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Abstract

Lasserre's moment-SOS hierarchy consists of approximating instances of the generalized
moment problem (GMP) with moment relaxations and sums-of-squares (SOS) strenght-
enings that boil down to convex semide�nite programming (SDP) problems. Due to the
generality of the initial GMP, applications of this technology are countless, and one can
cite among them the polynomial optimization problem (POP), the optimal control prob-
lem (OCP), the volume computation problem, stability sets approximation problems, and
solving nonlinear partial di�erential equations (PDE). The solution to the original GMP
is then approximated with �nite truncatures of its moment sequence. For each applica-
tion, proving convergence of these truncatures towards the optimal moment sequence gives
valuable insight on the problem, including convergence of the relaxed values to the original
GMP's optimal value. This note proposes a general proof of such convergence, regardless
the problem one is faced with, under simple standard assumptions. As a byproduct of this
proof, one also obtains strong duality properties both in the in�nite dimensional GMP and
its �nite dimensional relaxations.
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1 Introduction

Let: • K ⊂ Rn, • ϕα ∈ R[x], α ∈ A, • aα ∈ R, α ∈ A,
• c ∈ R[x], • ψβ ∈ R[x], β ∈ B, • bβ ∈ R, β ∈ B,
• A,B be index sets,

and consider the generalized moment problem (GMP), as stated in [7, (1.1)]:

p?GM := sup

∫
c dµ (1)

s.t. µ ∈M(K)+∫
ϕα dµ = aα α ∈ A∫
ψβ dµ ≤ bβ β ∈ B.

Remark 1 (Generality of the problem). Problem (1) already covers the K-moment problem [7,
(3.1),(3.2)] (c = 0, A ⊂ Nn, B = ∅, ϕα = xα), the polynomial optimization problem [6, (4.1)]
(A = {0}, B = ∅, ϕ0 = 1, z0 = 1) and the volume computation problem [4] (c = 1, A = ∅,
B = R[x] ∩ C(B)+, ψβ = β, bβ =

∫
B
ψβ dλ), for example.

In 2014, the authors of [5] proved that under speci�c conditions, the Lasserre hierarchy
associated with the particular GMP instance known as the polynomial optimization problem
(POP) has the strong duality property, which means that there is no duality gap between the
moment relaxations and the sum-of-squares strengthenings that form the moment-SOS hierarchy.

This technical note is a follow-up that intends to close the subject of strong duality and
convergence of the Lasserre hierarchy, by proving a general strong result at the abstraction level
of the generic moment problem.

First, it is possible to slightly generalize Problem (1) by allowing for multiple decision vari-
ables:

p?GM := sup

∫
c · dµ (2)

s.t. µ ∈M(K1)+ × . . .×M(KN )+∫
ϕα · dµ = aα α ∈ A∫
ψβ · dµ ≤ bβ β ∈ B.

where c,ϕα,ψβ ∈ R[x1]× . . .× R[xN ] and∫
c · dµ :=

N∑
i=1

∫
ci dµi.

Remark 2 (A most general extension). Problem (2) covers all existing applications of the Lasserre
hierarchy so far, including for instance:

• the optimal control problem [8] (with the notation of the paper, µ = (µ, ν), c = (h,H),
A = R[t,x], B = ∅, ϕα = (−∂tα − f · grad α, α(T, ·)), aα = α(0,x0), where T is the
terminal time),
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• the controlled region of attraction problem [3] (using the reference notation, µ = (µ0, µ, µT ),
c = (1, 0, 0), A = R[t,x], B = R[x]∩C(X)+, ϕα = (α(0, ·), ∂tα+f ·grad α,−α(T, ·)), aα = 0,
ψβ = (β, 0, 0) and bβ =

∫
β dλ),

• the inner maximal positively invariant set problem [11] and the reachable set problem [9]
(using the notations in [11], µ = (µ0, µ, µ∂), c = (1, 0, 0), A = R[x], B = R[x] ∩ C(X)+,
ϕα = (α, f · grad α,−α), aα = 0, ψβ = (1, 0, 0), bβ =

∫
β dλ),

• the nonlinear hyperbolic PDE problem [10, (45),(46)].

