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ABSTRACT 

Mid-infrared lasers are crucial devices to enable optical spectroscopy in this spectral region of strategic 

importance for molecular sensing. In this presentation, we will review our recent progress in mid-infrared 

sources based on interband cascade active regions for operation in the L-band (wavelength of ~3.4µm) and in 

particular towards the demonstration of VCSELs, the most promising laser embodiment for energy-efficient 

portable tunable sources. 

Keywords: laser, resonant-cavity light-emitting diode, vertical-cavity surface-emitting laser, mid-infrared 

sources, GaAs, GaSb. 

1. INTRODUCTION 

The water-absorption-free spectral window around 3.4 µm is of high interest for spectroscopy applications and, 

in particular, for environmental monitoring. High-performance semiconductor lasers and light-emitting diodes 

are considered as key enabling devices for these applications, as well as for free-space communications or light 

detection and ranging (LIDAR) [1]–[3]. Thanks to the progress made over the last decade [4], emitters relying on  

interband cascade have become the prominent light sources to generate light in the intermediary mid-infrared L-

band (~3.4 µm). 

In this paper, we summarize the recent studies we have carried out on mid-infrared sources based on interband 

cascade active regions and more specifically on our progress towards electrically-driven Interband Cascade 

Vertical-Cavity Surface-Emitting Lasers (IC-VCSELs). For the latter, the selected technological approach seeks 



to extend to longer wavelengths the concept that was successfully demonstrated at 2.3µm [5] which exploits a 

GaSb-based active mirror completed by a metamorphically-grown AlGaAs/AlOx electro-optical confinement 

section and a top dielectric mirror.  

2. EDGE-EMITTING LASERS  

 

As a first step towards the fabrication of hybrid GaAs/GaSb IC-VCSELs, we started our investigations by 

ensuring that laser operation from large-area edge-emitting lasers could be achieved using the chosen 7-stage 

quantum-well/injection IC active region whose design is fully described in [6]. Two sets of devices were grown 

and fabricated. As illustrated in Figure 1, the reference structure layout relied on conventional Te-doped 

AlSb/InAs cladding layers while the second used a metamorphic Te-doped GaAs upper cladding to study the 

influence of the latter on the device performance.   

   

 

Figure 1. Schematic structural layout of the studied edge-emitting lasers and corresponding E-field profiles.  

 

Episide-up-mounted 4-mm-long broad-area lasers with a stripe width of 100µm were fabricated using the 

established process reported in [6] with an upper Ti/Au metallic contact and a Pd/AuGeNi back contact. 

Characterisation under pulsed (1µs – 1kHz) excitation at room temperature is shown in Figure 2. The reference 

device exhibits performance on a par with the state-of-the-art [4]. The GaAs-cladded device was also shown to 

operate successfully but with slightly reduced performance as a consequence of the presence of dislocations and 

also of a Schottky-barrier at the interface between the GaAs and the Ti-Au contact. In both cases, the lasers were 

able to operate at mount temperature exceeding 40°C. 
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Figure 2. Schematic structural layout of the studied edge-emitting lasers 

 

3. VERTICAL-CAVITY SURFACE-EMITTING LASERS 

Having established successful active region design and growth parameters, the next step towards the 

demonstration of IC-VCSELs was to define, fabricate and test vertically-emitting micro-cavity sources.  

As mentioned in the introduction, the aim is to extend to the ~3.4-µm-wavelength band the architecture we 

demonstrated at short mid-infrared wavelengths [5]. The approach relies on a dielectric-mirror-coated 

semiconductor section, the latter consisting of a lattice-matched AlAsSb/GaSb Distributed Bragg Reflector and a 

3--thick microcavity (see Figure 3). More specifically, the micro-cavity embeds a highly-doped InAsSb bottom 

contact layer positioned at the first node of optical field, the validated IC-based gain section, and a metamorphic 

AlGaAs section whose GaSb/GaAs interface is also set at a node of the optical field to limit the impact of the 

dislocation-induced losses. The latter GaAs/AlAs/GaAs stack was chosen to be 5/4-thick to provide sufficient 

lateral spreading for the top contact carriers and to introduce, as commonly used in near-infrared (800-1000nm) 

VCSELs, electro-optical confinement upon lateral wet oxidation of the AlAs layer. The considered VCSELs 

include a 24-pair semiconductor DBR and a 5-pair ZnS/Ge mirror. 
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Figure 3. Layout of the micro-cavity part of the RCLED/VCSEL under study 

The growth of the semiconductor part was performed on 2-inch (100)-oriented n-type GaSb substrates by 

molecular beam epitaxy in a RIBER Compact 21E solid source system equipped with As- and Sb- valved 

cracker cells. The growth conditions were adjusted throughout the structure to match the design and achieve the 

best possible (luminescence) performance. The device fabrication will reported elsewhere. It involved the 

definition of circular mesas by lithography and dry-etching, the oxidation of the AlAs layer to form the lateral 

apertures, the deposition of metal contacts and SiNx-passivating layers and as well as a selected-area dielectric 

mirror coating using a lift-off technique. Typical images of representative devices taken at the end of the process 

are presented in Figure 4. Figure 5 shows the reflectivity and electroluminescent curves measured respectively 

on the semiconductor part and on the complete VCSELs. These curves suggest successful fabrication of the 

structures from both optical and electrical stand points.  

 

 

Figure 4. Optical (left) and Scanning Electron Microscope (of a Focussed-ion-beam-cut cross-section)  

images of fabricated VCSELs 

 



 

Figure 5. Reflectivity and electroluminescent characteristics  

of the VCSEL semiconductor part (left) and complete device (right). 

 

Figure 6 shows the LIV characteristics of 50-µm-wide-apertured VCSELs for a set of temperatures. Laser 

operation can not be reached with these devices. Given the above-presented electroluminescent characteristics 

and the observation that the power increases with temperature, the gain-peak is, as expected, blueshifted 

compared to the microcavity resonance but this offset turns out to be too large and prevents laser action. 

Moreover, the turn-on voltage is also observed to be slightly higher than expected, consistent with the behaviour 

observed for the edge-emitting lasers with AlGaAs metamorphic claddings. 
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Figure 6. L-I-V characteristics of 50µm-wide-apertured VCSELs as a function of temperature 

 



At this time, new VCSEL structures with shorter target resonance wavelength and thus more appropriate gain-

resonance offsets are under process. All the results will be presented at the meeting. 

4. CONCLUSIONS 

In this paper, we have reported the recent progress we have made on various mid-infrared sources based on 

interband cascade active regions namely edge-emitting lasers and Vertical-Cavity Surface-Emitting Lasers. For 

the latter two types of devices, the approach exploits a ZnS/Ge-mirror-coated semiconductor part which includes 

a GaSb-based active mirror with a metamorphically-grown AlGaAs/AlOx electro-optical confinement top 

injection section. If successful continuous-wave operation of the EELs was achieved, the current set of VCSELs 

exhibits a too large gain-to-resonance detuning to reach laser operation. Nevertheless, this work paves the way 

towards the demonstration of electrically-driven VCSELs operating in the mid-infrared L-band integrating a 

proper electro-optic confinement scheme contrary to the recently reported devices [7]. 
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