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A hybrid collision model for safety collision control

T. Noël1, T. Flayols1, J. Mirabel1, J. Carpentier2, N. Mansard1,3

Abstract— Self-collision detection and avoidance are essential
for reactive control, in particular for dynamics robots equipped
with legs or arms. Yet, only few control methods are able to
handle such constraints, and it is often necessary to rely on path
planning to define a collision-free trajectory that the controller
would then track. In this paper, we introduce a combination of
two lightweight, conservative and smooth models to generically
handle self-collisions in robot control. For pairs of bodies that
are far from one another on average (e.g. segments of distinct
legs), we rely on a standard forward kinematics approach,
using simplified geometries for which we provide analytical
derivatives. For bodies that are moving close to one another, we
propose to use a data-driven approach, with datasets generated
thanks to a standard collision library. We then build a simple
torque-based controller that can be implemented on top of any
control law to prevent unexpected self-collision. This controller
is meant to be implemented as a low-level protection, directly
on the robot hardware. We also provide an open-source library
to generate ANSI-C code for any robot model, experimented
on the real quadruped Solo.

I. INTRODUCTION

Collision and self-collision avoidance is an important but
yet difficult constraint in robotics [1], [2]. They are now
handled at the planning level, by relying on random-based
algorithms [3], [4] where only binary detection is needed [5],
and efficient implementation are freely available [6]. Two
difficulties prevent to dynamically handle collisions at the
control level. First, in control, we need to compute the
distance to collision, and not only a binary collision test [7].
Yet it has been several times observed that the distance
between two general collision objects is a non-differentiable
function [8]. This is because the witness points (i.e. points
on the surface of each of the two collision objects that
are the closest) may jump on the surfaces even for small
relative motions of the pair. Only the strict convexity of the
collision geometry can guarantee smoothness properties of
the distance function.

To work with the exact robot geometry, a possible ap-
proach is to split the collision volumes into a union of strictly
convex objects, and consider all the collision pairs resulting
from this union [9], [10]. Yet the number of pairs drastically
scales with the geometry complexity. In addition, control
implies to compute collision distances and not only binary
collision test, which is about 3 times more expensive [6].

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France. 2

INRIA, Ecole Normale Superieure, CNRS, PSL Research University, 75005
Paris, France. 3 Artifical and Natural Intelligence Toulouse Insitute (ANITI),
Toulouse, France. This work has been supported by the MEMMO European
Union project within the H2020 Program under Grant Agreement No.
780684.

Companion video available at https://peertube.laas.fr/
videos/watch/b6e911ee-728f-4337-a76e-8138a332b583

Another approach is to accept to approximate the collision
geometries to enable better control properties or perfor-
mances. A very classic and simple geometry is the so-called
capsule [11], [12], i.e. a cylinder with spherical extremi-
ties [13], which is convex but not stricly convex. Capsules
belong to the family of inflated volumes, that we discuss later
in the paper. In [14], a strictly convex volume, composed
of patches of sphere and torus, is proposed along with an
algorithm to build it around a given mesh to be encapsulated,
and used in control in [15] or trajectory optimization in [16].
Simplified models of collision can also be learned offline
from the robot model or directly from trajectories of the sys-
tem. Various machine-learning algorithms have been used to
learn to predict collision (binary query) using either support
vector machine (SVM) [17], neural networks (NN) [18], [19],
Gaussian Mixture Models (GMM) [20]. In [21], collision
and joint limits are learned together from motion-capture
recordings of a human actor.

While computing a single collision distance is faster than
machine-learned approximation, especially with a simple
geometry, learned representations on all collision pairs of
a robot manage to also capture what are the active pairs for
which the distance should be considered, hence discarding
the information and computational burden related to pairs
that are too far away. On the other hand, simple geometries
can be made as smooth as desired, and distance derivatives
are also straight forward to compute. In [22], a hybridization
is proposed to take advantage of both approaches. The
authors proposed to combine simple encapsulating volumes
and collision tables for complex joints. Yet the hybrid model
was only considered for detecting collisions.