The aim of this technical note is to state and prove a most general convergence theorem for
the hierarchy corresponding to Problem (2). The Lasserre hierarchy technology is most often
deployed under the following standard working assumption (see [5, Assumptions 1 & 2]):

Assumption 1 (Ball constraints). Suppose that there exists g1 ∈ R[x1]m1 , . . . ,gN ∈ R[xN ]mN

such that for i ∈ NN := {1, . . . , N},

gi,1(xi) = 1 ; gi,mi(xi) = 1− |xi|2

Ki = {xi ∈ Rni : gi(xi) ≥ 0}.

Remark 3 (Compactness). Up to rescaling of theKi's, it is always possible to enforce Assumption
1, as soon as they are compact basic semialgebraic sets.

Indeed let g ∈ R[x]m, K := {x ∈ Rn : g(x) ≥ 0}. For R > 0, de�ne

KR := {x ∈ Rn : g(x) ≥ 0, |x|2 ≤ R2} = K ∩BR,

where BR := {x ∈ Rn : |x| ≤ R} is the ball of radius R. In such setting, if K is compact then it
is bounded, so that there exists R0 > 0 s.t. ∀R ≥ R0, K ⊂ BR, and thus K = KR. This shows
that if K is compact, it is always possible to add a redundant ball constraint to its description
so that Putinar's Lemma [12, Lemma 3.2] holds for KR.

In order for the moment-SOS hierarchy to be well-de�ned, we need Assumption 1 to hold, as
well as an assumption similar in spirit to Assumption 1:

Assumption 2 (SOS approximations). Suppose that there exists (R1, . . . , RN ) ∈ (0,+∞)N ,
h1 ∈ R[x1]m

′
1 , . . . ,hN ∈ R[xN ]m

′
N , such that for i ∈ NN ,

hi,1(xi) = 1 ; hi,m′
i
(xi) = R2

i − |xi|2

Σ(h1)× . . .× Σ(hN ) is dense in ΨB := {ψβ : β ∈ B},

where Σ[x] := {p21 + . . .+ p2k : k ∈ N?, p1, . . . , pk ∈ R[x]} is the convex cone of sums of squares of

polynomials and Σ(hi) := {σi · hi : σi ∈ Σ[xi]
m′

i} is hi's quadratic module.

Remark 4 (Link between assumptions 1 and 2). We say that Assumption 2 is similar in spirit
to Assumption 1. To illustrate this point, we will be reasoning on the volume problem [4], for
which ΨB = B = R[x] ∩ C(B)+. In such setting, Assumption 2 is enforced through Putinar's
Positivstellensatz [12, Theorem 1.3], assuming the existence of h ∈ R[x]m

′
and R > 0 such that

h1 = 1, hm′ = R2 − | · |2 and
B = {x ∈ Rn : h(x) ≥ 0},

so that one can replace ΨB = B with Σ(h) without changing the problem value.
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2 Notations and theorem statement

We brie�y recall the usual notations, de�nitions and results that are used in the Lasserre hierarchy
framework. Then, we proceed to introduce the last assumptions that will be needed for the proof
of our theorem.

The basic notions that are used to formulate the moment hierarchy are the Riesz functional
and the moment an localizing matrices.

De�nition (Riesz functional). Let z := (zk)k∈Nn ∈ RNn

be a real sequence. We de�ne, for
p(x) :=

∑
|k|≤d pk xk ∈ R[x],

Lz(p) :=
∑
|k|≤d

pk zk.

The linear map Lz : p 7→ Lz(p) is called the Riesz functional of z.

Remark 5 (Link between Lz and integrals). If z = (zk)k∈Nn ∈ RNn

and µ ∈ M(K)+ are such
that

∀k ∈ Nn zk =

∫
xk dµ,

then by de�nition for all p ∈ R[x] ∫
p dµ = Lz(p).

Notation (Bounded multi-indices). For n, d ∈ N, we use the following notations:

Nnd := {k ∈ Nn : |k| := k1 + . . .+ kn ≤ d} & Nn,d := |Nnd | =
(
n+ d

n

)
so that the space of polynomials in n variables with degree at most d satis�es

Rd[x] ' RNn
d ' RNn,d .

