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Abstract

We consider a Markovian queueing model for computing the traffic density and
travel times in a city at a macroscopic scale during rush hour. Accounting for the
speed/density relation of the macroscopic fundamental diagram of traffic flow, we as-
sume that the service rates of the queueing model at hand are state-dependent. We
focus on the fluid limit and obtain a set of differential equations that describe the
evolution of the traffic density at the level of neighbourhoods. We also calculate the
time dependent travel times and consider the rational time-dependent choice between
public and private transport, assuming that there is a congestion-free public alternative
to private transportation. Numerical examples reveal that a small reduction in peak
traffic can significantly reduce the average travel times.

1 Introduction
Most major cities suffer from traffic congestion during the morning and evening commutes.
Apart from a waste of time, congestion is a major source of pollution and a health hazard
[15]. Several types of remedial measures have been adopted by authorities in various cities
to reduce congestion and its impact on the society. These measures take the form of a
congestion charge like is the case in cities such as London or Stockholm, or, as is done in
France, a restriction on the entry of old or more polluting vehicles during episodes of peak
pollution.

Another mechanism for reducing congestion at bottlenecks is to take alternative paths.
This has now become possible in real-time thanks to several online applications that can
orient drivers towards paths of least travel times.

A third mechanism is to incentivise public transport. For such schemes to work, the
public transport network has to be dense, reliable, and, more importantly, better in terms
of travel times and cost. A properly dimensioned public transport network can provide an
eco-friendly alternative to personal vehicle usage.

For the second and third mechanisms to work, it is important to be able to accurately
estimate the travel times between major hubs. If a user can see in real-time that it will be
faster (or less costly) to travel by public transport, it will give an additional incentive to
use the public transport network. Further, if we assume that users are rational and choose
the alternative with the least cost, we can estimate how many users will take the public
transport. Such estimates can then be used to dimension the public transport network by
appropriately choosing the frequencies and the vehicle sizes on different bus routes.
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1.1 Contributions
The main contribution of this paper is a queueing-theory-based method for the computation
of travel times in road traffic networks. While the link between queueing theory and road
traffic networks has been made previously [17, 4, 2], it was only recently that this connection
was used to compute travel times at the level of a single neighbourhood [7]. In this paper, we
generalise the travel-time analysis of [7] to a network of neighbourhoods. In queueing theory
parlance, this paper generalises the single server analysis in [7] to a network of queues. This
is similar to how Jackson networks [10] or BCMP networks [1] extended the single server
models.

As in [7], based on the travel-time analysis, we also study a public transport game in
which commuters can choose between using their own vehicles or taking public transport.
The main assumption in this game is that public transport networks are not impacted by
congestion and their travel times are thus easier to estimate. This assumption is certainly
true for subways and tramways, and is becoming more realistic for buses in cities with
dedicated bus corridors. For a given fixed cost of travel by the public transport network,
the time-varying Wardrop equilibrium is computed in order to determine the fraction of
commuters in each neighbourhood that will switch from private vehicles to public transport.
One can then compute the influence of pricing on the congestion and, as a consequence, on
the travel times and the pollution. In addition, for a certain set of parameters, we also
numerically compute the Price of Anarchy (PoA) which is the ratio of the social cost at the
Wardrop equilibrium to the optimum social cost. For this, an optimal control problem is
first formally defined. Since this problem does not have a closed-form solution, the PoA is
obtained by using numerical solvers.

Finally, we show how to compute a congestion-based cost of the public transport network
so that the Wardrop equilibrium matches the social optimum in the fixed cost setting. For
time-invariant congestion games, it is known that tolls or taxes can be imposed to achieve a
socially optimum behaviour in a game setting (see, e.g., [5]). We derive an analogous result
for the time-varying case and for the specific traffic game considered here. This is something
that was not done in [7] for the single neighbourhood model.

1.2 The macroscopic fundamental diagram
To compute the travel time of a vehicle in a road traffic network, we shall see the vehicle as
a customer in a queueing network, and neighbourhoods will be assigned the role of servers.
The specificity of road traffic networks is that the arrival rates of vehicles are time-dependent
and the departure rates of vehicles depend on the congestion (or the state) of the network.
The higher the congestion, the lower is the rate at which vehicles exit the network. This
relationship between the exit rate (or flow in vehicles per minute) and the vehicle density
(vehicles per unit length) is captured by what is known as the macroscopic fundamental dia-
gram (MFD) which was first introduced in [6] for single-lane traffic. Here macroscopic refers
to the spatial scale of neighbourhoods. This is in contrast to the microscopic fundamen-
tal diagram which gives this relationship at the spatial scale of road segments [14, 11, 13].
These macroscopic diagrams have in fact been validated using measurements carried out,
for example, in Yokohama [9] and Toulouse [3]. The rescaled and interpolated MFDs for
these two cities are shown in Figure 1.

