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Abstract

Lasserre’s moment-SOS hierarchy consists in approximating instances of the generalized
moment problem (GMP) with moment relaxations and sums-of-squares (SOS) strenght-
enings that boil down to convex semidefinite programming (SDP) problems. Due to the
generality of the initial GMP, applications of this technology are countless, and one can
cite among them the polynomial optimization problem (POP), the optimal control prob-
lem (OCP), the volume computation problem, stability sets approximation problems, and
solving nonlinear partial differential equations (PDE). The solution to the original GMP
is then approximated with finite truncatures of its moment sequence. For each applica-
tion, proving convergence of these truncatures towards the optimal moment sequence gives
valuable insight on the problem, including convergence of the relaxed values to the original
GMP’s optimal value. This note proposes a general proof of such convergence, regardless
the problem one is faced with, under simple standard assumptions. As a byproduct of this
proof, one also obtains strong duality properties both in the infinite dimensional GMP and
its finite dimensional relaxations.
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1 Introduction
Let: • K ⊂ Rn, • ϕα ∈ R[x], α ∈ A, • aα ∈ R, α ∈ A,

• c ∈ R[x], • ψβ ∈ R[x], β ∈ B, • bβ ∈ R, β ∈ B,
• A,B be countable index sets,

and consider the generalized moment problem (GMP), as stated in [10, (1.1)]:

p?GM := sup

∫
c dµ (1)

s.t. µ ∈M(K)+∫
ϕα dµ = aα α ∈ A∫
ψβ dµ ≤ bβ β ∈ B,

where M(K)+ denotes the cone of (nonnegative) Borel measures supported on K, whose dual
cone (w.r.t. the weak-∗ topology on measures) is the set C(K)+ of nonnegative continuous
functions on K.
Example (Generality of the problem).

• The K-moment problem [10, (3.1),(3.2)] is a particular instance of Problem (1):

p?z := sup 0

s.t. µ ∈M(K)+∫
xk dµ(x) = zk k ∈ Γ,

where Γ ⊂ Nn. Feasibility of this problem means existence of a measure µ whose moments
on K coincide with the zk ∈ R, k ∈ Γ.

• The polynomial optimization problem (POP) [9, (4.1)] is another instance of Problem (1):

p?f := − sup −
∫
f dµ

s.t. µ ∈M(K)+∫
1 dµ = 1,

where f ∈ R[x]. One can prove that p?f = inf{f(x) : x ∈ K}.

• The volume computation problem [5] is also an instance of Problem (1):

p?K := sup

∫
1 dµ

s.t. µ ∈M(K)+∫
p dµ ≤

∫
B

p(x) dx p ∈ Q[B]+,

where K ⊂ B ⊂ Rn such that the
∫
B

xk dx are known and Q[B]+ := {p ∈ Q[x] : ∀x ∈
B, p(x) ≥ 0}. One can prove that p?K = vol K is the Lebesgue volume of K.
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In 2014, the authors of [6] proved that under specific conditions, the Lasserre hierarchy
associated with the particular GMP instance known as the polynomial optimization problem
(POP) has the strong duality property, which means that there is no duality gap between the
moment relaxations and the sum-of-squares strengthenings that form the moment-SOS hierarchy.

Moreover, it is proved in [10, Theorem 5.6(b)] that if the POP has a unique minimizer x?,
then the solutions to the corresponding moment hierarchy converge towards the moments of the

Dirac measure δx? such that for all Borel set A ⊂ Rn, δx?(A) =

{
1 if x? ∈ A
0 else.

This technical note is a follow-up that intends to close the subject of strong duality and
convergence of the Lasserre hierarchy, by proving a general strong result at the abstraction level
of the generalized moment problem.

First, it is possible to slightly generalize Problem (1) by allowing for multiple decision vari-
ables:

p?GM := sup

∫
c · dµ (2)

s.t. µ ∈M(K1)+ × . . .×M(KN )+∫
ϕα · dµ = aα α ∈ A∫
ψβ · dµ ≤ bβ β ∈ B.

where B is finite, c,ϕα,ψβ ∈ R[x1]× . . .× R[xN ] and∫
c · dµ :=

N∑
i=1

∫
ci dµi.

Remark 1 (Finitely many inequality constraints).
The introduction of multiple decision variables allows one to restrict to finitely many in-

equality constraints. Indeed, in the context of the moment-SOS hierarchy, infinite dimensional
inequality constraints are always under the form ν − Φµ ∈ M(Ω)+ for some compact Ω ⊂ Rn
and some bounded operator Φ : M(K1) × . . . ×M(KN ) → M(Ω) between vector spaces of
signed measures. This means that these infinite dimensional inequality constraints can be recast
as equality constraints with an additional decision variable µ̄ ∈ M(Ω)+: Φµ + µ̄ = ν. For
example, the aforementioned volume computation problem can be recast as

p?K = sup

∫
1 dµ

s.t. µ ∈M(K)+, µ̄ ∈M(B)+∫
xk dµ(x) +

∫
xk dµ̄(x) =

∫
xk dx k ∈ Nn.

Example (A most general extension).
Problem (2) covers all existing applications of the Lasserre hierarchy so far, including for

instance:

• The optimal control problem (OCP) [11],

• The controlled region of attraction problem [3] (as well as its inner approximation version
[8] and its extension [7] to invariant sets),
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• The reachable set problem [12] (as well as its continuous time counterpart, formulated as
the maximal positively invariant set inner approximation problem in [15]),

• The nonlinear conservation PDE problem [13, (45),(46)].