De�nition (Localizing matrix). Let d, dg ∈ N, g ∈ Rdg [x]. Let ed(x) := (ei(x))i be a base of

Rd[x]. Let z = (zk)|k|≤2d+dg ∈ RNn
2d+dg .

The degree d localizing matrix Md(g z) of z in g is de�ned as the size Nn,d matrix represen-
tation in base ed(x) of the bilinear application

(p, q) ∈ Rd[x]2 7−→ Lz(g p q).

The localizing matrix is de�ned so that if p(x) = p · ed(x) and q(x) = q · ed(x), p,q ∈ RNn,d ,
then

Lz(g p q) = p>Md(g z) q & Lz(g p2) = p>Md(g z) p.

Notation (Positive semide�nite matrices). We denote by:

• Sn := {M ∈ Rn×n : M> = M} the space of symmetric matrices,

• Sn+ := {M ∈ Sn : ∀x ∈ Rn,x> M x ≥ 0} the closed convex cone of positive semide�nite
matrices,

• if M ∈ Sn, M � 0⇐⇒ M ∈ Sn+.
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These de�nitions allow to formulate the moment hierarchy associated to Problem (2), under
Assumption 1, thanks to Putinar's Lemma:

pdGM := sup

N∑
i=1

Lzi
(ci) (3)

s.t. zi ∈ RNni
2d i ∈ NN

Md−dij (gi,j zi) � 0 i ∈ NN , j ∈ Nmi

N∑
i=1

Lzi
(ϕα,i) = aα α ∈ Ad

N∑
i=1

Lzi
(ψβ,i) ≤ bβ β ∈ Bd,

where dij = dd◦gi,j/2e, and

Ad := {α ∈ A : ∀i ∈ NN ,d◦ϕα,i ≤ 2d},

Bd := {β ∈ B : ∀i ∈ NN ,d◦ψβ,i ≤ 2d}
are �nite (using linearity of the Riesz functional, Assumption 2 and �nite dimensionality of
Rd[x] = {p ∈ R[x] : d◦ ≤ d}).
Remark 6 (Minimal degree for the hierarchy). It appears in (3) that pdGM is only de�ned for
d ≥ d0, where

d0 := max
i∈{1,...,N}

max
j∈{1,...,mi}

max(dd◦ci/2e, dij).

We are �nally able to formulate the last needed assumptions as well as our main theorem.
First, convergence in the moment hierarchy is often obtained through an additional assumption
on the mass of the involved measures:

Assumption 3 (Uniformly bounded mass). For i ∈ {1, . . . , N}, denote by zi ∈ R(Nni
2d) the

pseudo-moment sequence that representes µi in the Lasserre hierarchy, and suppose that there
exists Ci > 0 s.t. if zi is feasible for the degree d relaxation of problem (2), then

zi,0 ≤ C.

Eventually, so as for the notion of "convergence of the hierarchy" to make sense, we need a
unique candidate for the limit of our pseudo-moment sequences:

Assumption 4 (Existence of a unique optimal solution). Suppose that there exists a unique
µ? ∈M(K1)+ × . . .×M(KN ) feasible and optimal for problem (2):{

∀α ∈ A,
∫
ϕα · dµ? = aα

∀β ∈ B,
∫
ψβ · dµ? ≤ bβ

&

∫
c · dµ? = p?GM.

Remark 7 (The question of uniqueness). Assumption 4 is crucial for the proof of convergence.
However, if one removes it, existence of the optimal µ? could still be obtained from Assumption
3, through an in�nite dimensional strong duality proof similar to what we display in the next
section (which would bring no additional theoretical insight, so that we do not display it). The
actual stake of this assumption is indeed the uniqueness assumption. Note that in most of the
moment-SOS hierarchy applications, the GMP is designed in a way that enforces Assumption 4.
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Our contribution consists of stating and proving a general theorem for convergence of the
Lasserre hierarchy (3) corresponding to problem (2):

Theorem 5 (Convergence of the general Lasserre hierarchy). Under Assumptions 1, 2, 3 and

4, there exist optimal sequences
(
zdi
)
d≥d0

of feasible pseudo-moment sequences for the moment

hierarchy s.t.
∑N
i=1 Lzdi (ci) = pdGM and for all k ∈ Nn,

zdi,k −→
d→∞

∫
xk dµ?i (x).