A typical MFD has an inverted cup shape (like a concave function) as shown in Figure
1. When the vehicular density is small (towards the left edge of the curve), the flow initially
increases with the density because congestion is yet to form and vehicles are travelling at
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Figure 1: Macroscopic fundamental diagram

the maximum permissible speed. As the density increases further, congestion sets in, and
the vehicular speed reduces. This leads to an inversion in the average flow which starts to
decrease and becomes very small in case of traffic jams. This type of rate curves are not
very typical in classic queueing networks.

For numerical examples, we shall use the MFD obtained from measurements in the city
of Yokohama as the state-dependent service rate of servers.

1.3 Organisation
The rest of the paper is organised as follows. In Section 2, we introduce a Markovian model
for vehicles in a road network. A set of partial differential equations for the distribution of
the travel times are derived first when the number of vehicles in the network is small. We
then obtain the corresponding equations in the fluid limit when the number of cars becomes
large. This regime also leads to a simpler set of differential equations for the mean travel
times. Section 3 presents the Wardrop equilbrium for the game with public transport as
an alternative. The Wardrop equilibrium is then compared to the socially optimal travel
choice and the PoA is calculated in the Section 4. Finally, we close with some conclusions
in Section 5

2 Macrosocopic queueing model
We propose a Markovian queueing network with random routing for modelling congestion
in a city at a macroscopic level. To be more precise, we model a city as a finite set of
interconnected queues, where each queue represent the number of cars in a neighbourhood
of the city. In contrast to classic Jackson networks, the service rate of each queue depends
on the queue size, to reflect the relation between the speed and density of cars as described
by the macroscopic fundamental diagram.
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2.1 Markov model
Consider a city and a set of neighbourhoods N = {1, 2, . . . , N}, for which the arrival rate
statistics and the macroscopic fundamental diagram are known. A neighbourhood could,
in theory, be the entire city itself. We shall assume that new vehicles arrive at the nth
neighbourhood in accordance to a Poisson process with time dependent rate λn(t), n ∈ N .

The duration of a journey depends on the length of the journey as well as on the speed
during the journey. We assume that the lengths are independently and identically expo-
nentially distributed with rate 1, taking some other value being equivalent to rescaling
time. The speed of vehicles inside the different neighbourhoods at a given time instant will
depend upon the average density within the neighbourhood in accordance with the macro-
scopic fundamental diagram (MFD). Moreover, the number of vehicles that either leave the
neighbourhood or reach their destination will also depend on the density, or equivalently,
on the number of vehicles in the area. Let αmn denote the probability that a vehicle in
neighbourhood m leaves for another neighbourhood n, and let αm0 denote the probability
that a vehicle in neighbourhood m reaches its destination in neighbourhood m. To simplify
notation, we will further assume that amm = 0 for all m ∈ N .

Let Qn(t) denote the number of vehicles (moving around) in neighbourhood n at time
t, let Q(t) = [Qn(t)]n∈N , and let π(i; t) = Pr[Q1(t) = i1, . . . , QN (t) = iN ] = Pr[Q(t) = i]
denote the probability that there are i1 vehicles in neighbourhood 1 at time t, i2 vehicles
in neighbourhood 2 at time t, . . . , and iN vehicles in neighbourhood N at time t, with
i = [i1, . . . , iN ] ∈ NN . The density in a neighbourhood being proportional to the queue
size in that neighbourhood, and the number of departures from the neighbourhood being
proportional to the density, the departure rate in neighbourhood m equals,

µm(Qm(t)) = θmFm(ΘmQm(t)) ,

where θm and Θm are given constants and Fm denotes the macroscopic fundamental diagram
of neighbourhood m.

In view of the assumptions above, we have the following transitions from state i ∈ NN :

• There is a new arrival in neighbourhood n ∈ N with rate λn(t). Such an arrival
induces a transition to state i + en. Here, , em = [1{m=n}]n∈N is a vector of zeroes,
apart from its mth element which is one.

