum, if the
tracking error and the curvature are small enough, otherwise,
the speed is reduced to a lower value. The comparison between
these two cases can be seen in Fig. 24.

This effect can be best observed in Fig. 24(g) and Fig. 24(h).
When the desired speed is 3.5m/s, the speed profile is smooth.
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(b) SLPINL at vmean = 1.32m/s
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(d) PBR at vmean = 1.49m/s
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(e) HBZ at vmean = 1.6m/s
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Fig. 18. Path following performance at representative speeds with Segway
RMP 440 on grass/dirt, following a 98.65m long path.

When commanding 6m/s, the peaks of ≈ 6m/s show up while
driving on the straight line segments of the lemniscate, and
the rest of the time the speed remains around ≈ 3m/s. When
entering a straight line segment and accelerating, the vehicle
would sometimes even lose contact between the front wheels
and the ground, and drive only on the rear wheels for short
periods. The angular velocities are similar in the both cases,
and the error increases in the case of the high commanded
speed, as it can be observed in Fig. 24(d).

Old asphalt: Some further experiments at moderate
speeds were conducted on an old asphalt with small cracks
and areas covered with crushed stones. Using a skid-steered
vehicle on asphalt usually leads to unstable behaviour, since
the friction between the ground and the wheels is very high.
In order to skid, large forces need to be applied, which then
exhibit discontinuous impulses. This can be observed as a
swinging behaviour of the vehicle, which could even lead to
tipping over, if e.g. the centre of mass is high. This effect is
especially noticeable when the vehicle is turning on the spot.

Since the asphalt used for this experiments was covered with
crushed stones at some areas, it was possible for the vehicle
to exhibit a relatively smooth motion. An oval-shaped path
was used as a reference, similar as before. The desired and
the actual paths, the error profile, together with the angular
and longitudinal velocities for one representative experiment
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(b) SLPINL at vmean = 1.36m/s
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(c) PBR at vmean = 1.74m/s
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(d) PBR at vmean = 1.74m/s
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(e) HBZ at vmean = 1.99m/s
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Fig. 19. Path following performance at higher speeds with Segway RMP 440
on grass/dirt, following a 98.65m long path.
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Fig. 20. Performance comparison on a lemniscate on grass/dirt using the
Segway RMP 440 robot.

can be observed in Fig. 25. The mean speed in this case is
1.85m/s, the maximum error 14cm, and the mean error 6.2cm.

VI. CONCLUSIONS

In this paper, the approach proposed in
[Huskić et al., 2017c] is presented in an extended manner.
The theory is explained more thoroughly, especially detailing
the convergence properties of the closed loop system. The
experiments are extended, and additionally conducted on
another vehicle with different dynamic characteristics, at
speeds more than two times higher than before.
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(b) HBZ at vmean = 0.81m/s

Fig. 21. Path following performance with Segway RMP 440 on grass/dirt,
using the ICR parameters from the Robotnik Summit XL robot.

The proposed algorithm is a combined solution of a nonlin-
ear control law designed for path following, and a control
scheme for the longitudinal velocity. The path following
control guarantees that the vehicle converges to the path.
The speed control maximizes the speed, while minimizing
the tracking error. Both control solutions are based on an
experimentally identified kinematic model for skid-steered
vehicles.

A comprehensive experimental comparison between the
proposed solution and two other state-of-the-art algorithms is
made, on two different vehicles and on various terrain types
and paths. The experiments include two major difficulties for
the path following task: rough terrain and high speeds. The
maximum speed reached is 6.16m/s.

In the experimental evaluation, it is clear that the proposed
approach outperforms the two state-of-the art algorithms on
both vehicles, for each terrain and path type. The difference
gets more obvious as the speed increases. The SLPINL
algorithm, however, shows very good performance at lower
speeds. At higher speeds, the error increases rapidly. The
PBR algorithm usually has a small offset even at lower
speeds, since this approach relies heavily on the convergence
of the Extended Kalman Filter (EKF), which is needed for
the online estimation of the ICR parameters. The EKF does
not necessarily find the optimal values, which leads to an
offset. This approach, however, performs better than SLPINL
at higher speeds, since it takes ICR parameters into account,
even though it uses a simple control law for unicycles.
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(b) HBZ error at vmean = 2.25m/s
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(c) HBZ path at vmean = 3.37m/s
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(d) HBZ error at vmean = 3.37m/s
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(e) HBZ path at vmean = 3.86m/s
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(f) HBZ path at vmean = 3.86m/s

Fig. 22. Path following performance at high speeds with Segway RMP 440
on a very uneven terrain with high grass, following a 400.14m long path.
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Fig. 23. HBZ performance on a very uneven terrain using the Segway RMP
440 robot.

The proposed approach shows very stable performances
even at high speeds and rough terrain. In the experiments it
is shown that it recovers from localization errors, and that it
is robust to parameter changes. The complete solution was
cloned from one vehicle to another, a very different one,
without any parameter tuning, and still gave satisfying results.
Furthermore, in [Huskić et al., 2017a] the proposed approach
is extended for person following and obstacle avoidance, and
tested with the same parameter set on various different terrain
types, on large-scale paths.
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(a) HBZ path at vmean = 3.12m/s
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(b) HBZ path at vmean = 3.19m/s
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(c) HBZ error at vmean = 3.12m/s
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(d) HBZ error at vmean = 3.19m/s
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(e) HBZ rotation at vmean =
3.12m/s
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(f) HBZ rotation at vmean =
3.19m/s
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(g) HBZ speed at vmean = 3.12m/s
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(h) HBZ speed at vmean = 3.19m/s

Fig. 24. Effects of the speed control when following a path with commanded
speeds that are higher than feasible.

Since the model used for the control is a kinematic model
and only takes the dynamics into account implicitly, it would
be reasonable to extend this work by explicitly modelling
the dynamics and the wheel slip. Furthermore, it would be
important to examine physical limitations and safety at higher
speeds.

ACKNOWLEDGEMENT
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Fig. 25. Path following performance with Segway RMP 440 on an old asphalt
mixed with gravel, following a 98.65m long path.
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