In particular, one has pdGM −→
d→∞

p?GM.

Moreover, this automatically yields strong duality pdGM = ddGM & p?GM = d?GM, where d?GM

and ddGM are the values of the duals of (2) and (3), respectively, so that ddGM −→
d→∞

d?GM.

3 Proof of Theorem 5

For the sake of simplicity and without loss of generality, we work on the simple case (1) where
N = 1, with corresponding hierarchy:

pdGM := sup Lz(c) (4)

s.t. z ∈ RNn
2d

Md−dj (gj z) � 0 j ∈ Nm
Lz(ϕα) = aα α ∈ Ad
Lz(ψβ) ≤ bβ β ∈ Bd.

All the proofs are the same for N > 1, at the price of additional notations that do not bring
any theoretical insight, so that we stick to the case N = 1. We �rst prove an easy lemma that
gives all its importance to Assumption 1:

Lemma 6 (Pseudo moment sequences boundedness). Let d ∈ N?, R > 0, z ∈ RNn

s.t. Md(z) � 0
& Md−1((R2 − | · |2) z) � 0. Then,

max
|k|≤2d

|zk| ≤ z0 max(1, R2d).

Proof. Md(z) � 0 is equivalent to

∀p ∈ Rd[x],Lz(p2) ≥ 0, (a)

while Md−1((R2 − | · |2) z) � 0 means that

∀p ∈ Rd−1[x],Lz((R2 − | · |2) p2) ≥ 0. (b)

(a) with p(x) = xk, |k| ≤ d yields z2k ≥ 0.
(b) with p(x) = 1 yields R2z0 ≥

∑
|k|=1 z2k, since |x|2 =

∑n
j=1 x

2
j =

∑
|k|=1 x

2k. Hence,

since the z2k are nonnegative, one has |k| = 1⇒ z2k ≤ R2z0.
Going forward, if |k| = 1, (b) with p(x) = xk yields R2z2k ≥

∑
|k′|=1 z2(k+k′) with z2(k+k′) ≥

0 by (a), so that R4z0 ≥ R2z2k ≥ z2(k+k′) as long as |k| = |k′| = 1, and thus, if |k| = 2,
R4z0 ≥ z2k. By induction, one has for k ∈ Nnd that

0 ≤ z2k ≤ R2|k|z0 ≤ z0 max(1, R2d). (c)
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Let k,k′ ∈ Nnd . Then, (a) with p(x) = xk ± xk′
yields 0 ≤ Lz(p2) = z2k ± 2zk+k′ + z2k′ so that

|zk+k′ | ≤ z2k + z2k′

2
≤ max(z2k, z2k′)

(c)

≤ z0 max(1, R2d). (d)

Eventually, any k ∈ Nn2d can be written k = k′ + k′′ with k′,k′′ ∈ Nnd , so that it satis�es (d),
and |zk| ≤ z0 max(1, R2d).

This lemma proves several important facts, among which any nonzero feasible pseudo-moment
vector zi for (3) satis�es zi,0 > 0 if Assumption 1 holds, and under Assumptions 1 and 3, for all
d ∈ N, zi feasible for (3) satis�es |zi,k| ≤ Ci ∀k.

A �rst consequence of Lemma 6 is the strong duality property in the hierarchy.

Proposition 7 (Strong duality in the hierarchy). Suppose that each relaxation of Problem (1)
has a feasible solution. In that case, under Assumptions 1, 2 and 3,

∀d ≥ d0, pdGM = ddGM.

Moreover, the degree d relaxation (4) of (1) has an optimal solution zd ∈ RNn
2d .

Proof. Assumption 2 is only needed for the hierarchy to be well-de�ned. We rely on [1, Theorem
(7.2), Lemma (7.3)] to prove our result. Consider the cone

Kd := {(Adz,Lz(c)) : z ∈ Xd} ,

where Adz := (Lz(ϕα),Lz(ψβ))α∈Ad,β∈Bd
and

Xd :=
{
z ∈ RNn

2d : ∀j ∈ {1, . . . ,m},Md−dj (gj z) � 0
}
.