• A vehicle moves from neighbourhood m to neighbourhood n with rate µm(im)αmn,
the new state being i+ en − em.

• A vehicle reaches its destination in neighbourhood m with rate µm(im)αm0, the new
state being i− em.

The description of the state transitions then immediately yields the following set of forward
Chapmann-Kolmogorov equations,

∂

∂t
π(i; t) =

∑
m∈N

∑
n∈N∗

π(i− en + em; t)µm(im + 1)αmn

+
∑
m∈N

π(i− em; t)λm(t)

−
∑
m∈N

π(i; t)µm(im)−
∑
m∈N

λm(t)π(i; t) ,
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with N ∗ = N ∪ {0}, and with π(i; t) = 0 for i /∈ NN . Note that the notation implies that
e0 = 0.

Let Wn(τ) denote the remaining travel time of a vehicle in neighbourhood n at time τ ,
and let νn(τ, t|i) = Pr[Wn(τ) > t|Q(τ) = i] denote the complementary distribution function
of this vehicle, conditioned on having Q(τ) = i vehicles in the different neighbourhoods
at time τ . Conditioning on the possible events in the interval (τ, τ + h], we can express
νn(τ, t+ h|i) as follows,

νn(τ, t+ h|i) =
∑
m∈N

νn(τ + h, t|i+ em)λm(t)h

+
∑

m∈N\{n}

∑
k∈N∗

νn(τ + h, t|i− em + ek)µm(im)αmkh

+
∑

m∈N∗

νn(τ + h, t|i− en + em)µn(in)αnm

(
1− 1

in

)
h

+
∑
m∈N

νm(τ + h, t|i− en + em)µn(in)αnm
1

in
h

+ νn(τ + h, t|i)

(
1−

∑
m∈N

λm(t)h−
∑
m∈N

µm(im)h

)
+ o(h) ,

Here we assume that each vehicle in the neighbourhood is equally likely to depart from the
neighbourhood (either by arriving at the destination or by leaving for another neighbour-
hood). Hence, in queueing terms, we assume that the “server” uses a processor sharing or
random order of service discipline. Sending h→ 0, we further have,

∂

∂t
νn(τ, t|i)−

∂

∂τ
νn(τ, t|i) =

∑
m∈N

νn(τ, t|i+ em)λm(t)

+
∑

m∈N\{n}

∑
k∈N∗

νn(τ, t|i− em + ek)µm(im)αmk

+
∑

m∈N∗

νn(τ, t|i− en + em)µn(in)αnm

(
1− 1

in

)
+
∑
m∈N

νm(τ, t|i− en + em)µn(in)αnm
1

in

− νn(τ, t|i)

(∑
m∈N

λm(t) + µm(im)

)
.

Finally, the expected travel time of a vehicle that arrives at time τ in neighbourhood n is,

W̄n(τ) =
∑
i∈NN

π(i; t)

∫ ∞

0

νn(τ, t|i+ en)dt .

Here we used the observation that the mean travel time of a vehicle arriving at time τ in
neighbourhood n while there are i vehicles in the different neighbourhoods equals the mean
remaining travel time of a vehicle in nieghbourhood n when there are i+ en vehicles in the
different neighbourhoods.
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2.2 Fluid limit
As the fundamental diagram translates to state-dependent service rates, there is no simple
analytic solution for the infinite systems of differential equations for π(i; t) and w(τ, t|i).
Moreover, numerically solving these equations is computationally demanding. We however
can study the fluid limit of the system, that is, we consider a sequence of models QK(t),
the Kth model having arrival rate λn(t)K in the nth neighbourhood and study qn(t) =
limK→∞QK

n (t)K−1. The parameter K is the scale at which we are making measurements.
As the scale becomes large, the number of vehicles also grows proportionally, and hence we
have to divide Qn by K to obtain a quantity which goes to a finite limit. This quantity can
be thought of as the density of the vehicles. By the functional law of large numbers, the
randomness of the movement of individual vehicles is washed out by the scaling. This leads
to a considerable reduction of the complexity of the analysis since we are no longer dealing
with individual cars but instead deal with a large number of cars which behave in a similar
way.