In this paper, we extend this idea of hybrid model, to
compute distances and their derivatives and build a controller
preventing collisions, illustrated on the quadruped Solo [23].
More precisely, we propose to rely on simplified geometries
to handle pairs of collisions that are far from each
other on average. On the quadruped robot for example, that
would correspond to segments of distinct legs. We have
chosen to use capsules, for which the distance computation
is minimal as quickly reported in section II. We also provide
the expression of the distance derivatives which are needed
for any controller. The drawback to pay for the simplicity
and the derivability is some conservatism (i.e. false positive
detections and a reduced workspace) which however remains
negligible compared to the total range of motion. Yet this
conservatism is not acceptable for pairs of bodies moving
very close to one-another. On the quadruped, that would be
the upper-leg to torso collision. In general, this case covers
any pairs on both sides of a complex joint, like shoulder
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or wrist joints with a composed 2- or 3-DoF mechanism.
To handle these cases, we propose to rely on a data-
driven representation, trained on data easily generated from
a collision-detection library. We propose in section III several
representations, along with their derivatives and the method
to train them. The complete self-collision model is then
composed of a hybridisation between simple geometries and
data-driven approximation. We empirically show in section
V that our model is an appropriate approximation, detecting
all true collisions and raising only a small ratio of false
detections. We also show how to evaluate the model along
with its derivatives at a low computational cost. It is then
suitable to implement a self-collision safety controller at the
lowest level. At the end of this section, experiments on the
real robot Solo, presented in [23] and extended here in a
12-DoF version, demonstrate the interest of the approach to
prevent collision, for example during fast locomotion where
front and rear legs have to cross.

II. DISTANCE AND DERIVATIVES FOR INFLATED
GEOMETRIES

A. Mesh-to-capsule approximation

As a first step, relevant pairs can be approximated by
simple geometries. As we want to use the collision model
in our controllers, we select piece-wise smooth objects.
We argue here that inflated volumes (i.e. the level set at
equal given distance to a simple geometry) are a good
trade-off between smoothness and lightness. For the sake
of readability, the equations are described here for capsule
pairs, but they can be directly extended to any other inflated
volumes, e.g. sphere, swept-sphere rectangles or cubes, etc.
Mathematically, the definition of a capsule, based on its
generating segment S is as follows :

C =
{
p ∈ R3 | d(p,S) ≤ ρ

}
(1)

The capsule geometry is thus completely characterized by its
radius ρ and the length of S. Capsule parameters (placement
w.r.t. the parent joint, length and radius) can be selected to
fit at best the real geometry (i.e. conservatively covering the
mesh and minimizing the extra volume) for example by a
non-linear optimization program. For Solo, we obtained 2
sets of capsules parameters (the lower legs are thinner than
the upper legs), visualized along with the robot model on
Fig. 1. The resulting loss of motion range is negligible, as
quantified in section V.

B. Distance

Consider two capsules C1, C2. We denote F1 and F2
two frames positioned at the center of the capsules with
the Z-axis aligned with the capsule axis. The placement of
the frames with respect to the world is computed from the
joint configuration q by forward kinematics. The idea of
the distance computation is then to solve for the witness
points on both segments and use them to get the distance.
In order to compute those points, we first compute the
closest points on the lines carrying the segments, and then
apply the segments constraints before solving again and get

Fig. 1. Capsules notations (left) and approximations for Solo legs meshes
(right) : the quadruped legs are properly approximated by capsules

the segments witness points s1, s2. The capsules distance is
then d(s1, s2) − (ρ1 + ρ2). The capsules witness points are
directly derived from the segments ones: p1 = s1 + ρ1n and
p2 = s2− ρ2n with n = s2−s1

‖s2−s1 ‖
.

C. Derivatives

The distance between the 2 capsules is the distance be-
tween the 2 witness points p1 and p2. As −−−→p1p2 is normal
to both capsules surfaces, then the variation of the distance
between the capsules also is the variation of the distance
between the witness points. In the following, we denote by
resp. JF1 ,JF2 the frame Jacobians, corresponding to the frame
movements resp. F1 and F2 (6×nv matrices, corresponding
to translation and rotation). The Jacobian corresponding to
the displacement of the first witness point p1 is:

Jp1 =
∂p1
∂q
= Jt
F1
− p1× JR

F1
(2)

with Jt
F1

(resp. JR
F1

) denoting the translation (resp. rotation)
part of JF1 . We can then derive the distance gradient which
reads:

Jdist =
∂−−−→p1p2
∂q

=
(p1− p2)

T

d
(Jp1 − Jp2 ) (3)