According to [1, Theorem (7.2)] a su�cient condition for our result to hold requires that
pdGM <∞ and Kd is closed. Clearly,

pdGM ≤ Nn,d0
(

max
k∈Nn

ck

)(
max

z
max
k∈Nn

2d

zk

)
≤ Nn,d0

(
max
k∈Nn

ck

)
C <∞.

Besides, [1, Lemma (7.3)] states that for Kd to be closed, it is su�cient to prove that Xd has a
compact, convex base, and that

∀z ∈ Xd, (Adz,Lz(c)) = (0, 0) =⇒ z = 0. (∗)

We �rst exhibit a compact convex base for Xd. Let

Pd := {z = (zk)k ∈ Xd : z0 = 1}.

Pd is a base of Xd in the sense that Xd\{0} is isomorphic to (0,+∞)×Pd through the bijective
application χd : (t,p) 7→ t p, with χ−1d (z) = (z0, z/z0) (using Lemma 6 and Assumption 1, for
any Md(z) and Md−1((1 − | · |2) z) to be simultaneously positive semi-de�nite with z 6= 0, it is
necessary that z0 > 0).
Pd is convex. Indeed, let p1,p2 ∈ Pd, t ∈ [0, 1], p̃ := t p1 + (1− t) p2. Then, by linearity of

the localizing matrix operator,

∀g ∈ Rd[x] Md−dg (g p̃) = t Md−dg (g p1) + (1− t) Md−dg (g p2),
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where dg = dd◦g/2e, so that its semide�nite positivity is preserved by convex combination, by
convexity of Sn+ for any n ∈ N. Thus, p̃ ∈ Xd. Besides,

p̃0 = t p10 + (1− t) p20 = t+ 1− t = 1

so that p̃ ∈ Pd, which proves convexity.
Eventually, we move on to showing compactness of Pd. According to Lemma 6, the ball

constraint in the description of K (Assumption 1) and the upper bound z0 ≤ C (Assumption 3)
yield boundedness of Pd for the distance dist(z, z′) := max|k|≤2d |zk − z′k|.

Finally, Pd is closed as the intersection between the level-1 set of the continuous function

z 7→ z0 and the closed cone Xd. Indeed Xd is closed as the pre-image of the closed cone
(
SNn,d

+

)m
by the (continuous) linear map

z 7→
(
Md−dj (gj z)

)
j∈{1,...,m} .

Since �nite dimensional closed bounded sets are compact, this proves that Pd is compact.
It remains to prove (∗). Let z ∈ Xd s.t. Adz = 0 and Lz(c) = 0. We want to prove that z = 0

so that (∗) holds.
Let z0 ∈ Xd s.t. ∀α ∈ Ad, β ∈ Bd, Lz0

(ϕα) = aα & Lz0
(ψβ) ≤ bβ . De�ne for t ≥ 0

zt := z0 + t z. Let t ≥ 0.
Since Xd is a convex cone, zt ∈ Xd. In addition, by construction of z and linearity of the

operator z 7→ Lz(·), ∀α ∈ Ad, β ∈ Bd, Lzt
(ϕα) = Lz0

(ϕα) = aα & Lzt
(ψβ) = Lz0

(ψβ) ≤ bβ , so
that Assumption 3 ensures that zt,0 ≤ C. However, zt,0 = z0,0 + t z0.

Combined with the fact that z0,0 ≥ 0 (with Lemma 6), this yields that for all t ≥ 0,

t z0 ≤ C,

which is only possible if z0 = 0, i.e. if z = 0 using again Lemma 6.

Eventually, we can end this work by proving Theorem 5. As announced at the beginning of
this section, w.l.o.g we actually only do the proof for the case N = 1:

Theorem 8 (Convergence of the pseudo-moment sequences). Under Assumptions 1, 2, 3 and 4,

there exists an optimal sequence (zd)d≥d0 of feasible pseudo-moment sequences for the hierarchy

(4) corresponding to Problem (1), s.t. Lzd(c) = pdGM and for all k ∈ Nn,

zd,k −→
d→∞

∫
xk dµ?(x).

In particular, one has pdGM −→
d→∞

p?GM.

Moreover, this automatically yields strong duality pdGM = ddGM & p?GM = d?GM and then dual

convergence ddGM −→
d→∞

d?GM.