Let µ̄n(x) denote the departure rate from the nth neighbourhood in the fluid regime,
that is,

µ̄n(x) = lim
K→∞

µn(dKxe)
K

.

Then, by writing the evolution of Qn(t) as the difference of randomly time-changed Poisson
processes and applying the functional strong law of large numbers for Poisson processes, we
find that the limiting process qn(t) adheres the following ordinary differential equation,

q̇n(t) = λn(t)− µ̄n(qn(t)) +
∑
m∈N

µ̄m(qm(t))αmn . (1)

For the travel time calculations, we scale the arrival process and service process as before.
However, we retain the randomness of the random order of service (or processor sharing)
discipline. Hence, in the limit, the travel times are still random, let WK

n (τ) denote the travel
time from neighbourhood n at time τ for the Kth model, and wn(τ, t) be the complimentary
waiting time distribution in the fluid limit,

wn(τ, t) = lim
K→∞

Pr[WK
n (τ) > t] .

We obtain the following set of differential equations for these complimentary travel time
distributions,

∂

∂t
wn(τ, t)−

∂

∂τ
wn(τ, t) =

− wn(τ, t)
µ̄n(qn(τ))

qn(τ)
+
∑
m∈N

wm(τ, t)αnm
µ̄n(qn(τ))

qn(τ)
.

Finally, the mean travel time of a vehicle arriving at time τ in neighbourhood n can then
be computed by integrating wn(τ, t) over t, that is,

w̄n(τ) =

∫ ∞

0

wn(τ, t)dt .

Combining the former expressions also yields the following differential equation for the mean
waiting times,

d

dτ
w̄n(τ) = w̄n(τ)

µ̄n(qn(τ))

qn(τ)
− 1−

∑
m∈N

w̄m(τ)αnm
µ̄n(qn(τ))

qn(τ)
. (2)
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In contrast to the system of differential equations for the traffic densities (1), the dif-
ferential equation above cannot be used to numerically calculate the time-dependent travel
times. Indeed, in order to numerically solve the system of ordinary differential equations,
the initial expected travel times wn(0) are needed. Note that these do depend on the future
evolution of the traffic densities. To overcome this difficulty, we will reverse time. Assuming
that λn is constant for t sufficiently large, the traffic density in the different neighbourhoods
(in the fluid regime) and the corresponding travel times will become approximately constant
as well. We therefore choose a sufficiently large T and approximate the mean travel times at
time T by the asymptotic mean travel times wn(T ) ≈ limτ→∞ wn(τ). For ease of notation,
introduce ω̄n(τ) = w̄n(T − τ). We then obtain the following system of ordinary differential
equations for ω̄n,

d

dτ
ω̄n(τ) = 1− ω̄n(τ)

µ̄n(qn(T − τ))
qn(T − τ)

+
∑
m∈N

ω̄m(τ)αnm
µ̄n(qn(T − τ))
qn(T − τ)

.

In contrast to the system of equations (2), the initial value of the ode can now be calculated.
Indeed, by assuming that λn(t) is constant and by sending t → ∞, we find that the initial
value of the ode solves the linear system of equations,

ω̄n(0)
µ̄n(qn(T ))

qn(T )
= 1 +

∑
m∈N

ω̄m(0)αnm
µ̄n(qn(T ))

qn(T )
. (3)

Remark 1 The assumptions on the functions λn do not constrain the problems that can be
solved by the method at hand. Indeed, if λn is not constant for large time values in the time
interval under study, it is straightforward to extend the interval such that this is the case.
This should not affect the results in the original time interval of interest. The time interval
needs to be large enough such that any future traffic patterns do not affect the travel times
in the region of interest.

2.3 Numerical example
We now illustrate our approach by a numerical example. We consider a city divided into
4 neighbourhoods as depicted in Figure 2. Traffic only arrives in the outer areas 2 to 4.
Let λi(t) denote the arrival rate (AR) in area i ∈ {2, 3, 4}. Departures in each area are
governed by the MFD of Yokahama, which is properly rescaled to reflect realistic travel
times (around 15 minutes in total when there is no congestion). Vehicles leave for the centre
neighbourhood 1 with probability ψ, to any of its neighbours with probability φ or park in
the neighbourhood with probability 1− ψ − 2φ.