Remark 2 (Duality).
In practice, instances of Problem (2) are formulated so that

∀t1, t2 ∈ R, α1, α2, α3 ∈ A, t1ϕα1
+ t2ϕα2

= ϕα3
⇒ t1 aα1 + t2 aα2 = aα3

(and same for the ψβ and bβ). This compatibility with the linearity of optimization constraints
allows to write a synthetic dual formulation to (2):

d?GM := inf x · a + y · b (3)
s.t. v + w − c ∈ C(K1)+ × . . .× C(KN )+

v =
∑
α∈A

xαϕα x = (xα)α∈A ∈ RA s.t. {α ∈ A : xα 6= 0} is finite

w =
∑
β∈B

yβ ψβ y = (yβ)β∈B ∈ (R+)B

where a := (aα)α∈A and b := (bβ)β∈B. In words, the decision variable v is in the vector space
spanned by the ϕα and w is in the convex cone spanned by the ψβ . x (resp. y) is the Lagrange
multiplier corresponding to the equality (resp. inequality) constraints in (2).

The aim of this technical note is to state and prove a most general convergence theorem for
the hierarchy corresponding to Problem (2) (and its dual (3)). The Lasserre hierarchy technology
is most often deployed under the following standard working assumption (see [6, Assumptions 1
& 2]):

Assumption 1 (Ball constraints).
Suppose that there exists g1 ∈ R[x1]m1 , . . . ,gN ∈ R[xN ]mN such that for i ∈ N?N :=

{1, . . . , N},
gi,1(xi) = 1 ; gi,mi(xi) = 1− ‖xi‖2

Ki = {xi ∈ Rni : gi(xi) ≥ 0},

where if x = (x1, . . . , xn) ∈ Rn, ‖x‖ =
√
x21 + . . .+ x2n.

Remark 3 (Compactness).
Up to rescaling of the Ki’s, it is always possible to enforce Assumption 1, as soon as they are

compact basic semialgebraic sets.
Indeed let g ∈ R[x]m, K := {x ∈ Rn : g(x) ≥ 0}. For R > 0, define

KR := {x ∈ Rn : g(x) ≥ 0, ‖x‖2 ≤ R2} = K ∩BR,

where BR := {x ∈ Rn : ‖x‖ ≤ R} is the ball of radius R. In such setting, if K is compact then it
is bounded, so that there exists R0 > 0 s.t. ∀R ≥ R0, K ⊂ BR, and thus K = KR. This shows
that if K is compact, it is always possible to add a redundant ball constraint to its description.
Remark 4 (Archimedean property).

More precisely, the standard condition for applying the moment-SOS hierarchy is actually
that the Ki’s have the Archimidean property, which we explain here. Considering the cone

Σ[x] := {p21 + . . .+ p2k : k ∈ N, p1, . . . , pk ∈ R[x]}
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of sums of squares of polynomials, we define the quadratic module of g ∈ R[x]m as

Σ(g) := {σ · g : σ ∈ Σ[x]m}.

Then, K := {x ∈ Rn : g(x) ≥ 0} is said to have the Archimedean property if

∃ R > 0 s.t. R2 − ‖cdot‖2 ∈ Σ(g).

It is worth noticing, as SOS polynomials are by definition nonnegative, that by definition of K
one has Σ(g) ⊂ R[K]+ and thus the Archimedean property implies K ⊂ BR for some R > 0..

Remark 5 (Positivstellensatz).
The key instrument for the moment-SOS hierarchy is Putinar’s Positivstellensatz [16, The-

orem 1.3], which has a dual counterpart under the form of Putinar’s Lemma [16, Lemma 3.2].
If the Archimedean property holds, then Putinar’s Lemma gives a sufficient hierarchy of LMI
conditions for a multi-indexed sequence z = (zk)k∈Nn to represent the moments of a measure
µ ∈M(Ki)+, which will be instrumental for the moment hierarchy definition and convergence.

Conversely, under the same assumption, Putinar’s Positivstellensatz ensures that Σ(gi) is
dense in C(Ki)+ w.r.t. the uniform topology, so that

d?GM := inf x · a + y · b
s.t. v + w − c ∈ Σ(g1)+ × . . .× Σ(gN )+

v =
∑
α∈A

xαϕα x = (xα)α∈A ∈ RA s.t. {α ∈ A : xα 6= 0} is finite

w =
∑
β∈B

yβ ψβ y = (yβ)β∈B ∈ (R+)B

Then, the isomorphism between sums of squares and positive semidefinite matrices, provided
by [10, Proposition 2.1], allows to parameterize inequality constraints as LMI constraints.

Note that this means that when restricting the constraints to bounded degree in the hierarchy,
only a finite number of constraints need to be checked.

2 Notations and theorem statement
We briefly recall the usual notations and definitions that are used in the Lasserre hierarchy
framework. Then, we proceed to introduce the last assumptions that will be needed for the proof
of our theorem.

The basic notions that are used to formulate the moment hierarchy are the Riesz functional
and the localizing matrix.