From (3), we see that the Jacobian is independent from the
capsule radius. In practice, we can then directly work with
the segment (i.e. the capsule of radius 0). We will see in
the description of the proposed controller that we will work
with a conservative threshold to activate the collision pair
before the collision occurs, which happens to be equivalent
to inflate the capsule radius of this threshold. We also see that
the capsule distance is only piece-wise C1 (i.e. its Jacobian
is differentiable nearly everywhere), which is expected as the
capsule is not strictly convex. But this is enough to produce
a good controller, as shown in section V.
Distance and derivatives of the capsule are directly derived
from the witness points of the segments. Likewise for other
inflated volumes, the distance and derivatives can be derived
from the witness points returned by any collision library.

III. DATA-DRIVEN COLLISION MODEL

Let us now consider the collision pairs for which the
distances are small on average, e.g. the case of the shoulder



collision between the base and an upper leg. The previous ap-
proach is not suitable anymore here, because the mechanical
assembly is such that the pair links are constrained to a very
low distance in all configurations. No mesh approximation
would be sufficient here. We thus need to define a new colli-
sion distance ensuring safe collision detection and affecting
the range of motion as little as possible, while keeping good
control properties. It might be considered to carefully chose
another simplified geometry. We prefer however to rely on
machine learning to automatically build a generic geometry
representation based on data.

A. Cartesian distance between close geometries

Let us consider a given pair of robot bodies, connected
by a sub-part of the kinematic tree. We denote by qR ∈ RNR

the corresponding sub-part of the robot configuration q. We
recognize here that the dimension of qR is typically small
(NR = 2 or NR = 3 on most of the robots we considered). For
Solo for example, the shoulder articulation has 2 rotations,
and the knee adds 1 more in the more advanced model (see
Section IV). Thus, the collision of these pairs only occurs
in low-dimensions sub-spaces of the robot joint space. From
there, we can use a standard collision library [6] to sample
the collision distance.
Yet the result is not directly satisfactory because collision
algorithms and robot models are typically not designed for
the accuracy required to handle such close pairs. The result
for the front left shoulder pair of Solo is shown as example
in Fig. 2. The obtained distance field clearly displays the
collision zone (d = 0) corresponding to the angle range along
x for which the upper leg intersects with the base, and which
depends on the y rotation of the leg (extension towards front
or back of the body). We can notice strong discontinuities
near the collision zone, and unintuitive variations in the d > 0
zone. These properties of the distance make it difficult to
approximate as is or to interpret from a control point of
view. The most useful data we get from this sampling is
actually the shape and localization of the collision surface in
joint space (i.e. the submanifold in RNR separating free space
from collision space), which we now characterize further and
use to define a new collision distance.

Fig. 2. Example of Solo shoulder collision data subspace (x axis: q7,
shoulder x rotation, y axis: q8, shoulder y rotation). Left : Cartesian distance
(meters), right : binary view. We observe a large flat area around q8 = 1.5,
corresponding to a hook-shape of the complex joint, which is always close
to the leg but mechanically never colliding. Cartesian distance is hence not
a suitable metric in such cases.

Fig. 3. Left: Shoulder collision distance dS after redefinition as minimal
euclidean distance in 2D joint-space. Right: Taking the knee joint into
account adds a third dimension to the distance field

B. Sampling the distance in joint space

1) Collision surface characterization: Let us first define
the collision surface in the joint space as the set of configura-
tions for which the collision distance of the pair we consider
is exactly 0 :

S = {qR ∈ RNR | d(q) = 0} (4)

It seems vain to try to get a closed-form representation of
S [1]. We thus proposed to sample it. As S is an implicit
submanifold of RNR (i.e. of measure 0), we cannot directly
sample it from RNR but rather have to project random points
from RNR onto S.

We do so by sampling many random pairs of configura-
tions in free space qfree and in collision space qcoll. We then
use dichotomy to compute the intersection of the segment
[qfree,qcoll] with the surface S with a given precision. This
method can lead to miss some parts of the collision surface
if S does not numerically contain enough points; however,
the sampling of the configurations can also be chosen more
carefully than at random when the shape of the collision
surface is easy to interpret in 2 or 3D for example.