Figure 3 shows the evolution of the traffic density and the expected waiting times in the
fluid limit regime for φ = 0.1 and ψ = 0.4 and for λ3(t) = λ2(t) and λ4(t) = λ2(t), with
λ2(t) as depicted. Notice that the arrival rates in the fluid regime are very small. This is
not unexpected: the fluid limit is a deterministic approximation for the city with arrival
rates Kλi, where K is sufficiently large.

The arrival rate curve reaches its maximum value at t = 60, while the peaks of the
traffic density and expected travel times are somewhat later. This is most pronounced for
the traffic density in the centre neighbourhood 1. This is not unexpected as all traffic towards
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Figure 2: City with four neighbourhoods. There are arrivals in the outer areas, and only
transitions between neighbouring areas, and towards the centre of the city.

the centre needs to cross the outside neighbourhoods, such that peak traffic is delayed. This
is also reflected in the travel times in the centre area. Congestion in the centre starts when
the congestion in the outside neighbourhoods is already resolving. Finally, it is readily seen
that the maximum traffic density exceeds 30% in some cases. At such traffic densities, the
average flow decreases for increasing densities, see Figure 1.

To assess the accuracy of the fluid approximation, Figure 4 again shows the time-
dependent waiting times, and compares these curves with the expected waiting times, condi-
tional on the system content. That is, for these simulation results, we draw a single sample
path of the traffic densities over time, and then use Monte Carlo simulation to estimate the
mean waiting time at various points in time for this sample path. For each time instant,
we sampled the waiting time 5000 times (recall that the waiting time for a given evolution
of the traffic densities is a random variable as the vehicle that leaves at a certain instant
is randomly selected). We also calculated the 99% confidence intervals for the estimators
of the conditional mean waiting times, but omitted these from the figure as their sizes are
to small to be properly depicted. We considered 3 distinct scale values K. Practically, the
values K = 500, K = 1000 and K = 5000 correspond to having a peak arrival intensity at
the city of 35, 70 and 350 vehicles per minute, respectively.

For K = 500, the simulation results considerably deviate from the fluid limit. This
reflects the remaining randomness in the traffic density process for smaller K. For K = 1000,
the correspondence between simulation results and the fluid limit are already good, while
the correspondence is very good for K = 5000. Even for K = 5000, the traffic intensity is
not that high (at the scale of a city). Hence we can conclude that the fluid approximation
works in parameter settings of interest.

3 Public transport game
The derivations above not only allow for estimating the travel times of the vehicles in the
city. Our results can also be used for dimensioning the capacity of public transport systems,
and for assessing the impact of the public transport cost on congestion. In this section, we
consider a scenario in which users have access to travel time estimates both for commuting
by personal vehicles as well as by public transport. If the public transport system (PTS)
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offers a faster ride, a certain number of users may switch from personal vehicles to the PTS.
Assuming users are rational, that is, they choose the mode of transport that minimises their
travel times, we use concepts from game theory to compute the number (or the fraction) of
users that will switch to the PTS. This can be used to estimate the load on the PTS and
dimension its capacity accordingly.

For simplicity, assume that taking the PTS incurs a cost, which may depend upon the
neighbourhood and the time of departure, but not on the congestion in the road network.
This cost includes the travel time in the public transport system, the travel time to the
access points of the public transport system, the inconvenience of using public transport,
costs related to possible disruptions of the service, etc. We assume that this cost can be
expressed in terms of travel times: the cost of the public transportation system is the
maximal travel time one is willing to undergo by private transport. For n ∈ N , let Cn(t)
denote the cost of the PTS at time t for a vehicle starting in neighbourhood n.

Remark 2 Note that the assumption that the travel cost does not depend on congestion
is natural in case the public transportation system has dedicated lines. This can be either
completely separated from the road network like a metro network, or consist of separate lanes
embedded in the road network.

3.1 Dynamic Wardrop equilibrium
We investigate the strategies of rational users when the choice of each user has a negligible
impact on the travel times of the population, a solution concept introduced in game theory
by Wardrop [18] in the context of choosing routes in road traffic networks. Known as the
Wardrop equilibrium, it says that at the equilibrium choice of routes is such that the cost on
each used route is the same and the cost on the unused ones is larger than that of the used
ones. In contrast to the classic Wardrop equilibrium, our equilibrium explicitly depends on
time. For this dynamic Wardrop equilibrium, the choice at time t not only depends on the
choices of the other users at time t, but also on the choices of other users (both prior and
later than time t).