Definition (Riesz functional).
Let z := (zk)k∈Nn ∈ RNn

be a real sequence. We define, for p(x) :=
∑
|k|≤d pk xk ∈ R[x],

Lz(p) :=
∑
|k|≤d

pk zk,

where for k = (k1, . . . , kn) ∈ Nn, |k| := k1 + . . .+ kn.
The linear map Lz : p 7→ Lz(p) is called the Riesz functional of z.
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Remark 6 (Link between Lz and integrals).
If z = (zk)k∈Nn ∈ RNn

and µ ∈M(K)+ are such that

∀k ∈ Nn zk =

∫
xk dµ,

then by definition for all p ∈ R[x] ∫
p dµ = Lz(p).

Notation (Bounded multi-indices).
For n, d ∈ N, we use the following notations:

Nnd := {k ∈ Nn : |k| ≤ d} and Nn,d := card(Nnd ) =

(
n+ d

n

)
,

so that the space Rd[x] of polynomials in n variables with degree at most d is isomorphic to RNn
d

and RNn,d .

Definition (Localizing matrix).
Let d, dg ∈ N, g ∈ Rdg [x]. Let ed(x) := (ei(x))1≤i≤Nn,d

be a base of Rd[x]. Let z =

(zk)|k|≤2d+dg ∈ RNn
2d+dg .

The degree d localizing matrix Md(g z) of z in g is defined as the size Nn,d matrix represen-
tation in base ed(x) of the bilinear application

(p, q) ∈ Rd[x]2 7−→ Lz(g p q).

The localizing matrix is defined so that if p(x) = p · ed(x) and q(x) = q · ed(x), p,q ∈ RNn,d ,
then

Lz(g p q) = p>Md(g z) q and Lz(g p2) = p>Md(g z) p.

Notation (Positive semidefinite matrices).
We denote by:

• Sn := {M ∈ Rn×n : M> = M} the space of symmetric matrices,

• Sn+ := {M ∈ Sn : ∀x ∈ Rn,x> M x ≥ 0} the closed convex cone of positive semidefinite
matrices,

• if M ∈ Sn, M � 0⇐⇒ M ∈ Sn+.

These definitions allow to formulate the moment hierarchy associated to Problem (2):

pdGM := sup

N∑
i=1

Lzi(ci) (4)

s.t. zi ∈ RNni
2d i ∈ N?N

Md−dij (gi,j zi) � 0 i ∈ N?N , j ∈ N?mi

N∑
i=1

Lzi(ϕα,i) = aα α ∈ Ad

N∑
i=1

Lzi(ψβ,i) ≤ bβ β ∈ Bd,
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where dij = ddeg gi,j/2e, and

Ad := {α ∈ A : ∀i ∈ N?N ,degϕα,i ≤ 2d},

Bd := {β ∈ B : ∀i ∈ N?N ,degψβ,i ≤ 2d}
are taken finite (which is possible using linearity of the Riesz functional, Remark 5 and finite
dimensionality of Rd[x] = {p ∈ R[x] : deg p ≤ d}).

A vector zi ∈ RNni
2d that is feasible for problem (4) is then called a pseudo-moment sequence.

Remark 7 (SOS hierarchy).
The dual to the moment hierarchy is called the SOS hierarchy, and is written as follows:

ddGM := inf x · a + y · b (5)
s.t. v + w − c ∈ Σ(g1)× . . .× Σ(gN )

v =
∑
α∈Ad

xαϕα x = (xα)α∈Ad
∈ RAd

w =
∑
β∈Bd

yβ ψβ y = (yβ)β∈Bd
∈ (R+)Bd ,

where a := (aα)α∈Ad
and b := (bβ)β∈Bd

.
Remark 8 (Minimal degree for the hierarchy).

It appears in (4) that pdGM is only defined for d ≥ d0, where

d0 := max
i∈{1,...,N}

max
j∈{1,...,mi}

max(ddeg ci/2e, dij).

We are finally able to formulate the last needed assumptions as well as our main theorem.
First, convergence in the moment hierarchy is often obtained through an additional assumption
on the mass of the involved measures:

Assumption 2 (Uniformly bounded mass).
For i ∈ {1, . . . , N}, denote by zi ∈ R(Nni

2d) the pseudo-moment sequence that represents µi in
the Lasserre hierarchy, and suppose that there exists Ci > 0 s.t. if zi is feasible for the degree d
relaxation of problem (2), then

zi,0 ≤ Ci.

Eventually, our proof of convergence consists in proving that our hierarchy of pseudo-moment
sequences has at least one accumulation point. So as to deduce actual convergence, we need a
unique candidate for such accumulation point:

Assumption 3 (Existence of a unique optimal solution).
Suppose that there exists a unique µ? ∈M(K1)+ × . . .×M(KN )+ feasible and optimal for

problem (2): {
∀α ∈ A,

∫
ϕα · dµ? = aα

∀β ∈ B,
∫
ψβ · dµ? ≤ bβ

and
∫

c · dµ? = p?GM.

Remark 9 (The question of uniqueness).
Assumption 3 is crucial for the proof of convergence. However, if one removes it, existence of

the optimal µ? could still be obtained from Assumption 2, through an infinite dimensional strong
duality proof similar to what we present in the next section (which would bring no additional
theoretical insight, so that we do not display it). The actual stake of this assumption is indeed
the uniqueness assumption. Note that in most of the moment-SOS hierarchy applications, the
GMP is designed in a way that enforces Assumption 3.
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Our contribution consists in stating and proving a general theorem for convergence of the
Lasserre hierarchy (4) corresponding to problem (2):

Theorem 4 (Convergence of the general Lasserre hierarchy).
Under Assumptions 1, 2 and 3, there exist sequences

(
zdi
)
d≥d0

of feasible pseudo-moment

sequences for the moment hierarchy (4) s.t.
∑N
i=1 Lzd

i
(ci) = pdGM. Then, for all k ∈ Nn,

zdi,k −→
d→∞

∫
xk dµ?i (x).