2) Collision distance in joint space: As the distance in
Cartesian space is not satisfactory to represent the proximity
of the two bodies, we propose to rather represent it by the
distance in joint space of the configuration to the surface S:

dS(q) = min
qS ∈S

‖qR − qS ‖ (5)

In our case, we used the standard euclidean distance :
‖qS − qR ‖ =

√
(qR − qS)T (qR − qS) We can naturally extend

this definition to the collision domain, i.e. handle positive and
negative distance. The complete definition of the collision
distance is thus :

dS(qR) = min
qS ∈S

{scoll ‖qR − qS ‖} (6)

with scoll(q) = 1 when qR is in free space and −1 otherwise.
Note that dS is properly defined also when S is a union of
manifold, as it is the case for example with Solo, as shown
in Fig. 3.



Fig. 4. x and y shoulder rotations components of the collision distance
derivatives for Solo shoulder (i.e. ∂ds

∂q7
, ∂ds

∂q8
)

3) Distance jacobian: The gradient of dS is quite similar
to the jacobian expression of section II:

JS(qR) =
∂dS
∂q
=

qR − qw
dS(qR)

(7)

where qw = argmin
qS ∈S

‖qR − qS ‖ is the witness configuration.

The distance derivatives for the shoulder of Solo are repre-
sented in Fig. 4. The visible irregularities, along the line of
maximal distance for example, are due to the jump of the
witness configuration when qR crosses this line. Similarly
to Section II, the distance field is only piecewise C1 on
each side of such configurations surfaces where the witness
configuration jumps.

C. Distance approximation

We now have a properly defined collision distance dS and
its derivatives, but its evaluation is inefficient at the moment.
In order to use it in a real-time controller, we thus need a fast-
evaluated approximation of this distance. The formulation we
have chosen to introduce dS directly leads to a method to
sample dS in the joint space RnR , it can now be used to
generate a training dataset for a data-driven approximation.
We introduce three approximation models to represent dS ,
that will be benchmarked in Section V.

1) Fourier transform approximation: Dealing with revo-
lute joints and their natural periodicity, a reasonable idea is
to use the nD Fourier transform to approximate the distance
field sampled on a grid. For example in 2D, the Fourier
transform of the distance on a n×m grid is :

D(u,v) =
n/2∑

j=−n/2

m/2∑
k=−m/2

d( j, k)e−2iπ(u j
n +v

k
m ) (8)

Inverting this transform requires the evaluation of 2nm
trigonometric functions. A classical approximation is thus to
filter it and neglect the smallest coefficients to only evaluate
the trigonometric functions for the coefficients of significant
amplitude. The approximation of the derivatives of dS is also
directly obtained from the same coefficients.

The main limit of this method is that for a given resolution,
the number of Fourier coefficients needed to represent the
distance (and thus the execution time), filtered or not, grows
exponentially with the number of dimensions in the relevant
subspace. Efficiency at runtime is problematic.

2) Datasets generation: For the following methods, we
do not need grid-ordered data. The training datasets are
generated with the method described in III-B. We also
include the set S of surface configurations in the training
data, because this is the zone where the distance should be
best approximated. Derivatives of the distance are also part
of the dataset.

3) Neural network approximation: We now present a
standard multi-layer perceptron approximation. The regular
shape of the distance field and the relatively low number of
inputs allow for good results with a small, quickly evaluated
architecture (one hidden layer). The activation function can
also be chosen to optimize computational efficiency. Another
advantage is the possibility to use the same inference model
to obtain a simple evaluation expression for both the distance
and its Jacobian. The periodicity of the distance field is
accounted for by using , instead of the shoulder configuration
qR, x = [cosqR, sinqR]. The loss used during the training is
the usual RMSE of the distance. Concerning architecture,
we used models with a tanh activation, and a hidden layer
containing 6 to 48 neurons, while still easily satisfying
the real-time evaluation constraint. A Sobolev training [24]
was also tested, i.e. where the loss also inlcudes the error
between the network derivatives and a groundtruth reference;
however, the results were not included here because the
method brought no significant improvement in our case.

4) Support Vector Machine: The datasets generated to
train the neural network models were also used to train a
SVM model. We trained it with a gaussian kernel, first as
a classifier, expecting a distance representation to naturally
appear. As the result was not satisfactory, we finally trained
the SVM as a regressor with the same RMSE loss as the
neural network. This approach is compared with the other
approximations in Section V.