Let p◦n(t) denote the fraction of users that opt for private transport at time t. The
function p◦n is the time-dependent routing strategy for arrivals in neighbourhood n. The
set of routing strategies constitutes a Wardrop equilibrium if, for each n ∈ N such that
λn(t) > 0, we have the following constraints on the travel times:

w̄n(t; p
◦
n) < Cn(t) for p◦n(t) = 1 ,

w̄n(t; p
◦
n) = Cn(t) for 0 < p◦n(t) < 1 ,

w̄n(t; p
◦
n) > Cn(t) for p◦n(t) = 0 .

(4)

The first equation states that all users in neighbourhood n prefer private transport if the
cost of the PTS exceeds the expected travel time. The second equation states that if a non-
zero fraction of users opt for PTS and a non-zero fraction of users opt for private transport,
the cost of both should be equal. Finally, the last equality states that everyone uses the
PTS if the cost of private transport exceeds that of the PTS.

To the best of our knowledge, the functions p◦n (n ∈ N ) have no nice and easy analytical
solution. Therefore, we resort to the following iterative numerical algorithm for their com-
putation. Given the arrival curves λn(t), the fundamental diagrams µ̄n(x) and the routing
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probabilities αmn, we set pn(t) = 1, and then update it according to

pn(t)← min
(
1, pn(t)e

−βn(ω(t;p)−Cn(t))
)
,

for λn(t) 6= 0, such that pn → p◦n. Here βn is a parameter which determines the speed
of convergence of the recursion. Small βn corresponds to conservative updates, such that
convergence is slow. In contrast, for large βn, the update rule may never converge. Finally,
note that for λn(t) = 0, the value p◦n(t) has no meaning as there is no choice to be made in
the absence of traffic.

3.2 Numerical example
We now calculate the Wardop equilibrium for some traffic scenarios. We retain the as-
sumptions on the arrival traffic and the random routing within the city of section 2.3 and
consider two different public transport offerings. In the first scenario, there is a PTS offering
in all neighbourhoods with a fixed cost of 25 minutes. The traffic densities and travel times
for this symmetric scenario are depicted in Figure 5. Note that we only depict results for
neighbourhoods 1 and 2, as the results for neighbourhoods 2, 3 and 4 are identical by sym-
metry. In the second scenario, there is a PTS offering in neighbourhoods 2 and 3, but none
in neighbourhood 4. Moreover, the PTS cost differs: C2(t) = 20 minutes and C3(t) = 25
minutes. The results for this asymmetric scenario are depicted in Figure 6.

In both scenario’s we can easily verify that the travel times never exceed the PTS cost.
Moreover, once the travel times hit the PTS cost, a considerable fraction of users opt for
the PTS. This reduction of traffic is not only beneficial for the travel times from the outer
neighbourhoods. Also the travel time within the centre decreases as there is also a reduction
of traffic there. To facilitate comparisons, the traffic densities and travel times without the
availability of the PTS are also depicted in Figure 5 (by dotted curves). Finally, in Figure
6, we also observe a reduction in travel times for neighbourhood 4 where there is no PTS
offering. This is not unexpected, as users from other neighbourhoods that opt for the PTS
reduce the overall traffic in neighbourhood 4 as well.

4 Social optimum
When users choose selfishly between two options, it often leads to inefficiencies in terms of
the overall cost function. In this section, we quantify these inefficiencies using the concept
of Price of Anarchy (PoA) [12]. The PoA is defined as the ratio of the cost at the Wardrop
equilibrium and the cost at the social optimum. A higher value of PoA implies that the cost
of allowing for individual decision making is higher, which can be interpreted as the price
that is paid for decentralised decision making.

4.1 Optimal control problem
Let pn(t) be the probability with which a user entering in neighbourhood n uses her vehicle.
Then, the mean transportation cost Kn(t) at time t of a user entering neighbourhood n
assuming policy p equals

Kn(t;p) :=
∑
i

w̄n(t;p)pn(t) + (1− pn(t))C(t) . (5)
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Figure 5: Arrival rate (AR), traffic density (TD) and travel times (TT) during rush hour in
Wardrop equilibrium (symmetric public transport costs).
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Figure 6: Arrival rate (AR), traffic density (TD) and travel times (TT) during rush hour in
Wardrop equilibrium (symmetric public transport costs).
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Here, we have assumed that the cost of public transport does not depend upon the point of
entry and exit of the user.