In particular, one has pdGM −→
d→∞

p?GM.

Moreover, this automatically yields strong duality pdGM = ddGM and p?GM = d?GM, where d?GM

and ddGM are the values of the duals (3) and (5), respectively, so that ddGM −→
d→∞

d?GM.

Remark 10 (Contribution w.r.t. [6] and [10]).
Whereas [6] and [10, Theorem 5.6(b)] respectively prove strong duality in the moment-SOS

hierarchy and convergence of the resulting pseudo-moments towards the unique solution to the
original POP, this contribution extends these results from the particular POP problem to all
possible instances of the GMP, including the various examples mentioned in introduction, which
should facilitate future contributions in the field of moment-SOS hierarchies.

Such generality is obtained by enforcing, in addition to the standard Assumptions 1 and 3
that were already introduced in [6] and [10, Theorem 5.6(b)], of the boundedness Assumption 2
that guarantees strong duality in the GMP, a property that is trivially established in the context
of POP but can become difficult to check in other situations, such as [12] and [15].

3 Proof of Theorem 4
For the sake of simplicity and without loss of generality, we work on the simple case (1) where
N = 1, with B = ∅1, whose corresponding hierarchy writes:

pdGM := sup Lz(c) (6)

s.t. z ∈ RNn
2d

Md−dj (gj z) � 0 j ∈ N?m
Lz(ϕα) = aα α ∈ Ad.

All the proofs are the same for N > 1, at the price of additional notations that do not bring
any theoretical insight, so that we stick to the case N = 1. We first prove an easy lemma that
gives all its importance to Assumption 1:

Lemma 5 (Pseudo moment sequences boundedness).
Let d ∈ N\{0}, R > 0, z ∈ RNn

2d s.t. Md(z) � 0 and Md−1((R2 − ‖ · ‖2) z) � 0. Then,

min
|k|≤d

z2k ≥ 0 and max
|k|≤2d

|zk| ≤ z0 max(1, R2d).

1Indeed as B is finite, there exists a finite value of d that captures all inequality constraints; arbitrarily setting
this value to 0 does not change our proof for convergence.
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Proof. Md(z) � 0 is equivalent to

∀p ∈ Rd[x],Lz(p2) ≥ 0, (a)

while Md−1((R2 − ‖ · ‖2) z) � 0 means that

∀p ∈ Rd−1[x],Lz((R2 − ‖ · ‖2) p2) ≥ 0. (b)

(a) with p(x) = xk, |k| ≤ d yields z2k ≥ 0.
(b) with p(x) = 1 yields R2z0 ≥

∑
|k|=1 z2k, since ‖x‖2 =

∑n
j=1 x

2
j =

∑
|k|=1 x2k. Hence,

since the z2k are nonnegative, one has |k| = 1⇒ z2k ≤ R2z0.
Going forward, if |k| = 1, (b) with p(x) = xk yields R2z2k ≥

∑
|k′|=1 z2(k+k′) with z2(k+k′) ≥

0 by (a), so that R4z0 ≥ R2z2k ≥ z2(k+k′) as long as |k| = |k′| = 1, and thus, if |k| = 2,
R4z0 ≥ z2k. By induction, one has for k ∈ Nnd that

0 ≤ z2k ≤ R2|k|z0 ≤ z0 max(1, R2d). (c)

Let k,k′ ∈ Nnd . Then, (a) with p(x) = xk ± xk′ yields 0 ≤ Lz(p2) = z2k ± 2zk+k′ + z2k′ so that

|zk+k′ | ≤
z2k + z2k′

2
≤ max(z2k, z2k′)

(c)
≤ z0 max(1, R2d). (d)

Eventually, any k ∈ Nn2d can be written k = k′ + k′′ with k′,k′′ ∈ Nnd , so that it satisfies (d),
and |zk| ≤ z0 max(1, R2d).

This lemma proves several important facts, among which any nonzero feasible pseudo-moment
vector zi for (4) satisfies zi,0 > 0 if Assumption 1 holds, and under Assumptions 1 and 2, for all
d ∈ N, zi feasible for (4) satisfies |zi,k| ≤ Ci ∀k.
Remark 11 (Relaxing Assumption 1).

Actually, this lemma still holds if one replaces Assumption 1 with the Archimedean property.
Indeed, suppose that R2−‖ · ‖2 ∈ Σ(g) for some R > 0. Then, there exists σ ∈ Σ[x]m such that

R2 − ‖ · ‖2 = σ · g =

m∑
i=1

σi gi =

m∑
i=1

ki∑
j=1

p2i,j gi.

Then, let D := maxi,jddeg(p2i,j)/2e and for i ∈ N?m let di := d+D−1 and suppose Mdi(gi z) � 0.
In that case, for q ∈ Rd−1[x], one recovers (b):

Lz((R2 − ‖ · ‖2) q2) =

m∑
i=1

ki∑
j=1

Lz(gi p
2
i,j q

2) ≥ 0.

However, we chose to keep Assumption 1 instead of the Archimedean property, as the former is
much easier to verify in practice and can always be enforced when the latter holds, at the price
of adding a redundant ball constraint to the Ki’s descriptions (see remarks 3 and 4).