IV. CONTROLLER

We used the proposed hybrid model to implement a
torque-based collision controller as an additional safety con-
troller on top of the main torque-based controller driving the
robot. To that end, we first quickly describe the controller,
based on the classical formulation of a repulsive potential
field. This simple formulation allows us to implement it as a
default safety layer directly on the robot hardware. We then
describe the implementation using code generation.

A. Control torque

We chose to mimic a visco-elastic spring-damper model
to implement the virtual repulsive force applied along the
collision normal. The amplitude of the force corresponds to:

fr (q,vq) =

{
0 if d ≥ d0

−ke(d(q)− d0)− kv Ûd(q,vq) if d < d0
(9)

where d0 is the pair-dependant distance threshold under
which the virtual force should be active, ke (respectively kv)
is the elastic (resp. viscous) gain characterizing the dynamics
of the virtual spring, and Ûd the time derivative of d which
can be re-expressed as Ûd(q,vq) = Jcoll(q)vq . This choice for



Fig. 5. Metrics illustrated in the case of a [4, 8, 1]-architecture, tanh
activation neural network. From left to right and top to bottom : ground-truth
distance field, approximated distance field, absolute error field, false posi-
tives and negatives, false positives after false negatives removal, predicted
distance w.r.t. ground-truth distance

the amplitude of the repulsive force can lead to a discon-
tinuous control when kv , 0; however, these discontinuities
are numerically small compared to the maximum amplitude
produced. Finally, we have to project the computed virtual
force in joint space using the collision Jacobian. The final
expression of the collisions avoidance control torque for one
pair is :

τ(q) = JTcoll(q) fr (q,vq) (10)

To compute the total control torque, we finally loop on
all the relevant collision pairs in the model and sum the
corresponding torques. The controller presented here is very
simple by design choice, to allow for an implementation
on the lowest-level control hardware. Our collision model
could also be integrated with task-space inverse dynamics
[25], [26], [27] or an optimal control solver [28], [29], [30].

B. ANSI-C code generation

The computation of the control torque only requires the
distance and derivatives provided by the collision model.
The model itself also relies on a fast forward kinematics
implementation, and an offline neural network training li-
brary, both open-source [31], [32]. In an effort to produce a
fully-embedded module able to run on the robot hardware,
we used the code generation capabilities offered by open-
source libraries to re-implement the collision model, initially
written in C++, as an agnostic ANSI-C library with reduced
development effort. An additional step of code generation
from Python to C++ is needed for the neural network model.
The code will be released with the final version of the paper.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed model and its efficiency
to control the robot, we first adapt the data-driven model
for conservatism. Then, we measure the quality of the
approximation, and score the efficiency of its evaluation.
Finally, we report the behavior of the controller on the real
Solo.

Fig. 6. Same metrics as in figure 5 for a gaussian kernel SVM with 181
support vectors. We observe a high numerical sensitivity around the collision
surface.

A. Joint-space approximation benchmark

We want to compare the shoulder approximation methods
on a common basis to chose the best one. First, we want to
adjust the parameters of each approximation model to make
them conservative, i.e. ensure no false negatives in terms of
collision detection. We do so by defining a modified collision
distance d̃S so that d̃S(q) = dS(q)− d0. This is equivalent to
shifting the collision surface along its local normal direction.
The distance offset d0 can be chosen for each learning model
to minimize the number of false positives while forbidding
false negatives. After training, the different methods are
evaluated with the following metrics :

• False positives : after removing the false negatives, the
false positives, for a homogeneous dataset sampling, are
a very good proxy for the loss of range of motion due
to the approximation. This metric reflects the quality of

TABLE I
METRICS COMPARISON FOR THE DIFFERENT JOINT-SPACE DISTANCE

APPROXIMATION METHODS. EXECUTION TIMES ARE ALSO GIVEN FOR

THE CAPSULE APPROXIMATION AND THE COMPLETE MODEL.