The socially optimal policy is the one that minimises the total weighted mean cost given
by

p∗ = arg inf
p

∫ T2

T1

∑
n

λn(t)Kn(t;p)dt (6)

where [T1, T2] is the rush hour interval. Note that the expression above includes the arrival
rates λn(t) as the travel cost impacts more users if there are many arrivals.

With p◦(t) as the solution of the set of equations (4). The PoA is then defined as:

PoA =

∫ T2

T1

∑
n λ(t)iKn(t;p

◦)dt∫ T2

T1

∑
n λn(t)Kn(t;p∗)dt

.

As was the case in [7], (6) is not an optimal control problem for a general λn(t) general
because w̄(0) cannot be determined independently of q (see the discussion below (2)). In
order to solve this problem, we shall make the same assumption as was made for obtaining
(3). That is, we shall assume that λn(t) goes to a constant as t→∞. Taking the T2 to be
sufficiently large so that the system is in stationarity, we can then approximate (6) by the
solution of following optimal control problem:

min
p(t)∈[0,1]

∫ T2

T1

∑
n

λn(t)Kn(t;p)dt , (7)

subject to

d

dt
qn(t) = λn(t)− µ̄n(qn(t)) +

∑
m∈N

µ̄m(qm(t))αmn, (8)

d

dt
w̄n(t) = w̄n(t)

µ̄n(qn(t))

qn(t)
− 1−

∑
m∈N

w̄m(t)αnm
µ̄n(qn(t))

qn(t)
, (9)

with the initial values of qn(0) computed using the steady state solution of (1) and w̄(T )
obtained as the solution of (3).

4.2 Congestion-based pricing
In the previous subsection, the price (or cost) of public transport was taken to be the same
as the one in the game of Section 3. The numerical example in Section 4.3 illustrates that
the PoA in this setting is larger than 1. That is, selfish decision making induces inefficiencies
from the point of view of the social cost.

One way to remove these inefficiencies is to impose these decisions on individuals. How-
ever, this forced choice can be seen as too authoritarian. Another method is impose tolls or
taxes on certain routes or resources. Here, the individuals still make selfish decisions, but in
a game with different costs. In static congestion games, that is games in which arrival rates
are constant, it is known that by introducing appropriate tolls, one can obtain the social
optimum in a game setting [5]. In this subsection, we follow this method and compute
a congestion-based pricing of public transport such that the equilibrium of the dynamic
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congestion game with modified costs will be same as the social optimum for the fixed cost
setting that was computed in the subsection above.

Let Ĉ(t) be the congestion-based cost of the public transport network, and let p̂◦n(t) be
the equilibrium probability in neighbourhood n of the game (4) with the cost replaced by Ĉ.
For p̂◦n to be equal to p∗n (which is the solution of (6)), it needs to satisfy certain conditions
that are determined by the Pontryagin’s maximum principle [8].

When the maximum principle is applied to (6), it follows that (we skip the details)
w̄n(t; p

∗
n) < Cn − γn(t) for p∗n(t) = 1 ,

w̄n(t; p
∗
n) = Cn − γn(t) for 0 < p∗n(t) < 1 ,

w̄n(t; p
∗
n) > Cn − γn(t) for p∗n(t) = 0 ,

(10)

where γn(t) is the adjoint (or the co-state) variable for qn(t) and is the multiplier of (8).
Comparing (10) and (4) in which Cn(t) = Ĉn(t), we obtain

Ĉn(t) = Cn − γn(t) , ∀n. (11)

That is, congestion-based pricing for the game to have a PoA of 1 is the sum of the fixed
original cost Cn and a congestion-based cost γn(t) in neighbourhood n. We can interpret
γn(t) as the toll (or subsidy if is negative) that the transport authority should impose to
induce a PoA of 1.

4.3 Numerical example
We now calculate the social optimum policy, PoA, and the congestion-based pricing for the
symmetric traffic scenario of Section 3.2. The assumptions on the arrival traffic and the
routing within the city are the ones described in Section 2.3 and there is a PTS offering in
all neighbourhoods with a fixed cost of 25 minutes. The optimal control problem (7) was
solved using the software BOCOP which is a specialised numerical solver for such problems
[16].