A first consequence of Lemma 5 is the strong duality property in the hierarchy.

Proposition 6 (Strong duality in the hierarchy).
Suppose that each relaxation of Problem (1) has a feasible solution. In that case, under

Assumptions 1 and 2,
∀d ≥ d0, pdGM = ddGM.

Moreover, the degree d relaxation (6) of (1) has an optimal solution zd ∈ RNn
2d .
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Proof. We rely on [1, Chapter IV: Theorem (7.2), Lemma (7.3)] to prove our result. Consider
the cone

Kd := {(Adz,Lz(c)) : z ∈ Xd} ,

where Adz := (Lz(ψβ))β∈Bd
and

Xd :=
{

z ∈ RNn
2d : ∀j ∈ {1, . . . ,m},Md−dj (gj z) � 0

}
.

According to [1, Theorem (7.2)] a sufficient condition for our result to hold requires that
pdGM <∞ and Kd is closed. Clearly,

pdGM ≤ Nn,d0
(

max
k∈Nn

ck

)(
max

z
max
k∈Nn

2d

zk

)
≤ Nn,d0

(
max
k∈Nn

ck

)
C <∞.

Besides, [1, Lemma (7.3)] states that for Kd to be closed, it is sufficient to prove that Xd has a
compact, convex base, and that

∀z ∈ Xd, (Adz,Lz(c)) = (0, 0) =⇒ z = 0. (∗)

We first exhibit a compact convex base for Xd. A base for a cone is defined as follows:

Definition (Convex base of a cone). Let X be a cone, i.e. a subset of a real vector space that
is invariant under multiplication by nonnegative real numbers. P ⊂ X is said to be a base of X
if the map

χ :

{
(0,+∞)× P −→ X \ {0}

(t,p) 7−→ tp

is a bijection.

We are looking for such a base, with the additional properties that it should be convex (i.e.
stable by barycenter operation) and compact (i.e., in this finite dimensional context, closed and
bounded). Let

Pd := {z = (zk)k ∈ Xd : z0 = 1}.

Pd is a base of Xd in the sense that Xd\{0} is isomorphic to (0,+∞)×Pd through the bijective
application χd : (t,p) 7→ t p, with χ−1d (z) = (z0, z/z0) (using Lemma 5 and Assumption 1, for
any Md(z) and Md−1((1− ‖ · ‖2) z) to be simultaneously positive semi-definite with z 6= 0, it is
necessary that z0 > 0).
Pd is convex. Indeed, let p1,p2 ∈ Pd, t ∈ [0, 1], p̃ := t p1 + (1− t) p2. Then, by linearity of

the localizing matrix operator,

∀g ∈ Rd[x] Md−dg (g p̃) = t Md−dg (g p1) + (1− t) Md−dg (g p2),

where dg = ddeg g/2e, so that its semidefinite positivity is preserved by convex combination, by
convexity of Sn+ for any n ∈ N. Thus, p̃ ∈ Xd. Besides,

p̃0 = t p10 + (1− t) p20 = t+ 1− t = 1

so that p̃ ∈ Pd, which proves convexity.
Eventually, we move on to showing compactness of Pd. According to Lemma 5, the ball

constraint in the description of K (Assumption 1) and the upper bound z0 ≤ C (Assumption 2)
yield boundedness of Pd for the distance dist(z, z′) := max|k|≤2d |zk − z′k|.
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Finally, Pd is closed as the intersection between the level-1 set of the continuous function
z 7→ z0 and the closed cone Xd. Indeed Xd is closed as the pre-image of the closed cone

(
SNn,d

+

)m
by the (continuous) linear map

z 7→
(
Md−dj (gj z)

)
j∈{1,...,m} .

Since finite dimensional closed bounded sets are compact, this proves that Pd is compact.
It remains to prove (∗). Let z ∈ Xd s.t. Adz = 0 and Lz(c) = 0. We want to prove that z = 0

so that (∗) holds.
Let z0 ∈ Xd s.t. ∀β ∈ Bd, Lz0

(ψβ) ≤ bβ . Define for t ≥ 0 zt := z0 + t z. Let t ≥ 0.
Since Xd is a convex cone, zt ∈ Xd. In addition, by construction of z and linearity of the

operator z 7→ Lz(·), ∀β ∈ Bd, Lzt
(ψβ) = Lz0

(ψβ) ≤ bβ , so that Assumption 2 ensures that
zt,0 ≤ C. However, zt,0 = z0,0 + t z0.

Combined with the fact that z0,0 ≥ 0 (with Lemma 5), this yields that for all t ≥ 0,

t z0 ≤ C,

which is only possible if z0 = 0, i.e. if z = 0 using again Lemma 5.

Eventually, we can end this section by proving Theorem 4. As announced at the beginning
of this section, w.l.o.g we actually only do the proof for the case N = 1:

Theorem 7 (Convergence of the pseudo-moment sequences).
Under Assumptions 1, 2 and 3, there exists a sequence (zd)d≥d0 of feasible pseudo-moment

sequences for the hierarchy (6) corresponding to Problem (1), s.t. Lzd
(c) = pdGM. Then, for all

k ∈ Nn,
zd,k −→

d→∞

∫
xk dµ?(x).

In particular, one has pdGM −→
d→∞

p?GM.

Moreover, this automatically yields strong duality pdGM = ddGM and p?GM = d?GM and then
dual convergence ddGM −→

d→∞
d?GM.