Approx. method
Test dataset
avg. RMSE

Lost range
of motion (%)

Avg. exec.
time (s)

SVM
313 support vectors - 1.5 -
47 support vectors - 7.61 -
Fourier transform

112 coeffs - 3.6 11.3
47 coeffs - 3.8 -
26 coeffs - 11.2 2.7

Neural network - 2D
[4,8,1] 0.0358 2.475 1.1

[4,20,1] 0.010 0.78 -
Neural network - 3D

[6,18,1] 0.034 1.18 -
[6,48,18,1] 0.012 0.68 8.4

Caps. geom. model
1 caps. pair - - 1.3

20 caps. pairs - - 5.5
Full model

(NN + caps.) - - 9.8 - 38.9



Fig. 7. Left : Joint-space distance (negative part masked) for the Talos
shoulder joint. The free configurations outside the main free zone correspond
to mechanically forbidden configurations with the shoulder contained inside
the torso. Right : (top) neural network appoximation of the distance field
and (bottom) corresponding distance predictions w.r.t groundtruth distances.

the boolean collision detection.
• RMSE : loss used for neural network training, which

reflects the relative quality of the collision distance
approximation in the whole space

• Execution time
Graphical representations of those metrics in the case of the
Solo shoulder in 2D are shown for the NN on Fig. 5 and
for the SVM on Fig. 6. From the more extensive results
presented in Table I, we can conclude that the trade-off
between approximation quality and fast evaluation is best
handled by the neural network approach, which will be
implemented in our final controller. We also validated the
model by approximating the geometry of the shoulder (3D)
of a Talos humanoid robot [33]. Due to lack of space, only
partial results are reported in Fig. 7.

B. Solo experiments

We present the experiments conducted with the
controller integrated in the robot control loop on the
Solo platform. The parameters of the collision avoidance
control torque chosen for the experimental setup are
ke = 60 N.m−1, kv = 0 N.m−1.s−1 and d0 = 0.05 m.
The video attached shows the live experiments on the
robot along with the collision data visualized in a virtual
environment. The results are summarized in the video
https://peertube.laas.fr/videos/watch/
b6e911ee-728f-4337-a76e-8138a332b583.

In order to better demonstrate the capability of our con-
troller as a safety feature for additional control strategies,
we first run it as the only active controller and manipulate
the legs manually with the robot on a stand (motion 1
of the video). This also allows us to reach configurations
for which we know the collision detection can be more
difficult and easily test the limits of the controller. We then
use a PD tracking a reference trajectory which contains
colliding configurations. The reference trajectory for the PD-
tracking is an ellipse described by the robot feet in the (x, y)
Cartesian plane. To test the capsule model case, we set the
two front feet to follow such intersecting ellipses (motion
2 of the video). For the shoulder, we can force a collision

Fig. 8. Reference trajectory tracking with active collision avoidance :
the dashed line represents the reference trajectory, and the full line is the
experimental result on Solo for (left) a capsule pair collision i.e. motion 2
of the video, (right) a shoulder collision i.e. motion 3 of the video.

Fig. 9. (Top) Distance threshold violation and (bottom) avoidance torque
for a capsule collision (motion 2 of the video).

by setting the ellipse plane close to the body plane for one
foot (motion 3 of the video). The reference trajectories in
Cartesian space and the experimental trajectories with active
collision avoidance are shown in Fig. 8. We also show an
example of distance threshold violation and corresponding
repulsive torques for the capsule model in Fig. 9.

CONCLUSION

We presented a hybrid self collision model capable of
estimating complex-joint limits and body-to-body collisions
of a rigid multi-body articulated robot in real time. The
proposed method is able to handle collisions of bodies which
are naturally distant from one another as well as collisions
between links forming hook-shaped joints. Our approach
is based both on Cartesian distances between conserva-
tive inflated-volume approximations of body geometries and
joint-space distances of complex joints via data-driven neural
networks. The smooth evaluation of collision distances and
their derivatives allow us to use them in a collision avoidance
control algorithm while marginally reducing the robot work-
space. Those quantities are of major importance for high-
level controllers but can also be a crucial information for
last-resort safety controllers. We proposed a simple collision
avoidance controller which applies a visco-elastic repulsive
force, moving away the robot links from imminent collision.
Using automatic code generation, our hybrid collision model
can be embedded on limited low-level robot controller hard-
ware. We demonstrated and evaluated the safety controller
capabilities on the quadruped platform Solo.

While this model can already serve as a low-level safety
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controller preserving the robot hardware from a destructive
high-level control output, we would like to use it in higher-
level controller such as whole-body controllers, and model
predictive controllers to better enforce feasibility of the
computed motions.

REFERENCES
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