In Figure 7, we depict the optimal arrival rate in neighbourhood 2 (top figure), the
traffic density in neighbourhoods 1 and 2 (middle figure), and the mean travel times in
neighbourhoods 1 and 2 (bottom figure). Also, due to symmetry of the arrival rates, traffic
densities and travel times in neighbourhoods 3 and 4 are identical to those in neighbourhood
2, and are therefore omitted.

The PoA for this particular example was found to be 1.081, that is the average social
cost at the Wardrop equilibrium was 8% higher than at the social optimum.

Finally in Figure 8 we show the congestion-based pricing of (11) for this example that
leads to the social optimum. The adjoint function γn(t) was computed by BOCOP. Observe
that, for this example, the pricing is in fact a subsidy since it involves reducing the cost
of public transport at peak hours. Further, the subsidy is higher during periods of higher
travel times (or higher congestion).

5 Conclusions
Drawing on queueing network theory and accounting for the macroscopic fundamental dia-
gram of traffic flow, we have proposed a Markovian queueing network model for computing
the time-dependent travel times during rush hour in a congested area. The model at hand
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Figure 7: Socially optimal arrival rate (AR), traffic density (TD) and travel times (TT)
during rush hour (symmetric public transport costs).
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was characterised by two non-typical properties: queue-dependent departure rates to reflect
the macroscopic fundamental diagram and time-dependent arrival intensities which are typ-
ical in rush-hour scenarios. As the traffic intensity is high during rush hour, we study the
fluid limit of the queueing network model at hand. Numerical experiments show that the
travel time can be reduced significantly if a reasonable fraction of users switches to public
transport. Relying on game theory, we show how our model can be used to assess the impact
of public transport systems on congestion and compare the game-theoretical and socially
optimal traffic mixes.

References
[1] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open,

closed, and mixed networks of queues with different classes of customers. J. ACM,
22(2):248–260, April 1975.

[2] M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands. Applications of polling
systems. Surveys in Operations Research and Management Science, 16(2):67–82, 2011.

[3] C. Buisson and C. Ladier. Exploring the impact of homogeneity of traffic measurements
on the existence of macroscopic fundamental diagrams. Transportation Research Record,
2124:127–136, 2009.

[4] X. Chen, Z. Li, L. Li, and Q. Shi. A traffic breakdown model based on queueing theory.
Networks and Spatial Economics, 14(3):485–504, Dec 2014.

[5] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Pricing network edges for het-
erogeneous selfish users. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 521–530, New York, NY, USA, 2003. ACM.

[6] C. F. Daganzo. Urban gridlock: Macroscopic modeling and mitigation approaches.
Transportation Research Part B, 41:49–62, 2007.

[7] Dieter Fiems, Balakrishna Prabhu, and Koen De Turck. Travel times, rational queue-
ing and the macroscopic fundamental diagram of traffic flow. Physica A: Statistical
Mechanics and its Applications, 524:412 – 421, 2019.

[8] H. P. Geering. Optimal Control with Engineering Applications. Springer, 2007.

[9] N. Geroliminis and C. F. Daganzo. Existence of urban-scale macroscopic fundamental
diagrams: Some experimental findings. Transportation Research Part B, 42:759–770,
2008.

[10] James R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131–
142, 1963.

[11] B. Kerner. The Physics of Traffic - Empirical Freeway Pattern Features, Engineering
Applications, and Theory. Springer, Berlin, 2004.

[12] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceeding of
STACS, 1999.

16



[13] R. Kühne and N. H. Gartner, editors. Transportation Research Circular E-C149 (75
Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium).
Transportation Research Board, 2011.

[14] H. Lehmann. Distribution function properties and the fundamental diagram in kinetic
traffic flow theory. Phys. Rev. E, 54:6058–6064, Dec 1996.

[15] J.I. Levy, J.J. Buonocore, and K. von Stackelberg. Evaluation of the public health
impacts of traffic congestion: a health risk assessment. Environmental Health, 9(Article
65), 2010.

[16] Team Commands, Inria Saclay. BOCOP: an open source toolbox for optimal control.
http://bocop.org, 2017.

[17] N. Vandaele, T. Van Woensel, and A. Verbruggen. A queueing based traffic flow model.
Transportation Research Part D: Transport and Environment, 5(2):121–135, 2000.

[18] J. G. Wardrop. Some theoretical aspects of road traffic research. ICE Proceedings:
Engineering Divisions, 1(3):325–362, 1952.

17