Proof. Existence of (zd)d≥d0 follows from Proposition 6 (using Assumptions 1 and 2), so we focus
on the proof of convergence. Let d ∈ N. For k ∈ Nn, define

ẑd,k :=

{
zd,k if |k| ≤ 2d,
0 else,

so that ẑd ∈ RNn

with

‖ẑd‖`∞(Nn) := max
k∈Nn

|ẑd,k| = max
|k|≤2d

|zd,k|
Lemma 5
≤ zd,0 ≤ C,

using again Assumptions 1 and 2 (recall that in particular Assumption 1 sets R = 1 in the
application of Lemma 5). Then, (ẑd)d∈N is a uniformly bounded sequence of

`∞(Nn) :=

{
u ∈ RNn

: max
k∈Nn

|uk| <∞
}
,
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which is the topological dual of `1(Nn) :=
{
u ∈ RNn

:
∑

k∈Nn |uk| <∞
}
. Thus, the Banach-

Alaoglu theorem [2, Theorem 3.16] yields a weak-∗ converging subsequence (ẑdr )r∈N: ∃ z∞ ∈
`∞(Nn) s.t. ∀u ∈ `1(Nn), ∑

k∈Nn

uk zdr,k −→r→∞
∑
k∈Nn

uk z∞,k.

In particular, if k ∈ Nn, ul := 0 if l 6= k, uk = 1 defines a u ∈ `1(Nn) for which the above
statement becomes zdr,k −→

r→∞
z∞,k.

Thus, what we want to show is that for k ∈ Nn, z∞,k =
∫

xk dµ?(x) =: z?k, where we recall
that µ? is the unique solution to (1) given by Assumption 3.

Let α ∈ A, j ∈ N?m. Then, for all d ≥ d0 and r ∈ N big enough, by feasibility of zdr for the
relaxation of degree dr, one has

• 0 � Md−dj (gj zdr ) = Md−dj (gj ẑdr ) −→
r→∞

Md−dj (gj z∞)

• aα = Lzdr
(ϕα) = Lẑdr

(ϕα) −→
r→∞

Lz∞(ϕα)

so that according to Putinar’s Lemma [16, Lemma 3.2], whose conditions hold by Assumption
1, z∞ is the actual moment sequence of a measure µ∞ that is feasible for problem (1). Then,
one directly has

p?GM ≥
∫
c dµ∞ = Lz∞(c) = lim

r→∞
Lẑdr (c) = lim

r→∞
pdrGM ≥ p?GM

since for any d ≥ d0 pdGM ≥ p?GM (by construction of the moment relaxation).
Hence,

∫
c dµ∞ = p?GM, i.e. µ∞ is optimal for problem (1). By Assumption 3, this yields

µ∞ = µ?, i.e. z∞ = z?. Thus, (ẑd)d is bounded and has a unique weak-∗ accumulation point
z?, which means that for any k ∈ Nn,

zd,k −→
d→∞

z?k =

∫
xk dµ?(x).

Eventually, since Assumptions 1 and 2 hold, Proposition 6 ensures strong duality pdGM = ddGM,
so that putting together weak GMP duality and the strenghtening property, one has

p?GM

weak duality
≤ d?GM

strenghtening
≤ ddGM

strong duality
= pdGM

convergence
−→
d→∞

p?GM

and the sandwich rule yields strong GMP duality p?GM = d?GM.

4 Discussing the uniqueness Assumption 3
In practice, it is quite easy to enforce Assumptions 1 and 2, up to rescaling and addition of mass
constraints. However, Assumption 3 may not always hold (especially in the case of polynomial
optimization or PDE solutions), so that it is worth discussing what can be done without this
Assumption. If Assumption 3 does not hold, then our contribution reduces to the following
result:

Corollary 8 (to Theorem 7).
Under Assumptions 1 and 2, there exists a subsequence (zdr )r∈N, where (dr)r∈N ∈ ([d0,∞) ∩

N)N is strictly increasing, of feasible pseudo-moment sequences for the hierarchy (6), as well as
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a measure µ∞ ∈ M(K)+ feasible for Problem (1), s.t. Lzdr
(c) = pdrGM,

∫
c dµ∞ = p?GM and for

all k ∈ Nn,
zdr,k −→

r→∞

∫
xk dµ∞(x).

In particular, one still has pdGM −→
d→∞

p?GM.

Moreover, this automatically yields strong duality pdGM = ddGM and p?GM = d?GM and then
dual convergence ddGM −→

d→∞
d?GM.

Proof. Going back to the proof of Theorem 7, most arguments are still valid, which lets us with a
subsequence (zdr )r∈N that converges towards the moments of an optimal µ∞. The only part that
is not valid anymore without Assumption 3 is the identification between µ∞ and µ?, and thus
the convergence of the whole sequence (zd)d≥d0 . Indeed, in such context, the pseudo-moment
sequence might have several accumulation points µ?1, . . . , µ?M (or even an infinity of accumulation
points), and either converge to one of them, or oscillate between them. The strong duality and
value convergence results being independent from this, the rest of Theorem 7 is unchanged.