Proof. Existence of (zd)d≥d0 follows from Proposition 7 (using Assumptions 1, 2 and 3), so we
focus on the proof of convergence. Let d ∈ N. For k ∈ Nn, de�ne

ẑd,k :=

{
zd,k if |k| ≤ 2d,
0 else,

so that ẑd ∈ RNn

with

‖ẑd‖`∞(Nn) := max
k∈Nn

|ẑd,k| = max
|k|≤2d

|zd,k|
Lemma 6
≤ zd,0 ≤ C,
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using again Assumptions 1 and 3. Then, (ẑd)d∈N is a uniformly bounded sequence of

`∞(Nn) :=

{
u ∈ RNn

: max
k∈Nn

|uk| <∞
}

= `1(Nn)′,

where `1(Nn) :=
{
u ∈ RNn

:
∑

k∈Nn |uk| <∞
}
has `∞(Nn) as its topological dual. Thus, the

Banach-Alaoglu theorem [2, Theorem 3.16] yields a weak-∗ converging subsequence (ẑdr )r∈N:
∃z∞ ∈ `∞(Nn); ∀u ∈ `1(Nn), ∑

k∈Nn

uk zdr,k −→
r→∞

∑
k∈Nn

uk z∞,k.

In particular, if k ∈ Nn, zdr,k −→
r→∞

z∞,k. Thus, what we want to show is that for k ∈ Nn,
z∞,k = z?k :=

∫
xk dµ?(x).

Let α ∈ A, β ∈ B, j ∈ Nm. Then, for all d ≥ d0 and r ∈ N big enough, by feasibility of zdr
for the relaxation of degree dr, one has

• 0 � Md−dj (gj zdr ) = Md−dj (gj ẑdr ) −→
r→∞

Md−dj (gj z∞)

• aα = Lzdr
(ϕα) = Lẑdr

(ϕα) −→
r→∞

Lz∞(ϕα)

• bβ ≥ Lzdr
(ψβ) = Lẑdr

(ψβ) −→
r→∞

Lz∞(ψβ)

so that according to Putinar's Lemma, z∞ is the actual moment sequence of a measure µ∞
that is feasible for problem (1). Then, one directly has

p?GM ≥
∫
c dµ∞ = Lz∞(c) = lim

r→∞
Lẑdr (c) = lim

r→∞
pdrGM ≥ p?GM

since for any d ≥ d0 pdGM ≥ p?GM (by construction of the moment relaxation).
Hence,

∫
c dµ∞ = p?GM, i.e. µ∞ is optimal for problem (1). By Assumption 4, this yields

µ∞ = µ?, i.e. z∞ = z?. Thus, (ẑd)d has a unique weak-∗ accumulation point z?, which means
that for any k ∈ Nn,

zd,k −→
d→∞

z?k =

∫
xk dµ?(x),

Q.E.D.
Eventually, since Assumptions 1 and 3 hold, Proposition 7 ensures strong duality pdGM = ddGM,

so that putting together weak GMP duality and the strenghtening property, one has

p?GM

weak duality
≤ d?GM

strenghtening
≤ ddGM

strong duality
= pdGM

convergence
−→
d→∞

p?GM

and the sandwich rule yields strong GMP duality p?GM = d?GM.

4 Conclusion

While usually it is only proved that the optimal values of the GMP's moment relaxations mono-
tonically converge towards the optimal value of the GMP, this note proves that the solutions of
these moment relaxations converge to the actual solution of the GMP in `∞'s weak-∗ topology,
provided that some elementary assumptions hold. So far, such proof has only been provided for
very speci�c instances of the GMP (see e.g. [4]), while here the generic case is completely dealt
with. Up to rescaling the problem (which also precludes ill behaviours in the numerical imple-
mentations), one can usually enforce quite easily that these conditions are met. As a byproduct
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of this proof, one also obtains strong duality both in the GMP and its corresponding hierarchy,
generalizing the results of [5]. Among the open questions this note answers, one can cite the
weak-∗ convergence of the moment sequences associated to the OCP [8] and set approxima-
tion problems in [3, 11, 9], as well as the strong duality between the GMP formulation in [10]
and its dual, regardless of the formulation of such dual. Finally, this note should facilitate most
proofs of convergence and strong duality related to future applications of Lasserre's moment-SOS
hierarchy.
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