To illustrate this result, consider the POP problem f? := infx∈[0,1](1 − x)x, whose value is
obviously f? = 0 with minimizers x? = 0 and x? = 1. We then write the corresponding GMP
instance as well as its order d moment relaxation:

p?f := inf

∫
(1− x)x dµ(x) (7a)

s.t. µ ∈M([0, 1])+∫
1 dµ(x) = 1,

pdf := inf z1 − z2 (7b)

s.t. z = (zk)0≤k≤2d ∈ RN2d

Md(z) � 0

Md−1 (x(1− x)z) � 0

Md−1
(
(1− x2)z

)
� 0

z0 = 1,

where [0, 1] is described as [0, 1] = {x ∈ R : 1 ≥ 0, (1 − x)x ≥ 0 and 1 − x2 ≥ 0} so as for
Assumption 1 to hold. Note that constraint

∫
1 dµ = 1 automatically enforces Assumption 2

through its moment writing z0 = 1. Now, the obvious solution to problem (7a) is p?f = 0 with
minimizing set

M? := {µ? = t δ1 + (1− t) δ0 : t ∈ [0, 1]}.

Indeed, M? parameterizes all possible probability measures supported on the set {0, 1} of
minimizers of (1− x)x (see figure 1). Thus, in this case, Assumption 3 does not hold.

We then proceed to study the moment relaxation (7b).

Proposition 9 (Finite convergence).
For d ≥ 1, the minimizers of problem (7b) are in correspondance with the minimizers of

problem (7a):

Md =

{(∫
xk dµ?(x)

)
k∈N2d

: µ? ∈M?

}
.

This is called a finite convergence phenomenon, and it is very common with POP moment hier-
archies [14].
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t = 0.32

Figure 1: Graph of the function x 7→ (1− x)x that we minimize.

We represent a possible optimal measure µ? = t δ1 + (1− t) δ0 where t = 0.32 is the length of the
red segment and (1− t) = 0.68 is the length of the green one.

Proof. Let d ≥ 1. Let z = (zk)0≤k≤2d ∈ RN2d be feasible for (7b). For k ∈ N2d−2, we define

uk := zk+1 − zk+2,

which yields a new vector u = (uk)0≤k≤2d−2∈ R2d−1.
Then, Md−1(u) = Md−1 (x(1− x)z) � 0. We next prove that Md−2

(
(1− x2)u

)
� 0. Let

p ∈ Rd−2[x].

Lu

(
(1− x2)p2

)
= Lz

(
(1− x2)p2(1− x)x

)
= Lz

(
(1 + x)(1− x)2p2x

)
= Lz

(
(1− x+ 2x)(1− x)2p2x

)
= Lz

(
x(1− x)(1− x)2p2

)︸ ︷︷ ︸
≥0 since Md−1(x(1−x)z)�0

+ 2 Lz

(
x2(1− x)2p2

)︸ ︷︷ ︸
≥0 since Md(z)�0

≥ 0,

which is the definition of Md−2
(
(1− x2)u

)
� 0. Then, applying Lemma 5 to u, we deduce that

0 ≤ max
1≤k≤2d−1

|zk − zk+1| = max
0≤k≤2d−2

|uk| ≤ u0 = z1 − z2. (8)

This proves that pdf ≥ 0. On the other hand, z = (1, t, . . . , t) ∈ RN2d , with t ∈ [0, 1], defines a
feasible z (corresponding to the moments of optimal measure µ? = t δ1 + (1 − t) δ0) such that
z1 − z2 = 0, which proves that pdf ≤ 0 and thus pdf = 0.

Eventually, let z = (zk)0≤k≤2d be feasible and optimal for (7b): z1 − z2 = 0. Then, equation
(8) instantly yields that for all k ≥ 2, zk = z1. Moreover, according to Lemma 5 applied to z,
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for all k ≥ 1, zk = z2 ∈ [0, 1]. In other words, for d ≥ 1 the set of minimizers for problem (7b) is
exactly the set of truncated moment sequences of minimizers for problem (7a):

Md = {(zk)0≤k≤2d : z0 = 1, z1 ∈ [0, 1],∀k ≥ 1, zk = z1}=

{(∫
xk dµ?(x)

)
k∈N2d

: µ? ∈ M?

}
,

no matter the size of d ≥ 1.

Remark 12 (Notions of convergence).
Here it is important to distinguish between two different notions of convergence:

• Finite convergence of the hierarchy denotes the aforementioned phenomenon, when the
minimizers of a finite degree relaxation all correspond to minimizers of the original GMP;

• One talks about pseudo-moment sequence convergence when any sequence (zd)d of mini-
mizers for (6) converges to the sequence of moments of a minimizer for (1).

Theorem 4 ensures pseudo-moment sequence convergence under Assumptions 1–3. Corollary 8
states that removing Assumption 3 leads to having pseudo-moment sequence convergence only
up to a subsequence (zdr )r.

In our illustrative example one indeed has finite convergence, but there is no a priori reason
that each step of the hierarchy will return an optimal pseudo-moment sequence corresponding
to the same optimal measure, and one could have for example that for d ≥ 1,

zd = (1, d mod 2, . . . , d mod 2) ∈ RN2d ,

where d mod 2 =

{
1 if d is odd
0 if d is even so that zd would be the truncated moment sequence corre-

sponding to optimal solution µ?d = (dmod 2) δ1 + (1− d mod 2) δ0 = δdmod 2.
Such a (zd)d would obviously not converge when the degree d tends to infinity.
A natural question that arises then is: how does one modify the original GMP or the moment

relaxations in order to retrieve pseudo-moment sequence convergence?
A trivial way to fix this issue is to fix the value of z1 in the constraints of the GMP:

p?t := inf

∫
(1− x)x dµ(x) (9a)

s.t. µ ∈M([0, 1])+∫
1 dµ(x) = 1∫
x dµ(x) = t,

pdt := inf z1 − z2 (9b)

s.t. z = (zk)0≤k≤2d ∈ RN2d

Md(z) � 0

Md−1 (x(1− x)z) � 0

Md−1
(
(1− x2)z

)
� 0

z0 = 1

z1 = t,

for a given t ∈ [0, 1]. Then, the only solution to (9a) is

µ? = t δ1 + (1− t) δ0,

so that Assumption 3 holds and one retrieves pseudo-moment sequence convergence (and finite
convergence still holds), as the unique minimizer for (9b) is

zd = (1, t, . . . , t) =

(∫
xk dµ?(x)

)
0≤k≤2d

∈ RN2d .

15



Remark 13 (Enforcing uniqueness).
It is not always possible to enforce Assumption 3 as we did here without knowing the GMP

solution in advance. Another common heuristics to obtain a unique solution in the relaxations
consists in adding a penalty in the cost function: instead of minimizing z1−z2 in (7b), one could
minimize z1− z2 + εTr Md(z), for some ε ∈ R \ {0}. Then, depending on the sign of ε, one would
obtain a unique solution zd = (1, . . . , 1) (ε < 0) corresponding to µ? = δ1, or zd = (1, 0, . . . , 0)
(ε > 0) corresponding to µ? = δ0.

We finally get to numerically implement the moment hierarchy corresponding to our illus-
trating example. In the “fixed” cases, the behavior of the SDP solver is fixed, up to numerical
errors. The interesting case is then problem (7). We implemented the corresponding hierarchy
of moment problems (7b) with increasing relaxation degree d ∈ N?20. First, not displayed is the
fact that we indeed invariably obtained z0 = 1.0000 and zk = z1 (up to solver precision) for all
k ≥ 2. We implemented the hierarchy in two different frameworks:

• GloptiPoly [4], a Matlab toolbox that models moment problems, interfaced with the SDP
solvers SeDuMi (see the numerically computed values of z1 in Table 1a) and Mosek (see
Table 1b);

• MomentOpt [17], an open source Julia module, interfaced with the SDP solver CSDP (see
the numerically computed values of z1 in Table 1c).

d 1 2 3 4 5 6 7 8 9 10
z1 0.3974 0.3094 0.2228 0.2020 0.2103 0.1960 0.1440 0.1400 0.1369 0.0953
d 11 12 13 14 15 16 17 18 19 20
z1 0.1088 0.1116 0.0982 0.0937 0.0851 0.0762 0.0716 0.0674 0.0649 0.0620

(a) with GloptiPoly and SeDuMi.

d 1 2 3 4 5 6 7 8 9 10
z1 0.3259 0.3034 0.1782 0.1312 0.1092 0.1236 0.0976 0.0898 0.0861 0.0830
d 11 12 13 14 15 16 17 18 19 20
z1 0.0763 0.0744 0.0666 0.0611 0.0564 0.0528 0.0499 0.0473 0.0450 0.0428

(b) with GloptiPoly and Mosek.

d 1 2 3 4 5 6 7 8 9 10
z1 0.3741 0.0553 0.0772 0.0340 0.0418 0.0280 0.0169 0.0148 0.0121 0.0137
d 11 12 13 14 15 16 17 18 19 20
z1 0.0079 0.0107 0.0082 0.0078 0.0071 0.0074 0.0075 0.0071 0.0059 0.0057

(c) with MomentOpt and CSDP.

Table 1: Numerical solutions of problem (7b)

At first glance it would seem that the sequence (zd,1)d decreases when d increases, but looking
at specific values shows that it is not the case. What we can deduce from Table 1 is that the
sequence (zd,1)d seems to converge to 0, so that (zd)d would converge towards µ∞ = δ0, but we
have no proof that it is actually the case. Moreover, the sequence zd = (1, 0, . . . , 0) is already
feasible for the degree d = 1 relaxation, so that there is no reason, if the tendency were indeed to
go to z1 = 0, that such constraint is not satisfied already in the first steps of the hierarchy. Also,
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it is important to notice that the results we obtained are stable, meaning that running the same
code always returns the same values for z1. In other words, the obtained values only depend on
the solver. These tendencies then depend on how the interior point algorithm of the solver is
implemented, which is out of the scope of the present work.

5 Conclusion
While usually it is only proved that the optimal values for the moment relaxations of the GMP
monotonically converge towards the optimal value of the GMP, this note proves that the solutions
of these moment relaxations converge to the actual solution of the GMP in `∞’s weak-∗ topology,
provided that some elementary assumptions hold. So far, such proof has only been provided for
very specific instances of the GMP (see e.g. [10, Theorem 5.6(b)], [5]), while here the generic
case is completely dealt with. Up to rescaling the problem (which also precludes ill behaviours
in the numerical implementations), one can usually enforce quite easily that these conditions
are met. As a byproduct of this proof, one also obtains strong duality both in the GMP and
its corresponding hierarchy, generalizing the results of [6]. Among the open questions this note
answers, one can cite the weak-∗ convergence of the moment sequences associated to the OCP
[11] and set approximation problems in [3, 15, 12], as well as the strong duality between the GMP
formulation in [13] and its dual, regardless of the formulation of such dual. Finally, this note
should facilitate most proofs of convergence and strong duality related to future applications of
Lasserre’s moment-SOS hierarchy.
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